An introduction to aircraft structural analysis / (Record no. 1945)

MARC details
000 -LEADER
fixed length control field 21978cam a2200313 a 4500
001 - CONTROL NUMBER
control field 16027813
003 - CONTROL NUMBER IDENTIFIER
control field BUL
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210319135853.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 091218s2010 ne a b 001 0 eng
010 ## - LIBRARY OF CONGRESS CONTROL NUMBER
LC control number 2009050354
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781856179324 (pbk. : alk. paper)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 185617932X (pbk. : alk. paper)
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)ocn490807676
040 ## - CATALOGING SOURCE
Original cataloging agency BUL
Transcribing agency BUL
Modifying agency BUL
-- BUL
-- BUL
-- BUL
-- BUL
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Megson, T. H. G.
Fuller form of name (Thomas Henry Gordon)
245 13 - TITLE STATEMENT
Title An introduction to aircraft structural analysis /
Statement of responsibility, etc. T.H.G. Megson.
250 ## - EDITION STATEMENT
Edition statement 4th Ed.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Amsterdam ;
-- Boston :
Name of publisher, distributor, etc. Butterworth-Heinemann/Elsevier,
Date of publication, distribution, etc. c2010.
300 ## - PHYSICAL DESCRIPTION
Extent vii, 638 p. :
Other physical details ill. ;
Dimensions 24 cm.
500 ## - GENERAL NOTE
General note Contents<br/>Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii<br/>PART A FUNDAMENTALS OF STRUCTURAL ANALYSIS<br/>CHAPTER 1 Basic Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.1 Stress .................................................................................................. 3<br/>1.2 Notation for Forces and Stresses ................................................................... 5<br/>1.3 Equations of Equilibrium ........................................................................... 7<br/>1.4 Plane Stress ........................................................................................... 9<br/>1.5 Boundary Conditions ................................................................................ 9<br/>1.6 Determination of Stresses on Inclined Planes .................................................... 10<br/>1.7 Principal Stresses .................................................................................... 14<br/>1.8 Mohr’s Circle of Stress .............................................................................. 16<br/>1.9 Strain .................................................................................................. 20<br/>1.10 Compatibility Equations ............................................................................ 24<br/>1.11 Plane Strain ........................................................................................... 25<br/>1.12 Determination of Strains on Inclined Planes...................................................... 25<br/>1.13 Principal Strains ...................................................................................... 27<br/>1.14 Mohr’s Circle of Strain .............................................................................. 28<br/>1.15 Stress–Strain Relationships ......................................................................... 28<br/>1.16 Experimental Measurement of Surface Strains ................................................... 37<br/>Problems .............................................................................................. 41<br/>CHAPTER 2 Two-Dimensional Problems in Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br/>2.1 Two-Dimensional Problems ........................................................................ 45<br/>2.2 Stress Functions ...................................................................................... 47<br/>2.3 Inverse and Semi-Inverse Methods ................................................................ 48<br/>2.4 St. Venant’s Principle ................................................................................ 53<br/>2.5 Displacements ........................................................................................ 54<br/>2.6 Bending of an End-Loaded Cantilever ............................................................ 55<br/>Problems .............................................................................................. 60<br/>CHAPTER 3 Torsion of Solid Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br/>3.1 Prandtl Stress Function Solution ................................................................... 65<br/>3.2 St. VenantWarping Function Solution ............................................................ 75<br/>3.3 The Membrane Analogy ............................................................................ 77<br/>3.4 Torsion of a Narrow Rectangular Strip ............................................................ 79<br/>Problems .............................................................................................. 82<br/>CHAPTER 4 Virtual Work and Energy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br/>4.1 Work ................................................................................................... 85<br/>4.2 Principle of VirtualWork ........................................................................... 86<br/>4.3 Applications of the Principle of VirtualWork .................................................... 99<br/>Problems .............................................................................................. 107<br/>CHAPTER 5 Energy Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br/>5.1 Strain Energy and Complementary Energy ....................................................... 111<br/>5.2 The Principle of the Stationary Value of the Total Complementary Energy .................. 113<br/>iii<br/>iv Contents<br/>5.3 Application to Deflection Problems ............................................................... 114<br/>5.4 Application to the Solution of Statically Indeterminate Systems............................... 122<br/>5.5 Unit Load Method ................................................................................... 138<br/>5.6 Flexibility Method ................................................................................... 141<br/>5.7 Total Potential Energy ............................................................................... 147<br/>5.8 The Principle of the Stationary Value of the Total Potential Energy ........................... 148<br/>5.9 Principle of Superposition .......................................................................... 151<br/>5.10 The Reciprocal Theorem............................................................................ 151<br/>5.11 Temperature Effects ................................................................................. 156<br/>Problems .............................................................................................. 158<br/>CHAPTER 6 Matrix Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br/>6.1 Notation ............................................................................................... 170<br/>6.2 Stiffness Matrix for an Elastic Spring ............................................................. 171<br/>6.3 Stiffness Matrix for Two Elastic Springs in Line................................................. 172<br/>6.4 Matrix Analysis of Pin-jointed Frameworks ...................................................... 176<br/>6.5 Application to Statically Indeterminate Frameworks ............................................ 183<br/>6.6 Matrix Analysis of Space Frames .................................................................. 183<br/>6.7 Stiffness Matrix for a Uniform Beam.............................................................. 185<br/>6.8 Finite Element Method for Continuum Structures ............................................... 193<br/>Problems .............................................................................................. 211<br/>CHAPTER 7 Bending of Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219<br/>7.1 Pure Bending of Thin Plates ........................................................................ 219<br/>7.2 Plates Subjected to Bending and Twisting ........................................................ 223<br/>7.3 Plates Subjected to a Distributed Transverse Load............................................... 227<br/>7.4 Combined Bending and In-Plane Loading of a Thin Rectangular Plate ....................... 236<br/>7.5 Bending of Thin Plates Having a Small Initial Curvature ....................................... 240<br/>7.6 Energy Method for the Bending of Thin Plates .................................................. 241<br/>Problems .............................................................................................. 250<br/>CHAPTER 8 Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253<br/>8.1 Euler Buckling of Columns ......................................................................... 253<br/>8.2 Inelastic Buckling .................................................................................... 259<br/>8.3 Effect of Initial Imperfections ...................................................................... 263<br/>8.4 Stability of Beams under Transverse and Axial Loads .......................................... 266<br/>8.5 Energy Method for the Calculation of Buckling Loads in Columns ........................... 270<br/>8.6 Flexural–Torsional Buckling of Thin-Walled Columns ......................................... 274<br/>Problems .............................................................................................. 287<br/>CHAPTER 9 Thin Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293<br/>9.1 Buckling of Thin Plates ............................................................................. 293<br/>9.2 Inelastic Buckling of Plates ......................................................................... 296<br/>9.3 Experimental Determination of Critical Load for a Flat Plate .................................. 298<br/>9.4 Local Instability ...................................................................................... 299<br/>9.5 Instability of Stiffened Panels ...................................................................... 300<br/>9.6 Failure Stress in Plates and Stiffened Panels...................................................... 302<br/>9.7 Tension Field Beams ................................................................................ 304<br/>Problems .............................................................................................. 320<br/>Contents v<br/>PART B ANALYSIS OF AIRCRAFT STRUCTURES<br/>CHAPTER 10 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327<br/>10.1 Aluminum Alloys .................................................................................... 327<br/>10.2 Steel ................................................................................................... 329<br/>10.3 Titanium............................................................................................... 330<br/>10.4 Plastics ................................................................................................ 331<br/>10.5 Glass ................................................................................................... 331<br/>10.6 Composite Materials................................................................................. 331<br/>10.7 Properties of Materials .............................................................................. 333<br/>Problems .............................................................................................. 349<br/>CHAPTER 11 Structural Components of Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351<br/>11.1 Loads on Structural Components .................................................................. 351<br/>11.2 Function of Structural Components................................................................ 354<br/>11.3 Fabrication of Structural Components ............................................................. 359<br/>11.4 Connections........................................................................................... 363<br/>Problems .............................................................................................. 370<br/>CHAPTER 12 Airworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373<br/>12.1 Factors of Safety-Flight Envelope ................................................................. 373<br/>12.2 Load Factor Determination ......................................................................... 375<br/>CHAPTER 13 Airframe Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379<br/>13.1 Aircraft Inertia Loads................................................................................ 379<br/>13.2 Symmetric Maneuver Loads ........................................................................ 386<br/>13.3 Normal Accelerations Associated with Various Types of Maneuver .......................... 391<br/>13.4 Gust Loads ............................................................................................ 393<br/>Problems .............................................................................................. 399<br/>CHAPTER 14 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403<br/>14.1 Safe Life and Fail-Safe Structures ................................................................. 403<br/>14.2 Designing Against Fatigue .......................................................................... 404<br/>14.3 Fatigue Strength of Components ................................................................... 405<br/>14.4 Prediction of Aircraft Fatigue Life................................................................. 409<br/>14.5 Crack Propagation ................................................................................... 414<br/>Problems .............................................................................................. 420<br/>CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423<br/>15.1 Symmetrical Bending................................................................................ 424<br/>15.2 Unsymmetrical Bending ............................................................................ 433<br/>15.3 Deflections due to Bending ......................................................................... 441<br/>15.4 Calculation of Section Properties .................................................................. 456<br/>15.5 Applicability of Bending Theory................................................................... 466<br/>15.6 Temperature Effects ................................................................................. 466<br/>Problems .............................................................................................. 471<br/>CHAPTER 16 Shear of Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479<br/>16.1 General Stress, Strain, and Displacement Relationships for Open<br/>and Single Cell Closed Section Thin-Walled Beams ............................................ 479<br/>16.2 Shear of Open Section Beams ...................................................................... 483<br/>vi Contents<br/>16.3 Shear of Closed Section Beams .................................................................... 488<br/>Problems .............................................................................................. 496<br/>CHAPTER 17 Torsion of Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503<br/>17.1 Torsion of Closed Section Beams .................................................................. 503<br/>17.2 Torsion of Open Section Beams.................................................................... 514<br/>Problems .............................................................................................. 521<br/>CHAPTER 18 Combined Open and Closed Section Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529<br/>18.1 Bending ............................................................................................... 529<br/>18.2 Shear................................................................................................... 529<br/>18.3 Torsion ................................................................................................ 533<br/>Problems .............................................................................................. 534<br/>CHAPTER 19 Structural Idealization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537<br/>19.1 Principle............................................................................................... 537<br/>19.2 Idealization of a Panel ............................................................................... 538<br/>19.3 Effect of Idealization on the Analysis of Open and Closed Section Beams................... 541<br/>19.4 Deflection of Open and Closed Section Beams .................................................. 553<br/>Problems .............................................................................................. 556<br/>CHAPTER 20 Wing Spars and Box Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561<br/>20.1 TaperedWing Spar................................................................................... 561<br/>20.2 Open and Closed Section Beams................................................................... 565<br/>20.3 Beams Having Variable Stringer Areas............................................................ 571<br/>Problems .............................................................................................. 574<br/>CHAPTER 21 Fuselages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577<br/>21.1 Bending ............................................................................................... 577<br/>21.2 Shear................................................................................................... 578<br/>21.3 Torsion ................................................................................................ 581<br/>21.4 Cutouts in Fuselages ................................................................................. 584<br/>Problems .............................................................................................. 585<br/>CHAPTER 22 Wings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587<br/>22.1 Three-Boom Shell ................................................................................... 587<br/>22.2 Bending ............................................................................................... 588<br/>22.3 Torsion ................................................................................................ 590<br/>22.4 Shear................................................................................................... 594<br/>22.5 Shear Center .......................................................................................... 599<br/>22.6 TaperedWings........................................................................................ 600<br/>22.7 Deflections ............................................................................................ 603<br/>22.8 Cutouts inWings ..................................................................................... 605<br/>Problems .............................................................................................. 613<br/>CHAPTER 23 Fuselage Frames and Wing Ribs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619<br/>23.1 Principles of Stiffener/Web Construction ......................................................... 619<br/>23.2 Fuselage Frames ..................................................................................... 625<br/>23.3 Wing Ribs ............................................................................................. 626<br/>Problems .............................................................................................. 630<br/>Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Airframes.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Structural analysis (Engineering)
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Megson, T. H. G.
Fuller form of name (Thomas Henry Gordon).
Title of a work Aircraft structures for engineering students.
856 ## - ELECTRONIC LOCATION AND ACCESS
Materials specified Full text E-book in PDF
Uniform Resource Identifier <a href="https://www.pdfdrive.com/aircraft-structures-by-megson-d9155224.html">https://www.pdfdrive.com/aircraft-structures-by-megson-d9155224.html</a>
Link text https://www.pdfdrive.com/aircraft-structures-by-megson-d9155224.html
906 ## - LOCAL DATA ELEMENT F, LDF (RLIN)
a 7
b cbc
c orignew
d 1
e ecip
f 20
g y-gencatlg
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Book Open Access
Edition 4th Ed.
Item part 1
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Home library Current library Date acquired Source of acquisition Total Checkouts Barcode Date last seen Copy number Uniform Resource Identifier Price effective from Koha item type
    Dewey Decimal Classification     Engineering Library Engineering Library 03/19/2021 Online   9781856179324 03/19/2021 1 https://www.pdfdrive.com/aircraft-structures-by-megson-d9155224.html 03/19/2021 Book Open Access