Amazon cover image
Image from Amazon.com

Modern control engineering / Katsuhiko Ogata.

By: Series: Prentice-Hall electrical engineering series. Instrumentation and controls seriesPublication details: Boston : Prentice-Hall, c2010.Edition: 5th edDescription: x, 894 p. : ill. ; 25 cmISBN:
  • 9780136156734
  • 0136156738
Subject(s): DDC classification:
  • 139730136156734
LOC classification:
  • 100136156738 1
Online resources:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number URL Copy number Status Date due Barcode
Book Open Access Book Open Access Engineering Library Link to resource 1 Available 100136156738

Contents

Preface ix

Chapter 1 Introduction to Control Systems 1
1–1 Introduction 1
1–2 Examples of Control Systems 4
1–3 Closed-Loop Control Versus Open-Loop Control 7
1–4 Design and Compensation of Control Systems 9
1–5 Outline of the Book 10

Chapter 2 Mathematical Modeling of Control Systems 13
2–1 Introduction 13
2–2 Transfer Function and Impulse-Response Function 15
2–3 Automatic Control Systems 17
2–4 Modeling in State Space 29
2–5 State-Space Representation of Scalar Differential
Equation Systems 35
2–6 Transformation of Mathematical Models with MATLAB 39
2–7 Linearization of Nonlinear Mathematical Models 43
Example Problems and Solutions 46

Problems 60

Chapter 3 Mathematical Modeling of Mechanical Systems
and Electrical Systems 63
3–1 Introduction 63
3–2 Mathematical Modeling of Mechanical Systems 63
3–3 Mathematical Modeling of Electrical Systems 72
Example Problems and Solutions 86
Problems 97

Chapter 4 Mathematical Modeling of Fluid Systems
and Thermal Systems 100
4–1 Introduction 100
4–2 Liquid-Level Systems 101
4–3 Pneumatic Systems 106
4–4 Hydraulic Systems 123
4–5 Thermal Systems 136
Example Problems and Solutions 140
Problems 152

Chapter 5 Transient and Steady-State Response Analyses 159
5–1 Introduction 159
5–2 First-Order Systems 161
5–3 Second-Order Systems 164
5–4 Higher-Order Systems 179
5–5 Transient-Response Analysis with MATLAB 183
5–6 Routh’s Stability Criterion 212
5–7 Effects of Integral and Derivative Control Actions
on System Performance 218
5–8 Steady-State Errors in Unity-Feedback Control Systems 225
Example Problems and Solutions 231
Problems 263
iv Contents

Chapter 6 Control Systems Analysis and Design
by the Root-Locus Method 269
6–1 Introduction 269
6–2 Root-Locus Plots 270
6–3 Plotting Root Loci with MATLAB 290
6–4 Root-Locus Plots of Positive Feedback Systems 303
6–5 Root-Locus Approach to Control-Systems Design 308
6–6 Lead Compensation 311
6–7 Lag Compensation 321
6–8 Lag–Lead Compensation 330
6–9 Parallel Compensation 342
Example Problems and Solutions 347
Problems 394

Chapter 7 Control Systems Analysis and Design by the
Frequency-Response Method 398
7–1 Introduction 398
7–2 Bode Diagrams 403
7–3 Polar Plots 427
7–4 Log-Magnitude-versus-Phase Plots 443
7–5 Nyquist Stability Criterion 445
7–6 Stability Analysis 454
7–7 Relative Stability Analysis 462
7–8 Closed-Loop Frequency Response of Unity-Feedback
Systems 477
7–9 Experimental Determination of Transfer Functions 486
7–10 Control Systems Design by Frequency-Response Approach 491
7–11 Lead Compensation 493
7–12 Lag Compensation 502
7–13 Lag–Lead Compensation 511
Example Problems and Solutions 521
Problems 561

Chapter 8 PID Controllers and Modified PID Controllers 567
8–1 Introduction 567
8–2 Ziegler–Nichols Rules for Tuning PID Controllers 568
Contents v
8–3 Design of PID Controllers with Frequency-Response
Approach 577
8–4 Design of PID Controllers with Computational Optimization
Approach 583
8–5 Modifications of PID Control Schemes 590
8–6 Two-Degrees-of-Freedom Control 592
8–7 Zero-Placement Approach to Improve Response
Characteristics 595
Example Problems and Solutions 614
Problems 641

Chapter 9 Control Systems Analysis in State Space 648
9–1 Introduction 648
9–2 State-Space Representations of Transfer-Function
Systems 649
9–3 Transformation of System Models with MATLAB 656
9–4 Solving the Time-Invariant State Equation 660
9–5 Some Useful Results in Vector-Matrix Analysis 668
9–6 Controllability 675
9–7 Observability 682
Example Problems and Solutions 688
Problems 720

Chapter 10 Control Systems Design in State Space 722
10–1 Introduction 722
10–2 Pole Placement 723
10–3 Solving Pole-Placement Problems with MATLAB 735
10–4 Design of Servo Systems 739
10–5 State Observers 751
10–6 Design of Regulator Systems with Observers 778
10–7 Design of Control Systems with Observers 786
10–8 Quadratic Optimal Regulator Systems 793
10–9 Robust Control Systems 806
Example Problems and Solutions 817
Problems 855

vi Contents
Appendix A Laplace Transform Tables 859
Appendix B Partial-Fraction Expansion 867
Appendix C Vector-Matrix Algebra 874

References 882

Index 886

Includes bibliographical references (p. 883-885) and index.

There are no comments on this title.

to post a comment.