
C
h

a
p

t
e

r
 O

u
t

l
in

e

C h a p t e r

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

7.1 Introduction

7.2 Parts of a Function

7.3 Passing Arguments

7.4 Lvalues and Rvalues

7.5 Return by Reference

7.6 Returning More Values by Reference

7.7 Default Arguments

7.8 const Arguments

7.9 Inputting Default Arguments

7.10 Inline Functions

7.11 Function Overloading

7.12 Principles of Function Overloading

7.13 Precautions with Function Overloading

7.14 Recursion

7.15 Library Functions

7.16 More Programs

7Functions in C++

7.1 intrODuCtiOn

In our daily life, most of the complex works are done by a group of people. This results in bet-
ter productivity and quality. Work is done at a great speed. Normally, big work is distributed
among many people. For example, to declare the result of examination in an autonomous insti-
tute, marks/score of all subjects, practical, seminar, projects, etc., are collected from different
departments through professors and the result is compiled, declared, and displayed.

C
h

a
p

t
e

r
 O

u
t

l
in

e

204 Functions in C++

The same concept is applied while developing
complex programs/software applications using pro-
gramming languages. In case the size of the program
is large, it becomes difficult to maintain it and it is
also hard to identify the flow of data. It is preferred
to divide the large program into small modules called
functions. Each function takes the data that are
provided by the main() function and carries out
operations as per the requirement, and results can be
written to the calling function. Thus, programs are
made more efficient.

When the concept of function or sub-program
was not introduced, the program sizes were large and
few codes get repeated as shown in the Figure 7.1.
It was very difficult to debug and update these large

programs because many bugs get encountered. When the functions and sub-programs are intro-
duced, the programs are divided into a number of segments and code duplication is avoided as
shown in Figure 7.2. Bugs in small programs can be searched easily and this step leads to the
development of complex programs with functions.

Caller

void main()
{
statement1;
statement2;
sum();
statement4;
statement5;
sum();
statement6;
statement7;
}

Callee

sum()
{
statment1;
statment2;
statment3;
}

 Fig. 7.2 Program with function

One of the features of C/C++ language is that a large program can be divided into smaller sub-
programs. The smaller programs can be written in the form of functions. The process of dividing a
large program into tiny and handy sub-programs and manipulating them independently is known
as modular programming. This technique is similar to divide-and-conquer technique. Di-
viding a large program into smaller functions provides advantages to the programmer. Testing
and debugging a program with functions is easier. A function can be called repeatedly based on
the application and thus the size of the program can be reduced. The message passing between a
caller (calling function) and callee (called function) takes place using arguments. The concept of
modular approach of C++ is obtained from a function. Advantages of the functions are as follows:

 • Reusability: A function once written can be invoked again and again, thus helping us to
reuse the code and removing data redundancy.

int main()
{
statement1;
statement2;
statement3;
statement4;
statement5;
statement6;
statement7;
statement8;

statementn;
return 0;
}

Large program

 Fig. 7.1 Program without functions

Parts of a Function 205

 • Modularity: Functions can help us in breaking a large, hard to manage problem into
smaller manageable sub-problems. It is easier to understand the logic of sub-programs.

 • Reduced Program Size: Functions can reduce the size of the program by removing data
redundancy.

 • Easy Debugging: Using functions, debugging of a program becomes very easy, as it is
easier to locate and rectify the bug in the program if functions are used.

 • Easy Updating: If we need to update some code in the program, then it is much more
easier in case we have used functions, as the changes need to be made in one place only
(in function).

The programs written in ‘C++’ language are highly depending on functions. The ‘C++’ program
is nothing but a combination of one or more functions. Execution of every ‘C++’ program starts
with user defined function main(). The method of using functions is slightly changed and
enhanced in C++ as compared to C. The C++ language adds few new features to function like
overloading of functions, default arguments etc. These features are described in ahead.

C++ functions are classified in two categories. They are (1) library functions and (2) user-de-
fined functions. The library functions can be used in any program by including respective header
files. The header files must be included using #include pre-processor directive. For example,
a mathematical function uses math.h header file.

The programmer can also define and use his/her own functions for performing some specific
tasks. Such functions are called user-defined functions. Every C++ program consists of
main() function. This is a user-defined function in which program statements are written by the
programmer according to the problem definition.

7.2 partS OF a FunCtiOn

Parts of a function are as follows.
(a) Function prototype declaration
(b) Function call
(c) Definition of a function
(d) Actual and formal arguments
(e) Return statement

7.2.1 Function prototype Declaration

We use many built-in functions. The prototypes of these functions are given in the respective
header files, and we include them using #include directive. In C++, while defining user-de-
fined functions, it is unavoidable to declare its prototype. A prototype statement helps the com-
piler to check the return and argument types of the function.

A function prototype declaration consists of function’s return type, name, and arguments list.
It tells the compiler

(a) Name of the function
(b) Type of value returned
(c) The type and number of arguments

When the programmer defines the function, the definition of function must be same like its proto-
type declaration. If programmer makes mistake, the compiler flags an error message. The function

206 Functions in C++

prototype declaration statement is always terminated with semicolon. The statements given below
are the examples of function prototypes.

(A) void show (void);
(B) float sum (float, int);
(C) float sum (float x, int y);

In example (A) the return type is void, that is the function does not return any value. The void
functions are always without return statement. The void argument, that is the function, does not
require any argument. By default, every function returns an integer value. To return a non-integer
value, the data type should be mentioned in function prototype and definition. While writing
definition of function, the return type must be preceded by the function name and it is optional if
return type is default (int).

In statement (B), the prototype of function sum() is declared. Its return type is float and
arguments are float and integer type, respectively. It is shown in Figure 7.3.

In example (C) with argument type, argument names are also declared. It is optional and also
not compulsory to use the same variable name in the program.

void main()
{

float sum(float,int);

float x,y=2.4;

int z=5;

x=sum(y,z);

}

float sum(float j,int k)
{
return (j+k);
}

Function prototype

Actual arguments

Function call

Formal arguments

Function definition

Return statement

 Fig. 7.3 Parts of a function

7.2.2 Function Call

A function is a latent body. It gets activated only when a call to a function is invoked. A function
must be called by its name followed by argument, or without argument, list enclosed in parenthe-
sis and terminated by semicolon.
Syntax of function call is as follows:

function-name(with/without argument list);

In the above statement, function-name is the name of the function, arguments are within the
bracket and arguments are separated by comma. If arguments are absent one can write void
within the bracket.

7.2.3 Function Definition

The first line is called function definition and function body follows it. The function defi-
nition and function prototype should match with each other. The function body is enclosed within
curly braces. The function can be defined anywhere. If the function is defined before its caller,
then its prototype declaration is optional.

Syntax of function call is as follows:

return_data_type function-name(argument/parameter list);
{
variable declarations
function statements
}

Return data type specifies the type of value returned by the function.
The function-name is the name of the function being defined.

The argument/parameter list specifies types and names of the arguments/parameters (also
called formal arguments).

7.2.4 actual and Formal argument

The arguments declared in caller function and given in the function call are called actual argu-
ments. The arguments declared in the function definition are known as formal arguments.

{

void main()

x = sum(y,

}

float sum(float j,int k)
{

Actual arguments

Formal arguments

z);

return (j+k);
}

 Fig. 7.4 Actual and formal arguments

As shown in Figure 7.4, variables y and z are actual arguments and variables j and k are formal
arguments. The values of y and z are stored in j and k, respectively. The values of actual argu-
ments are assigned to formal arguments. The function uses formal arguments for computing.

7.2.5 the return Statement

The return statement is used to return value to the caller function. The return statement returns
only one value at a time. When a return statement is encountered, complier transfers the control
of the program to caller function. The syntax of return statement is as follows:

return (variable name); or return variable name;

The parenthesis is optional.

Parts of a Function 207

208 Functions in C++

Few programs are as follows:

7.1 Write a program to declare prototype of function sum(). Define the function sum()
exactly similar to its prototype.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 float sum (int, float); // function prototype
 int a=20;
 float s,b=2.5;
 s=sum(a,b);
 cout<<“Sum=” <<s;
 return 0;
}
float sum (int x, float y)
{
 return (x+y);
}

OUTPUT

Sum = 22.5

Explanation: In the above program, the prototype of function sum() is declared. The prototype
instructs the compiler that the function sum() should return float value. The types of argu-
ments used by function sum() are int and float, respectively. The values of variables a and b
are passed to function sum(). These values are assigned to formal arguments x and y. The sum
of x and y is calculated and returned. The return value of function is assigned to float variable s.

7.2 Write a program to declare and define void function.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 void show (void);
 show();
 return 0;
}
void show()
{

Passing Arguments 209

 cout<<“\n In show()”;
}

OUTPUT

In show()

Explanation: In the above program, the prototype of function show() is given preceding void
keyword. The statement show() invokes the show() function that displays the message “In
show()”.

7.3 paSSinG arGuMentS

The main objective of passing argument to function is message passing. The message passing
is also known as communication between two functions, that is between caller and called func-
tions. There are three methods by which we can pass values to the function. These methods are
as follows:

(a) Call by value (pass by value)
(b) Call by address (pass by address)
(c) Call by reference (pass by reference)

C++ supports all these three types of passing values to the function, whereas C supports the first
two types only. The arguments used to send values to function are known as input argu-
ments. The arguments used to return result are known as output arguments. The argu-
ments used to send as well as return results are known as input–output arguments. While
passing values to the function, the following conditions should be fulfilled.

The data type and number of actual and formal arguments should be same both in caller and
callee functions. Extra arguments are discarded if they are declared. If the formal arguments are
more than the actual arguments, then the extra arguments appear as garbage. Any mismatch in the
data type will produce the unexpected result.

7.3.1 Call by Value

In this type, values of actual arguments are passed to the formal arguments and operation is done
on the formal arguments. Any change in the formal arguments does not effect to the actual argu-
ments because formal arguments are photocopy of actual arguments. Hence, when function is
called by call by value method, it does not affect the actual contents of actual arguments. Changes
made in the formal arguments are local to the block of called function. Once control returns back
to the calling function, the changes made will vanish. The advantage of this call by value is that
actual parameters are fully protected because their values are not changed when control is re-
turned to the calling function. The following example illustrates the use of call by value.

7.3 Write a program to demonstrate call by value.

#include<iostream.h>
#include<conio.h>

210 Functions in C++

int main()
{
 clrscr();
 int x,y;
 void swap (int, int);
 cout<<“\n Enter Values of X & Y:”;
 cin>>x>>y;
 swap(x,y);
 cout<<“\n\n In function main() ”;
 cout<<“\n Values X=”<<x <<“ and Y= ”<<y;
 cout<<“\n Address X=”<<(unsigned)&x <<“ and Y= ”<<(unsigned)&y;
 return 0;
}
void swap(int a, int b)
{
 int k; k=a; a=b; b=k;
 cout<<“\n In function swap() ”;
 cout<<“\n Values X=”<<a <<“ and Y= ”<<b;
 cout<<“\n Address X=”<<(unsigned)&a <<“ and Y=
”<<(unsigned)&b;
}

OUTPUT

Enter Values of X & Y :5 4
In function swap()
Values X=4 and Y= 5
Address X=4090 and Y= 4092
In function main()
Values X=5 and Y= 4
Address X=4096 and Y= 4094

Explanation: In the above program we are passing values of actual arguments ‘x’ and ‘y’ to
function swap(). The formal arguments ‘a’ and ‘b’ of function swap() receive these values.
The values are exchanged i.e. value of ‘a’ is assigned to ‘b’ and vice-versa. They are displayed on
the screen. When the control returns back to the main(), the changes made in function swap()
vanish, because a and b are local variables of function swap(). In the main() the values of ‘x’
and ‘y’ are printed as they read from the keyboard. In call by value method the formal argument
acts as duplicate of the actual argument. The addresses of actual and formal arguments are differ-
ent. Thus, changes made with the variables are temporary.

7.3.2 Call by address

In this type, instead of passing values, addresses of actual parameters are passed to the function
by using pointers. Function operates on addresses rather than values. Here the formal arguments

are pointers to the actual arguments. In this type, formal arguments are pointers to actual argu-
ment. Because of this, when the values of formal arguments are changed, the values of actual
parameters also change. Hence changes made in the argument are permanent. The following
example illustrates passing the arguments to the function using call by address method.

7.4 Write a program to demonstrate pass by address.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x,y;
 void swap (int *, int *);
 cout<<“\n Enter Values of X & Y:”;
 cin>>x>>y;
 swap(&x,&y);
 cout<<“\n In main()”;
 cout<<“\n Values X=”<<x <<“ and Y=”<<y;
 cout<<“\n Address X=”<<(unsigned)&x <<“ and Y=”<<(unsigned)&y;
 return 0;
}
void swap(int *a, int *b)
{
 int *k;
 *k=*a;
 *a=*b;
 *b=*k;
 cout<<“\n In swap()”;
 cout<<“\n Values X=”<<*a <<“ and Y=”<<*b;
 cout<<“\n Address X=”<<(unsigned)a <<“ and Y=”<<(unsigned)b;
}

OUTPUT

Enter Values of X & Y :5 4
In swap()
Values X=4 and Y=5
Address X=4096 and Y=4094
In main()
Values X=4 and Y=5
Address X=4096 and Y=4094

Explanation: In the above example we are passing addresses of actual arguments to the function
swap(). The formal arguments are declared as pointers in the function declaration of swap().

Passing Arguments 211

212 Functions in C++

The formal arguments receive addresses of actual arguments i.e. formal arguments points to
the actual argument. Here the swap() function operates on the addresses of actual argument
through pointers. The addresses of actual arguments and formal arguments are same. Hence, the
changes made in the values are permanent.

7.3.3 Call by reference

C passes arguments by value and address. In C++ it is possible to pass arguments by value, ad-
dress, and reference. C++ reference types, declared with ‘&’ operator, are nearly identical
but not exactly the same as pointer types. They declare aliases for objects variables and allow the
programmer to pass arguments by reference to functions. The reference decelerator (&) can be
used to declare references outside functions.

int k = 0;
int &kk = k; // kk is an alias for k
kk = 2; // same effect as k = 2

This creates the lvalue kk as an alias (assumed name) for k, provided that the initializer is the
same type as the reference. Any operations on kk have exactly the same result as operations on k.

Example,
kk = 5 // assigns 5 to kk and
&kk // returns the address of kk.

The reference decelerator can also be used to declare reference type parameters within a
function:

void funcA (int i);
void funcB (int &kk); // kk is type “reference to int”
int s=4;
funcA(s); // s passed by value
funcB(s); // s passed by reference

The s argument passed by reference can be modified directly by funcB; whereas the func-
tion funcA receives a duplicate copy (not actual) of the s argument (passed by value). Due to
this reason, variable s itself cannot be modified by funcA. When an actual variable s is not
appearing in the above example, argument s is passed by value, and the matching formal argu-
ment in the function obtains a copy of s. Any alterations to this copy inside the scope of the
function body are not thrown back in the value of s itself. Absolutely, the function can return
a value that could be used later to change s, but the function cannot directly alter a parameter
passed by value. The conventional C method for changing s operates on the address of actual
argument (&s), the address of s, rather than s itself. Although &s is passed by value, the
function can access s through the copy of &s it receives. Even though the function does not
need to alter s, it is still useful (though subject to possibly risky secondary results) to pass &s,
especially if s is a large data structure. Passing s directly by value contains the useless copy-
ing of the data structure.

7.5 Write a program to pass the value of variable by value, reference, and address and
display the result.

#include<iostream.h>
#include<conio.h>
#include<process.h>

int main()
{
 clrscr();
 void funA (int s);
 void funB (int &);
 void funC (int *);
 int s=4; // initial value
 funA(s); // s passed by value
 cout<<“\n Value of s= ”<<s <<“ Address of s: ”

<<unsigned(&s);
 funB(s); // s passed by reference
 cout<<“\n Value of s= ”<<s <<“ Address of s:

”<<unsigned(&s);
 funC(&s); // s passed by reference (C style)
 cout<<“\n Value of s= ”<<s <<“ Address of s:

”<<unsigned(&s);
 return 0;
}
void funA (int i)
{ i++;}
void funB (int &k)
{ k++;}
void funC(int *j)
{ ++*j;}

OUTPUT

Value of s= 4 Address of s : 4096
Value of s= 5 Address of s : 4096
Value of s= 6 Address of s : 4096

Explanation: In the above example, funA(), funB(), and funC() functions are declared.
The integer variable s is declared and initialized to 4. The funA() is invoked and value of s is
passed by value. In function funA() the value of s is incremented. After execution of funA()
the value of s printed in main() is the same as the previous one. Thus, passing variable by value
cannot change the contents of the variable.

The value of s is once again passed to funB(). The function funB() receives the value
of s by reference. The value of s is received by the variable k by reference, that is variable k is

Passing Arguments 213

214 Functions in C++

an alias for variable s and both have the same memory location. The variable k is incremented.
Thus, any change made in reference variable affects the actual variable. Thus, after execution of
funB() the printed value of s is 5.

The third function funC() uses conventional C style. Here, address of the variable s is
passed to funC(). The formal argument *j is pointer to the actual argument. Thus, any change
made through pointer j also reflects on the actual variable. Thus, we can change the value of vari-
able using call by reference. Figure 7.5 explains the methods of passing arguments to function.

Variable Name

Address/Reference

S

FunB()4066

FunA()

FunC()

 Fig. 7.5 Argument passing methods

7.6 Write a program to demonstrate call by reference.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x,y;
 void swap (int &, int &);
 cout<<“\n Enter Values of X & Y:”;
 cin>>x>>y;
 swap(x,y);
 cout<<“\n In main() ”;
 cout<<“\n Values X=”<<x <<“ and Y=”<<y;
 cout<<“\n Addresses X=”<<(unsigned)&x << “ Y

=”<<(unsigned)&y;
 return 0;
}
void swap(int &a, int &b)
{
 int k; k=a; a=b; b=k;
 cout<<“\n In swap() ”;
 cout<<“\n Values X=”<<a <<“ and Y=”<<b;
 cout<<“\n Addresses X=”<<(unsigned)&a << “ Y

=”<<(unsigned)&b;
}

Lvalues and Rvalues 215

OUTPUT

Enter Values of X & Y :2 3
In swap()
Values X=3 and Y=2
Addresses X=65524 Y =65522
In main()
Values X=3 and Y=2
Addresses X=65524 Y =65522

Explanation: In the above program, the function swap() is invoked and actual arguments, vari-
able x and y, are passed. The formal arguments of function swap(), a and b, are reference vari-
ables of actual arguments x and y. The addresses of actual and formal arguments are same. Any
change made in a and b leads to change in the values of x and y. To pass variables by reference,
the function call is like call by value. In function declarator and function prototype declaration, the
formal arguments are preceded by ‘&’ operator. The reference type variable can be used in the
same manner like other ordinary variables. The following points are noted concerning reference
parameters:

(a) A reference may not be null. It should always refer to a legal variable.
(b) Once declared, a reference should not be altered to referrer to another object.
(c) A reference variable does not need any explicit address manipulation to access the ac-

tual value of the variable.

7.4 lValueS anD rValueS

7.4.1 lvalues (left Values)

An expression that indicates the location is referred as lvalue and the expression that indicates the
value is referred as rvalue. On left-hand side of the assignment operator (=), lvalues expression
appears. Lvalues are quite often identifiers; whereas, on the right-hand side of the assignment
operator (=), rvalue expression appears, which is a value to be stored at some address in memory.
The set of rvalues is the subset of set of lvalues.

An lvalue is an object locator. It is an expression that points an object. An example of
an lvalue expression is *k that results to a non-null pointer. A changeable lvalue is an
identifier or expression that relates to an object that can be accessed and suitably modified in
computer memory. A const pointer to a constant is not a changeable lvalue. A
pointer to a constant can be altered (its de-referenced value cannot be altered). An lvalue
could suitably stand on the left (the assignment side) of an assignment statement. Now, only
changeable lvalue can legally stand on the left of an assignment statement. For example,
suppose x and y are non-constant integer identifiers with appropriate allocated memory. Their
lvalues are changeable. The following expressions are legal:

x = 1;
y = x + y are legal expressions.

216 Functions in C++

7.4.2 rvalues (right Values)

The statement x + y is not an lvalue, x + y = z is invalid because the expression on the left is not
related to a variable. Such expressions are often called rvalues.

7.5 return BY reFerenCe

We have studied the reference variable and it’s functioning. A reference allows creating alias for
the pre-existing variable. A reference can also be returned by the function. A function that returns
reference variable is in fact an alias for referred variable. This technique of returning reference
is used to establish cascade of member functions calls in operator overloading. Consider the fol-
lowing example:

The below given program illustrates return by reference.

7.7 Write a program to return a value by reference.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int & min (int &j, int &k);
 int a=18,b=11,c;
 c=min (a,b);
 cout<<“Minimum Value = ”<<c;
 return 0;
}
int & min (int &j, int &k)
{
 if (k<j) return k;
 else
 return j;
}

OUTPUT

Minimum Value = 11

Explanation: In the above program, the statement int & min (int &j, int &k) declares
prototype of function min(). The ‘&’ reference operator is used because the function returns
reference to int and also receives arguments as reference. The function min() receives two
integers as reference and returns minimum value out of two by reference.

7.8 Write a program to demonstrate return by reference.

#include<iostream.h>
#include<conio.h>

Returning More Values by Reference 217

int & large (int & p, int & q);
int main()
{ clrscr();
 int l,k;
 cout<<“\n Enter values of l and k: ”;
 cin>>l>>k;
 large (l,k)=120;
 cout<<“ l= ”<<l << “ k=”<<k;
 return 0;
}
int & large (int & p, int & q)
{
 if (p>q) return p;
 else return q;
}

OUTPUT

Enter values of l and k : 4 8
l= 4 k=120
Enter values of l and k : 9 2
l= 120 k=2

Explanation: In function main(), the statement large (l, k) = 120 calls the function large().
It returns reference to the variable containing larger value and assigns the value 120 to it. The
return type of function large() is int ‘&’ (reference), it indicates that the call to function
large() can be written on the left side of the assignment operator. Consequently, the statement
large(l,k) = 120 is legal and assigns 120 to the variable containing larger value.

7.6 returninG MOre ValueS BY reFerenCe

The return() statement has one big limitation that it can return only one value at a time. The
return() statement is only used when values are passed by value to functions. Call by address
and call by reference, accesses memory location directly. When user wants to return more than
one value from function, he/she should pass values by address or by reference method. In C for
returning more values, call by address is used. In C++ we have one additional method, that is call
by reference. Consider the following program.

7.9 Write a program to return more than one value from function by reference.

#include<iostream.h>
#include<conio.h>

int main()
{
 int sq,cb,n;

218 Functions in C++

 void more (int &, int &, int);
 cout<<“\n Enter a Number: ”;
 cin>>n;
 more (sq,cb,n);
 cout<<“\n Square =”<<sq;
 cout<<“\n Cube =”<<cb;
 return 0;
}
void more (int & s, int & c,int j)
{
 s=j*j;
 c=j*j*j;
}

OUTPUT

Enter a Number : 2
Square =4
Cube =8

Explanation: In the above program the function more() is used to perform square and cube of
an integer passed. The three variables sq, cb, and n of integer type are declared. The number en-
tered by the user is stored in variable n. The variables sq, cb, and n are passed to function more().

In function more(), s and j are reference variables and j is a local variable of function
more(). The variable s is reference variable of sq and variable c is reference variable of cb. The
variables s and sq, and c and cb have the same memory locations. Thus, any value assigned to s
and c can be accessed by sq and cb. The variable s is assigned the square of j(n) and variable cb
is assigned with cube of j(n).

7.7 DeFault arGuMentS

Usually, a function is called with all the arguments as declared in function prototype declaration
and function definition. C++ compiler allows the programmer to assign default values in the
function prototype declaration/function declarator of the function. When the function is called
with less parameter or without parameters, the default values are used for the operations.

It is not allowed to assign default value to any variable, which is in between the variable list.
Variables lacking default values are written first followed by the variables containing default val-
ues. This is so because C++ convention of storing variables on the stack is from right to left.

The default values can be specified in function prototype declaration or function declarator.
Normally, the default values are placed in function prototype declaration. In case the function
is defined before caller function, then there is no need to declare function prototype. Hence, the
default arguments are placed in function declarator. The compiler checks for the default values
in function prototype and function declarator and provides these values to the arguments that are
omitted in function call.

The default arguments are useful while making a function call if we do not want to take ef-
fort for passing arguments that are always same. It is also useful when we update an old function
by adding more arguments to it. Using default arguments, the function calls can continue to use
previous arguments with the new arguments.

The following example declares the default arguments:

Example
int sum(int a, int b=10, int c=15, int d=20)

In this example function sum() has four arguments. They are a, b, c, and d of integer
types. The variable b, c, and d are initialized with 10, 15, and 20, respectively. These val-
ues are used when the function sum() is called with fewer arguments.

7.10 Write a program to define function sum with default arguments.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int sum (int a,int b=10,int c=15,int d=20); // F u n c t i o n

prototype
 int a=2;
 int b=3;
 int c=4;
 int d=5;
 cout<<“Sum=” <<sum(a,b,c,d);
 cout<<“\nSum=” <<sum(a,b,c);
 cout<<“\nSum=” <<sum(a,b);
 cout<<“\nSum=” <<sum(a);
 cout<<“\nSum=” <<sum(b,c,d);
 return 0;
}
sum (int j, int k, int l, int m)
{
 return (j+k+l+m);
}

OUTPUT

Sum=14
Sum=29
Sum=40
Sum=47
Sum=32

Default Arguments 219

220 Functions in C++

Explanation: In the above example, the prototype of variable sum() is declared. The function
sum() has four arguments of integer types a, b, c, and d. The variables b, c, and d are initial-
ized with default values 10, 15, and 20, respectively, in function prototype declaration. The
variable “a” is not initialized. The function sum() is called five times. Each time the result has
different values.

In the first cout statement, the function sum() is called with four arguments. In this func-
tion call, no default values are used, that is actual values of variables initialized are considered.
Hence, the result is 14.

In the second cout statement the function sum() is called with three arguments (one less
argument). In this function call actual values of starting three variables a, b, c and default value
of forth variable “d” are considered. Hence, the result is 29.

In the third cout statement, the function sum() is called with two arguments (two argu-
ments less). In this function call actual values of starting two variables a, b and default values
of last two variables c, d is considered. Hence, the result is 40.

In the fourth cout statement the function sum() is called with one argument. In this func-
tion call, the actual value of variable a and default values of variables b, c, and d, 10, 15,
and 20, respectively, are taken into account. The result displayed is 47.

In the last cout statement the function sum() is called with last three arguments. The ac-
tual values of b, c, and d variables are 3, 4, and 5 and last default value 20 is together taken
into account. Hence the result is 32.

7.11 Write a program to place default values in function declarator. Execute the function
with default values.

#include<iostream.h>
#include<conio.h>

sum (int j, int k=10, int l=15, int m=20)
{
 return (j+k+l+m);
}
int main()
{
 clrscr();
 int a=2;
 int b=3;
 int c=4;
 int d=5;
 cout<<“Sum=” <<sum(a,b,c,d);
 cout<<“\nSum=” <<sum(a,b,c);
 cout<<“\nSum=” <<sum(a,b);
 cout<<“\nSum=” <<sum(a);
 cout<<“\nSum=” <<sum(b,c,d);
 return 0;
}

Default Arguments 221

OUTPUT

Sum=14
Sum=29
Sum=40
Sum=47
Sum=32

Explanation: In the above example, the prototype of variable sum() is declared. The function
sum() has four arguments of integer types a, b, c, and d. The variable b, c, and d are initial-
ized with default values 10, 15, and 20, respectively, in function prototype declaration. The
variable “a” is not initialized. The function sum() is called five times. Each time the result sum
has different values.

In the first cout statement, the function sum() is called with four arguments. In this func-
tion call no default values are used, that is actual values of variables initialized are considered.
Hence, the result is 14.

In the second cout statement the function sum() is called with three arguments (one less
argument). In this function call actual values of starting three variables a, b, c and default value
of forth variable “d” are considered. Hence, the result is 29.

In the third cout statement, the function sum() is called with two arguments (two argu-
ments less). In this function call actual values of starting two variables a, b and default values
of last two variables c, d are considered. Hence, the result is 40.

In the fourth cout statement the function sum() is called with one argument. In this func-
tion call the actual value of variable a and default values of variables b, c, and d are 10, 15,
and 20, respectively, are taken into account. The result displayed is 47.

In the last cout statement the function sum() is called with last three arguments. The ac-
tual values of b, c, and d variables are 3, 4, and 5 and last default value 20 is together taken
into account. Hence the result is 32.

7.12 Write a program to find area of triangle by using default values and actual values.
The formula for area of a triangle is ½ * base * height.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 float area (int base=3,int height=5); // Function prototype
 int base=2;
 int height=7;
 cout<<“Area of Triangle: ” << area(base,height);
 cout<<“\nArea of Triangle: ” << area (base);
 cout<<“\nArea of Triangle: ” <<area(height);
 return 0;

222 Functions in C++

}
float area (int j, int k)
{ return (.5*j*k); }

OUTPUT

Area of Triangle : 7
Area of Triangle : 5
Area of Triangle : 17.5

Explanation: In the above program, the prototype of function area() is declared with two
default values 3 and 5 for variables base and height, respectively. In function main()
the variable base and height are defined and initialized with 2 and 7, respectively. In the
first call of the function area() function is called with both the arguments, that is base and
height. In this call no default arguments are used. In the second call the function area() is
called with one argument (one less argument). In this call one actual and one default value are
used. The third call is the same as second one.

7.8 const arGuMentS

The constant variable can be declared using const keyword. The const keyword makes vari-
able value stable. The constant variable should be initialized while declaring.

Syntax:
(a) const <variable name> = <value>;
(b) <function name> (const <type>*<variable name>;)
(c) int const x // invalid
(d) int const x =5 // valid

In statement (a), the const modifier enables to assign an initial value to a variable that cannot
be changed later by the program.
For example,

const age = 40;

Any attempt to change the contents of const variable age will produce a compiler error. Using
pointer one can indirectly modify a const variable as per the following:

*(int *)&age = 45;

When the const variable is used with a pointer argument in a function’s parameter list, the func-
tion cannot modify the variable that the pointer points to. For example,

int cube(const int *x, ...);

Here the cube function is prohibited from altering the integer variable.

7.13 Write a program to declare constant variable.

#include<iostream.h>
#include<conio.h>

const Arguments 223

int main()
{
 clrscr();
 int min (int const a=8, int b=20);
 int a=12,b=45;
 b=min (a);
 cout<<“\n a= ”<<a <<“ b= ”<<b;
 return 0;
}
int min (int const j, int k)
{
 // j++; // can not modify a constant variable
 // k++; // valid because b is not constant
 cout<<“\n j= ”<<j <<“ k =”<<k;
 if (k<j) return k;
 else return j;
}

OUTPUT

j= 12 k =20
a= 12 b= 12

Explanation: In the above program, the prototype of function min() declares two arguments.
Out of two arguments the first argument a is constant and its default value is 8. The second vari-
able is b and default value is 20. In function main() we can change the value of variable a,
because in main() it is not declared as a constant. When function min() is invoked, the first
argument j is a constant according to prototype of function. Any attempt made to change the
value of variable j will cause an error message “cannot modify a constant variable.”

7.14 Write a program to change the value of a constant variable using pointer.

#include<iostream.h>
#include<conio.h>
#include<process.h>

int main()
{
 clrscr();
 int const x=1;
 // x++; invalid operation
 // cin>>x; possible, but no change in constant value
 ++(*(int *)&x);
 cout<<“x = ”<<x <<“\t\t Address: ”<<(unsigned)&x;
 cout<<“\n*(&x) = ”<<*(&x)<<“\t Address: ” <<(unsigned)&x;
 return 0;

224 Functions in C++

}

OUTPUT

x = 1 Address : 65524
*(&x) = 2 Address : 65524

Explanation: In the above program, the variable x is a constant integer variable. In C it is possi-
ble to change the value of a constant variable using scanf() statement, that is run time assign-
ment. In C++, though compiler accepts this statement, the value is not changed. We can change
the value of constant variable using a pointer. The statement ++(*(int *)&x); points to the
address of the variable x and increase is done in the value stored at the location, that is indirectly
to variable x. Though it is possible to change the value of a variable using pointer, the following
statements are invalid.

int const x=1;
int const *p=&x;
++*p;

It is not possible to change the value of a variable using pointer *p. From the above program we
learned that the value of a constant could be changed using pointer.

7.9 inputtinG DeFault arGuMentS

Default arguments are used when function is invoked with fewer arguments than declared.
The default values are placed in function prototype or function declarator. It is also possible
to directly invoke user-defined function in function prototype or function declarator. The
return value of function is considered as default value. The following program illustrates
this point:

7.15 Write a program to enter default values using function.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int input(void);
 void display (int = input());
 display(20); // first call with argument
 display(); // second call with default argument
 return 0;
}
void display (int j)
{

Inline Functions 225

 cout<<“\nInteger is: ”<<j;
}
input()
{
 int k;
 cout<<“\n Enter an integer: ”;
 cin>>k;
 return k;
}

OUTPUT

Integer is : 20
Enter an integer : 12
Integer is : 12

Explanation: In the above program, user-defined functions display() and input() are
declared and defined. The display() function is used to display passed integer on the screen.
The input() function when executed asks for an integer. The function input() is used as
default value for function display(). When a function display() is invoked without argu-
ment, the input() function assigned as default argument in function prototype is executed.
User enters a number. The entered number is then passed on to display() function and dis-
played on the screen.

7.10 inline FunCtiOnS

One of the prime factors behind using function is that code duplication in program is avoided and
memory space is saved. When a function is defined and invoked, one set of instruction is created
in the memory of the system. At each call, the control passes to the subroutine at a specified ad-
dress in the memory. The CPU stores the memory address of instruction following the function
calls in to the stack and also pushes the arguments in the stack area when call is made to the func-
tion. The compiler runs the function, stores the return values in a memory location or register,
and when execution completes, the control returns to the calling function. After this, execution
resumes immediately to the next line following the function call statement. If the same function is
called several times, each time the control is passed to the function, that is the compiler uses the
same set of instructions at each call. Due to this passing of control in between caller and callee
functions, execution speed of program decreases. By preventing the repetitive calls in a program,
execution speed can be increased.

C++ provides a mechanism called inline function. When a function is declared as in-
line, the compiler copies the code of the function in the calling function, that is function body
is inserted in place of function call during compilation. Passing of control between caller and
callee functions is avoided. If the function is very large, in such a case inline function is not used
because the compiler copies the contents in the called function that reduces the program execu-
tion speed. The inline function is mostly useful when calling function is small. It is advisable
to use the inline function for only small functions.

226 Functions in C++

Inline mechanism increases execution and performance in terms of speed. The overhead of
repetitive function calls and returning values are removed. On the other hand, the program using
inline functions needs more memory space, since the inline function are copied at every point
where the function is invoked.

For defining an inline function, the inline keyword is preceded by the function name.
The inline functions are declared as follows:

inline function – name
{
statement1;
statement2; // Function body
}

Example:
inline float square (float k)
{
return (k*k);
}

The above example can be executed as follows:

j = square(2.5);
k = square(1.1 + 1.4);

After the execution of above statements, the values of j and k will be 6.25. The inline keyword just
makes an appeal to the compiler. The compiler may neglect this request if the function defined is
too big in size or too convoluted. In such a case the function is treated as normal function.

Following are few situations where inline functions may not work:

(1) The function should not be recursive.
(2) Function should not contain static variables.
(3) Function containing control structure statements such as switch, if, for loop, etc.
(4) The function main() cannot be used as inline.

The inline functions are similar to macros of C. The main limitation of macros is that they are
not functions, and errors are not checked at the time of compilation. The function offers bet-
ter type testing and does not contain limitations as present in macros. Consider the following
example:

7.16 Write a program to calculate square using inline functions and macros.

#include<iostream.h>
#include<conio.h>
#define SQUARE(v) v * v

inline float square (float j)
{

 return (j*j);
}
int main()
{
 clrscr();
 int p=3, q=3,r,s;
 r=SQUARE(++p);
 s=square(++q);
 cout<<“ r= ”<<r<<“\n”<<“ s= ”<<s;
 return 0;
}

OUTPUT

r= 25
s= 16

Explanation: In the above program, the function square() is declared as an inline function.
The macro square() expanded into r = ++v * ++v. The variable p is incremented only once
but in macros expansion is incremented twice. Therefore, it gives wrong result.

7.17 Write a program to define an inline function and obtain the result.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int sum (int,int,int,int); // Function prototype
 cout<<“Sum=” <<sum(5,4,3,1);
 return 0;
}
inline sum (int j, int k, int l, int m)
{
 return (j+k+l+m);
}

OUTPUT

Sum = 13

Explanation: In the above program, the function sum() calculates the sum of given integers.
The function is defined as inline. The compiler copies the code of the function in the calling func-
tion and executes it.

Inline Functions 227

228 Functions in C++

7.18 Write a program to define function cube() as inline for calculating cube.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int cube (int);
 int j,k,v=5;
 j = cube (3) ;
 k = cube (v);
 cout<<“\n Cube of j=”<<j;
 cout<<“\n Cube of k=”<<k;
 return 0;
}
inline int cube (int h)
{
 return (h*h*h);
}

OUTPUT

Cube of j=27
Cube of k=125

Explanation: In the above program, the function cube() is declared as inline. The function
cube() calculates cube of passed number. The function is declared as inline, that is the state-
ments of function cube() are inserted at the point of function call.

7.11 FunCtiOn OVerlOaDinG

It is possible in C++ to use the same function name for number of times and for different inten-
tions. Defining multiple functions with same name is known as function overloading or function
polymorphism. Polymorphism means one function having many forms. The overloaded function
must be different in their argument list and with different data types. The following are examples
of overloaded functions. All the functions defined should be equivalent to their prototypes.

int sqr(int);
float sqr(float);
long sqr(long);

7.19 Write a program to calculate square of an integer and float number. Define func-
tion sqr(). Use function-overloading concept.

#include<iostream.h>
#include<conio.h>

Function Overloading 229

int sqr (int);
float sqr (float);

int main()
{
 clrscr();
 int a=15;
 float b=2.5;
 cout<<“Square = ”<<sqr(a) <<“\n”;
 cout<<“Square = ”<< sqr(b) <<“\n”;
 return 0 ;
}
int sqr (int s)
{
 return (s*s);
}
float sqr (float j)
{
 return (j*j);
}

OUTPUT

Square = 225
Square =6.25

Explanation: In the above function, sqr() is overloaded for integer and float. In the first call
of the function sqr(), an integer 15 is passed. The compiler executes integer version of the
function and returns result 225. In the second call a float value 2.5 is passed to function sqr().
In this call, the compiler executed the float version of the function and returns the result 6.25.
The selection of which function to execute is decided at run time by the compiler according to
the data type of variable passed.

7.20 Write a program to find the area of rectangle, triangle and surface area of sphere.
Use function overloading.

#include<iostream.h>
#include<conio.h>
#define pi 3.142857142857142857
int calcarea(int length,int breadth);
float calcarea(double base,double height);
float calcarea(double radius);

int main()
{
 int area1;
 float area2;

230 Functions in C++

 double area3;
 area1=calcarea(10,20);
 area2=calcarea(4.5,2.1);
 area3=calcarea(3.12145);
 clrscr();
 cout<<“Area of rectangle is: ”<<area1<<endl;
 cout<<“Area of triangle is: ”<<area2<<endl;
 cout<<“Surface Area of sphere is: ”<<area3<<endl;
 return 0;
}
int calcarea(int length,int breadth)
{
 return (length*breadth);
}
float calcarea(double base,double height)
{
 return ((0.5)*base*height);
}
float calcarea(double radius)
{
 return (4*pi*radius*radius);
}

OUTPUT

Area of rectangle is : 200
Area of triangle is : 4.725
Surface Area of sphere is : 122.489087

Explanation: In the above program, function calcarea() is overloaded. It is used for finding the
area of a rectangle, triangle, and sphere. Explanation is same as detailed in previous problem.

7.12 prinCipleS OF FunCtiOn OVerlOaDinG

(1) If two functions have the similar type and number of arguments (data type), the function
cannot be overloaded. The return type may be similar or void, but argument data type or
number of arguments must be different. For example,
(a) sum(int,int,int);

sum(int,int);
Here, the above function can be overloaded. Though the data type of arguments in both
the functions are similar, number of arguments are different.

(b) sum(int,int,int);
sum(float,float,float);
In the above example, number of arguments in both the functions are same, but data
types are different. Hence, the above function can be overloaded.

Principles of Function Overloading 231

(2) Passing constant values directly instead of variables also results in ambiguity. For example,
int sum(int,int);
float sum(float,float,float);
Here, sum() is an overloaded function for integer and float values. Values are passed as
follows:

sum(2,3);
sum(1.1,2.3,4.3);

The compiler will flag an error because the compiler cannot distinguish between these two
functions. Here, internal conversion of float to int is possible. Hence, in both the above
calls integer version of function sum() is executed. To overcome this problem, the user
needs to do the following things.
(1) Declare prototypes of all the overloaded functions before function main().
(2) Pass argument using variables as follows:

sum(a,b); // a and b are integer variables
sum(e,r,t,y); // e,r,t, and y are float variables

Refer program number 7.22 for confirmation. Also try this program with direct values and
by declaring function prototype inside main().

(3) The compiler attempts to find an accurate function definition that matches in types and
number of arguments and invokes that function. The arguments passed are checked with all
declared function. If matching function is found then that function gets executed.

(4) If there are no accurate match found, compiler makes the implicit conversion of actual argu-
ment. For example, char is converted to int and float is converted to double. If all the
above steps have failed, then compiler performs user-built functions.
The following example illustrates this point:

7.21 Write a program to overload a function and create the situation that the com-
piler does integral conversion.

#include<iostream.h>
#include<conio.h>

int sqr (int);
float sqr (double);
int main()
{
 clrscr();
 int a=15;
 float b=3.5;
 cout<<“Square = ”<<sqr(‘A’) <<“\n”;
 cout<<“Square = ”<< sqr(b) <<“\n”;
 return 0 ;
}
int sqr (int s) { return (s*s); }
float sqr (double j) { return (j*j); }

232 Functions in C++

OUTPUT

Square = 4225
Square = 12.25

Explanation: In the above program, the function square is overloaded. The first prototype
of function sqr(int) is proposed for integer variable and second for double variable. In
function main() the “A” character data type value is passed to the function sqr(). The
compiler invokes the integer version of the function sqr() because the char data type is
compatible with integer. In the second call, a float value is passed to the function sqr().
This time the compiler invokes the double data type version of function sqr().

When accurate match is not found the compiler makes internal conversion as seen in the
above example. C++ automatically attempts to convert the arguments used to call a function
into the type of arguments expected by the function.

(5) If internal conversion fails, user-defined conversion is carried out with implicit conversion
and integral promotion. The user-defined conversion is used with class objects.

(6) Sometimes while making internal conversion, ambiguity is created if one data type is com-
patible with two or more data types. If such a situation occurs, the compiler displays an error
message.

Consider the following example. Following are two versions of sqr() function, one is for
long data type and other for double data type.

long sqr(long);
double sqr(double);
sqr(10); // function call

If an integer value is passed to the function sqr(), the compiler will have confusion of
which version is to be executed and will result in an error message “Ambiguity between
‘sqr(long)’ and ‘sqr(double)’”.

(7) The program has two versions of function, that is one for float and second for double
data type. In such a situation if we pass a float number, the double version of function is
selected for execution. But the same is not applicable with integer and long integer.

7.22 Write a program to define overloaded function add() for integer and float and
perform the addition.

#include<iostream.h>
#include<conio.h>

int add (int, int, int);
float add (float, float, float);
int main()
{
 clrscr();

 float fa,fb,fc,fd;
 int ia,ib,ic,id;
 cout<<“\n Enter values integer values for ia,ib and ic: ”;
 cin>>ia >>ib >>ic;
 cout<<“\n Enter float values for fa,fb and fc: ”;
 cin>>fa >>fb >>fc;
 id=add (ia,ib,ic);
 cout<<“\n Addition: ” <<id;
 fd= add (fa,fb,fc);
 cout<<“\n Addition: ”<<fd;
 return 0;
}
add (int j, int k, int l)
{
 return (j+k+l);
}
float add (float a, float b, float c)
{ return (a+b+c); }

OUTPUT

Enter values integer values for ia,ib and ic : 1 2 4
Enter float values for fa,fb and fc : 2.2 3.1 4.5
Addition : 7
Addition : 9.8

Explanation: In the above program, two versions of function add() are declared. One for in-
teger values and the other for float values. Three integers and float values are entered through
the keyboard. According to the data type, the compiler executes appropriate function. The proto-
type of functions should be written before main() function. If we write the prototype inside the
main() function, the float version of the function will not be executed.

7.23 Write a program to define overloaded function. Invoke the overloaded function
through another overloaded function.

#include<iostream.h>
#include<conio.h>

int add (void);
float add (float, float, float);
float fa,fb,fc,fd;
int id;
int main()
{
 clrscr();

Principles of Function Overloading 233

234 Functions in C++

 cout<<“\n Enter float values for fa,fb and fc: ”;
 cin>>fa >>fb >>fc;
 id=add();
 cout<<“\n Addition: ” <<id;
 fd= add (fa,fb,fc);
 cout<<“\n Addition: ”<<fd;
 return 0;
}
add ()
{
 int x;
 x=add(fa,fb,fc);
 return (x);
}
float add (float a, float b, float c)
{
 return (a+b+c);
}

OUTPUT

Enter float values for fa,fb and fc : 5.5 2.4 8.2
Addition : 16
Addition : 16.1

Explanation: In the above program, the function add() is overloaded. The add(void) function
does not require any argument but returns integer. The float add() function requires three argu-
ments of float type. Here, the arguments are fa, fb, fc, fd, and id and are declared as glo-
bal so that any function can call them. After entering three float values, the add(void) function
is called. The add(void) function calls the float type add(), the float type add() function
calculates addition and returns results to function add(void). The add(void) function then
returns addition as an integer. In the second call, the compiler calls the float add() function;
this function returns addition of float values. The output of the program is shown above.

7.13 preCautiOnS With FunCtiOn OVerlOaDinG

Function overloading is a powerful feature of C++. But, this facility should not be overused.
Otherwise it becomes an additional overhead in terms of readability and maintenance. Following
precautions must be taken:

(1) Only those functions that basically do the same task, on different sets of data, should be
overloaded. The overloading of function with identical name but for different purposes
should be avoided.

(2) In function overloading, more than one function has to be actually defined and each of
these occupy memory.

Recursion 235

(3) Instead of function overloading, using default arguments may make more sense and
fewer overheads.

(4) Declare function prototypes before main() and pass variables instead of passing constant
directly. This will avoid ambiguity that frequently occurs while overloading functions.

7.14 reCurSiOn

In programming there might be a situation where a function needs to invoke itself. The C++ lan-
guage supports recursive feature, that is a function calls itself repetitively. In recursion a function
calls itself and the control goes to the same function and it executes repeatedly until some condi-
tion is satisfied. In this type of recursive calls a function starts with a new value every time.

7.14.1 rules for recursive Function

(1) In recursion, it is essential to call a function by itself; otherwise recursion would not
take place.

(2) Only the user-defined function can be involved in the recursion. Library function cannot
involve in recursion because their source code cannot be viewed.

(3) A recursive function can be invoked by itself or by other function. It saves return address
with the intention to return at proper location when return to a calling statement is made.

The last-in-first-out nature of recursion indicates that stack data structure can be used
to implement it.

(4) Recursion is turning out to be increasingly important in non-numeric applications and
symbolic manipulations.

(5) To stop the recursive function, it is necessary to base the recursion on test condition, and
proper terminating statement such as exit() or return() must be written using the
if() statement.

7.24 Program to find the factorial of a entered number.

#include<conio.h>
#include<iostream.h>

int main()
{
 unsigned long int fact(int);
 int f,x;
 clrscr();
 cout<<“\nEnter a Number:”;
 cin>>x;
 f=fact(x);
 cout<<“\nFactorial of ” <<x<<“ is ”<<f;
 return 0;
}
unsigned long int fact(int a)
{
 unsigned long factorial;

236 Functions in C++

 if(a==1)
 return 1;
 else
 factorial=a*fact(a-1);
 return factorial;
}

OUTPUT

Enter a Number:6
Factorial of 6 is 720

7.25 Program to calculate the gcd of two numbers.

#include<conio.h>
#include<iostream.h>
int gcd(int,int);

int main()
{
 clrscr();
 int a,b,z;
 cout<<“\nEnter two numbers:”;
 cin>>a>>b;
 z=gcd(a,b);
 cout<<z;
 return 0;
}
int gcd(int a,int b)
{
 if(a!=b)
 {
 if(a>b)
 gcd(a-b,b);
 else
 gcd(a,b-a);
 }
 else
 return(a);
}

OUTPUT

Enter two numbers:45 60
GCD of 45 and 60 is 15

Library Functions 237

7.15 liBrarY FunCtiOnS

7.15.1 Ceil, ceill and floor, floorl

The functions ceil and ceill round up the given float number, whereas the functions floor
and floorl round down the float number. They are defined in math.h header file. Their dec-
larations are as given below.

Declaration

Double ceil(double n);
Double floor(double n);
Long double ceill(long double (n));
Long double floorl(long double (n));

The following program illustrates the working of these functions.

7.26 Write a program to round down and up the given float number.

#include<math.h>
#include<iostream.h>
#include<conio.h>

int main(void)
{
 clrscr();
 float num = 3.12;
 float d, u;
 d = floor(num);
 u = ceil(num);
 cout<<“\n Original number is: ”<<num;
 cout<<“\n Number rounded up is: ”<<u;
 cout<<“\n Number rounded down is: ” <<d;
 return 0;
}

OUTPUT

Original number is : 3.12
Number rounded up is : 4
Number rounded down is : 3

Explanation: In the above program, the float variable num has a value 3.12. The floor()
function converts it to the nearest and small integer number than variable num and returns it to
variable d, whereas the ceil() function converts the float number to the nearest and greater
number than num. The output of the program is shown above.

238 Functions in C++

7.15.2 modf and modfI

The function modf breaks double into integer and fraction elements, and the function modfl
breaks long double into integer and fraction elements. These functions return the fractional
elements of a given number. They are declared as given below.

Declaration

double modf(double n, double *ip);
long double modfl(long double (n), long double *(ip));

7.27 Write a program to separate double number into integer and fractional parts.

#include<math.h>
#include<conio.h>
#include<iostream.h>

int main()
{
 clrscr();
 double f, i;
 double num = 211.57;
 f = modf(num, &i);
 cout<<“\n The Complete Number: ”<<num;
 cout<<“\n The Integer elements: ”<<i;
 cout<<“\n Fractional Elements: ”<<f;
 return 0;
}

OUTPUT

The Complete Number : 211.57
The Integer elements : 211
Fractional Elements : 0.57

Explanation: In the above program, the modf() function separates a double number into
separate integer and fractional parts. The second argument of the function is passed by reference
that after execution holds the integer part of the number.

7.15.3 abs, fabs, and labs

The function abs() returns the absolute value of an integer. The fabs() returns the absolute
value of a floating-point number, and labs() returns the absolute value of a long number.

Declaration:
int abs(int n);
double fabs(double n);
long int labs(long int n);

abs: If abs is invoked using STDLIB.H , it is executed as a macro that expands to inline code.
If we need to use the original abs function then undefine the macro using statement #undef
abs in the program, after the #include<stdlib.h>.
The following program illustrates the working of these functions.

7.28 Write a program to display the absolute number of an integer, float, and long
 integer.

#include<iostream.h>
#include<math.h>
#include<conio.h>

int main()
{
 clrscr();
 int num = -1874;
 cout<<“\n Number: ”<< num <<“\t\t Absolute value:

”<<abs(num);
 {
 float num = -111.11;
 cout<<“\n Number: ”<< num <<“\tAbsolute value: ”<<fabs(num);
 }
 long ans;
 long n = -12252111L;
 ans= labs(n);
 cout<<“\n Number: ”<<n <<“\tAbsolute value: ”<<ans;
 return 0;
}

OUTPUT

Number : -1874 Absolute value : 1874
Number : -111.110001 Absolute value : 111.110001
Number : -12252111 Absolute value : 12252111

Explanation: In the above program, the function abs() returns the absolute value of a negative
number –1874. The fabs() function returns the absolute value of a floating-point number.
The labs() function returns the absolute value of long number. In the statement long n =
−12252111L, the L tells the compiler that the number is of long data type and provides storage
equal to and as required for long data type.

7.15.4 norm

This function is defined in complex.h header file and it is used to calculate the square of the
absolute value.

Syntax: double norm(complex n);

Library Functions 239

240 Functions in C++

7.29 Write a program to calculate the square of the complex number using norm()
function.

#include<iostream.h>
#include<complex.h>
#include<conio.h>

int main()
{
 clrscr();
 double x=-12.5;
 cout<<norm(x);
 return 0;
}

OUTPUT

6.25

Explanation: In the above program the norm() function calculates the square of complex
 negative number.

7.15.5 complex(), real(), imag(), and conj()

complex(): This function is defined in complex.h header file and it creates complex num-
bers from given real and imaginary parts. The imaginary part is supposed to be 0 if not given.
Complex is the constructor for C++ class complex. This function returns the complex number
with the given real and imaginary parts.

real(): Returns real part of the complex number.
imag(): Returns the imaginary part of the complex number.
conj(): Returns complex conjugate of a complex number.

Syntax: complex complex(double real, double imag);
Syntax: double real(complex x);
Syntax: double imag(complex x);
Syntax: double conj(complex x);

7.30 Write a program to return real, imaginary part and conjugate number.

#include<conio.h>
#include<iostream.h>
#include<complex.h>

int main(void)
{
 double a = 4.5, b = 7.4;
 clrscr();

More Programs 241

 complex c = complex(a,b);
 cout<< “c = ”<< c << “\n”;
 cout<< “ and imaginary real part = ” << imag(c) << “\n”;
 cout<< “c has complex conjugate = ” << conj(c) << “ \n”;
 return 0;
}

OUTPUT

C = (4.5, 7.4)
and imaginary real part = 7.4
c has complex conjugate = (4.5, -7.4)

Explanation: In the above program variable a and b of double data type are declared and ini-
tialized with 4.5 and 7.4. By applying the complex(), imag() ad conj() functions results
are obtained. The results are shown in the output.

7.16 MOre prOGraMS

7.31 Write a program to convert a float value to integer and char. Invoke overloaded
function show() as per the data type.

#include<iostream.h>
#include<conio.h>
void show (int);
void show (float);
void show (char);

int main()
{
 clrscr();
 float x;
 int i;
 char c;
 for (x=65;x<=70;x+=0.5)
 {
 show(x);
 i=(int)x;
 show(i);
 c=(char)x;
 show(c);
 cout<<endl;
 }
 return 0;
}

242 Functions in C++

void show (int j) {cout<<“\tint = ”<<j <<“\t”;}
void show (float k) {cout<<’\t’<<“ float = ” <<k;}
void show (char c) {cout<<’\t’ <<“ char = ” <<c;}

OUTPUT

float = 65 int = 65 char = A
float = 65.5 int = 65 char = A
float = 66 int = 66 char = B
float = 66.5 int = 66 char = B
float = 67 int = 67 char = C
float = 67.5 int = 67 char = C
float = 68 int = 68 char = D
float = 68.5 int = 68 char = D
float = 69 int = 69 char = E
float = 69.5 int = 69 char = E
float = 70 int = 70 char = F

Explanation: In the above program, the function show() is overloaded for float, int, and
char data types, respectively. In for loop, conversion from float to int and float to char
data type is carried out and converted values are assigned to variables i and c, respectively. After
each conversion show() function is invoked. The compiler invokes the appropriate function that
exactly matches the data type argument. Thus, output displays float, int, and corresponding
ASCII character.

7.32 Write a program to use function as default arguments.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int in();
 int sum (int a,int b=in(),int c=in(),

int d=in()); // Function prototype
 int a=2;
 int b=3;
 int c=4;
 int d=5;
 cout<<“Sum=” <<sum(a,b,c,d);
 cout<<“\nSum=” <<sum(a,b,c);
 cout<<“\nSum=” <<sum(a,b);
 cout<<“\nSum=” <<sum(a);
 return 0;
}

sum (int j, int k, int l, int m)
{
 return (j+k+l+m);
}
in()
{
 static int j=1;
 int k;
 cout<<“\n (call ”<<j++<<“) Enter integer number: ”;
 cin>> k;
 return (k);
}

OUTPUT

Sum=14
(call 1) Enter integer number : 2
Sum=11
(call 2) Enter integer number : 3
(call 3) Enter integer number : 4
Sum=12
(call 4) Enter integer number : 5
(call 5) Enter integer number : 4
(call 6) Enter integer number : 5
Sum=16

Explanation: In the above program, the function in() is used to read an integer value through
the keyboard. The function in() is used in the prototype of function sum() as a default argu-
ment. Thus, when sum() function is called with less arguments, the function in() is executed
and user can enter a value to pass in the sum() function. The execution of in() function de-
pends upon the number of arguments passed to the function sum(). In this program, the function
sum() is invoked with decreasing arguments from 4 to 1.

First time the function sum() is called with four arguments. Hence, there is no need of
default argument and function in() will not be invoked. In second call, three arguments are
passed, that is with one less argument. This time sum() needs one default argument and in()
function supplies this value. Thus, in the above successive calls the function in() is called based
on passed arguments.

7.33 Write a program to use global variable as default argument.

#include<iostream.h>
#include<conio.h>
int v=2;

int main()

More Programs 243

244 Functions in C++

{
 clrscr();
 int show (int d=v+5);
 int a=2;
 cout<<“\n a++ =” <<show(a);
 cout<<“\n a++ =” <<show();
 v++;
 cout<<“\n a++ =” <<show();
 return 0;
}
show (int j)
{
 j++;
 return (j);
}

OUTPUT

a++ =3
a++ =8
a++ =9

Explanation: In the above program, function show() is used to increase the value passed to
it. The function show() returns increased value. The prototype of function show() contains
default arguments (v + 5), that is value of variable v is added to 5 and the result is used as a
default argument for the function show(). In the first call, the function show() is called with
the single argument and it returns value 3. In second call, show() is called without argument.
This time function show() takes default argument, that is v + 5 = 7 and returns the result 8.
The third time the function show() is again called without argument. This time it returns the
result 9 because the global variable v is incremented by 1. Thus, the use of global variable as a
default argument changes the default value in different calls. The use of local variable as a default
argument is not allowed. If such attempt is made, the compiler shows an error message “Default
expression may not use local variables.”

7.34 Write a program to use function as an argument for another function.

#include<iostream.h>
#include<conio.h>
int v=2;

int main()
{
 clrscr();
 int show (int d=v+5);
 cout<<“\n ++ =” <<show(show());

 return 0;
}
show (int j)
{
 j++;
 return (j);
}

OUTPUT

++=9

Explanation: In the above program the function show() is used as an argument. When func-
tion is used as an argument, the argument function is called first and its return value is used as an
argument for the first function. In the first call the function uses the default value 7 and it incre-
ments by one. The return value 8 is again passed to the function show(). The return value again
increases by one and finally the show() function returns the value 9.

7.35 Write a program to overload a function display(). Print the integer, double
and string using overloaded show() function.

#include<conio.h>
#include<iostream.h>
void display (int d) { cout<<endl<<“ d= ”<<d; }
void display (double d) { cout<<endl<<“ d= ”<<d;}
void display (char *d) { cout<<endl<<“ d= ”<<d; }

int main()
{
 clrscr();
 display (50);
 display(3.14521);
 display(“Hello”);
 return 0;
}

OUTPUT

d= 50
d= 3.14521
d= Hello

Explanation: In the above program the function display() is overloaded for displaying inte-
ger, double and string. In function main(), integer, double and string are passed to function
display(). The compiler executed appropriate function display() and displays the passed
value on the screen.

More Programs 245

246 Functions in C++

7.36 Write a program to declare a function with default arguments. Execute the function
without argument.

#include<conio.h>
#include<iostream.h>
void display (char *s=”Hearty Welcome\n”)
{
 cout<<endl<<s;
}
int main()
{
 clrscr();
 display(“Hello”);
 display();
 return 0;
}

OUTPUT

Hello
Hearty Welcome

Explanation: In the above program character pointer s is initialized with string “ Hearty Wel-
come” and it is declared as default arguments for function display(). The default argument
is used when the function is invoked without argument. Here, in the first call a string “Hello” is
passed and it is displayed on the screen by the function display(). In second call, the function
display() is called without argument. In this call the default argument is used and the string
displayed will be “ Hearty Welcome”.

7.37 Write a program to draw line. Create line function with default arguments.

#include<conio.h>
#include<iostream.h>

int main()
{
 void line (char = ‘-’, int = 50);
 clrscr();
 line(); // without arguments
 line (‘+’,50);
 line (‘/’,50);
 line (‘S’,50);
 line(); // without arguments
 return 0;
}

void line (char c,int l)
{
 while(l--)
 cout<<c;
 cout<<endl;
}

OUTPUT

--
++
//
SS
--

Explanation: In the above program the line function draws line on the screen. It has two default
arguments ‘-’ and 50. These default arguments are used when function is called without argu-
ments. In the above program the line() function is invoked 5 times out of which two times
invoked without argument. The first and last lines are drawn using default arguments.

7.38 Program to display the results of addition, subtraction, division, and multiplication
of float numbers and modulus of given two integers.

#include<iostream.h>
#include<conio.h>

int main()
{
 float a,b,c,d,e,f,g;
 float add(float,float);
 float sub(float,float);
 float mul(float,float);
 float div(float,float);
 int mod(int,int);
 clrscr();
 cout<<“Enter numbers ”;
 cin>>a>>b;
 g=add(a,b);
 c=sub(a,b);
 d=mul(a,b);
 e=div(a,b);
 f=mod(a,b);
 cout<<“Addition of given numbers is ”<<g;
 cout<<“\nSubtraction of given numbers is ”<<c;
 cout<<“\nMultiplication of given numbers is ”<<d;

More Programs 247

248 Functions in C++

 cout<<“\nDivision of given numbers is ”<<e;
 cout<<“\nModulus of given numbers is ”<<f;
 return(0);
}
float add (float x,float y)
{
 return(x+y);
}
float sub(float x,float y)
{
 return(x-y);
}
float mul(float x,float y)
{
 return(x*y);
}
float div(float x,float y)
{
 return(x/y);
}
int mod(int p,int q)
{
 return(p%q);
}

OUTPUT

Enter numbers 5 2
Addition of given numbers is 7
Subtraction of given numbers is 3
Multiplication of given numbers is 10
Division of given numbers is 2.5
Modulus of given numbers is 1

7.39 Program to display function show() with default parameters

#include<iostream.h>
#include<conio.h>
void show(int=1,float=7.5,long=9);

void main()
{
 clrscr();
 show();

 show(5);
 show(3,2.4);
 show(1,7.7,3l);
}
void show(int first,float second,long third)
{
 cout<<“\nFirst = ”<<first;
 cout<<“, second = ”<<second;
 cout<<“, third = ”<<third;
}

OUTPUT

First = 1,second = 7.5,third = 9
First = 5,second = 7.5,third = 9
First = 3, second = 2.4, third = 9
First = 1, second = 7.7, third = 3

7.40 Program to find addition and multiplication of digits of any number.

#include<iostream.h>
#include<conio.h>

int main()
{
 int n,p,q;
 int sum(int);
 int mul(int);
 clrscr();
 cout<<“Enter any number ”;
 cin>>n;
 p= sum(n);
 q= mul(n);
 cout<<“Sum of digits ”<<p;
 cout<<“\nMultiplication of digits ”<<q;
 return 0;
}
int sum(int s)
{
 int a,sum=0,rem;
 for(a=s;a>0;a/=10)
 {
 rem=a%10;
 sum=sum+rem;

More Programs 249

250 Functions in C++

 }
 return(sum);
}
int mul(int m)
{
 int e,res=1,rem;
 for(e=m;e>0;e/=10)
 {
 rem=e%10;
 res*=rem;
 }
return (res);
}

OUTPUT

Enter any number 123
Sum of digits 6
Multiplication of digits 6

7.41 Program to convert binary number to decimal.

#include<iostream.h>
#include<conio.h>

int main()
{
 int b;
 clrscr();
 cout<<“Enter any number in binary:”;
 cin>>b;
 void decimal(int);
 decimal(b);
 return 0;
}
void decimal(int n)
{
 int k,rem,d,dec=0,a=1;
 for(k=n;k>0;k/=10)
{
 rem=k%10;
 d=rem*a;
 dec+=d;
 a*=2;
}

 cout<<“ Binary number= ” <<n<<“\nDecimal number= ”<<dec;
}

OUTPUT

Enter any number in binary:1111
Binary number= 1111
Decimal number= 15

7.42 Program to overload function addition of integers and floats.

#include<iostream.h>
#include<conio.h>
int add (int,int);
float add(float,float,float);

int main()
{
 int a,b,i;
 float p,q,r,f;
 clrscr();
 cout<<“Enter integers: a&b ”;
 cin>>a>>b;
 cout<<“Enter floats: p,q & r ”;
 cin>>p>>q>>r;
 i=add(a,b);
 f=add(p,q,r);
 cout<<“\nAddition of integers= ”<<i;
 cout<<“\nAddition of floats= ”<<f;
 return 0;
}
int add(int x,int y)
{
 return(x+y);
}
float add(float m,float n,float o)
{
 return(m+n+o);
}

OUTPUT

Enter integers : a&b 2 7
Enter floats: p,q & r 2.4 5.6 7.6
Addition of integers= 9
Addition of floats= 15.6

More Programs 251

252 Functions in C++

SuMMarY

(1) Like “C” language, the programs written
in “C++” language highly depend on func-
tions. The “C++” program is nothing but
a combination of one or more functions.

(2) A function prototype declaration consists
of function’s return type, name, and argu-
ments list. When the programmer defines
that function, the definition must be the
same as its prototype declaration.

(3) In C++ it is possible to pass arguments by
value or by reference. C++ reference type
is declared with & operator and it is nearly
identical but not exactly the same as point-
er types. They declare aliases for objects
variables and allow the programmer to
pass arguments by reference to functions.

(4) An lvalue is an object locator and an ex-
pression that indicates an object.

(5) The statement x + y is not an lvalue; x +
y = z is invalid because the expression on
the left is not related to a variable. Such
expressions are often called rvalues.

(6) C++ allows the programmer to assign de-
fault values in the function prototype dec-
laration of the function. When the function
is called with lesser parameters, then the
default values are used for the operations.

(7) The constant variable can be declared
using const keyword. The const key-
word makes variable value stable. The
constant variable should be initialized at
the time of declaration.

(8) C++ provides a mechanism called inline
function. When a function is declared as
inline, the compiler copies the code of the
function in the calling function.

(9) C++ makes it possible for the program-
mer to use the same function name for
various times for different intentions.
This is called function overloading or
function polymorphism.

(10) The function modf() breaks double
into integer and fraction elements, and
the function modfl() breaks long dou-
ble into integer and fraction elements.

(11) The functions ceil() and ceill()
round up the given float number, where-
as the functions floor() and floorl()
round down the float number.

(12) The function abs() returns the absolute
value of an integer. The fabs() returns
the absolute value of a floating-point
number and labs() returns the abso-
lute value of a long number.

eXerCiSeS

(A) Answer the following questions

(1) What are the differences between C and
C++ functions?

(2) Describe different parts of function.
(3) What are void functions?
(4) What does it mean by function proto-

type? Is it compulsory?
(5) When is the function prototype declara-

tion not necessary?
(6) What are default arguments?
(7) Where are the default arguments assigned?

(8) How are the default arguments entered at
run time?

(9) What are inline functions? Discuss its
advantages and disadvantages.

(10) What are the rvalue and lvalue in an ex-
pression? Explain with examples.

(11) What is the difference between call by
value and call by reference? Illustrate
them with examples.

(12) What are constant arguments?

(13) How is the value of a constant variable
changed?

(14) What is function overloading?
(15) What are the rules for defining overload-

ed functions?
(16) What precautions should we take while

overloading function?
(17) What is the difference between pointer

and reference variable?
(18) What is the difference between normal

function and inline function?
(19) What are actual and formal arguments?
(20) How can a return statement pass more

than a single value from a function?
(21) What is recursion?
(22) Explain the rules of recursion?

(1) The concept of declaring same function
name with multiple definitions is
(a) function overloading
(b) operating overloading
(c) both (a) and (b)
(d) none of the above

(2) The default arguments are used when
(a) function is called with less argu-

ments
(b) function is void
(c) when arguments are passed by ref-

erence
(d) none of the above

(3) The constant function
(a) cannot alter values of a variable
(b) can alter values of a constant vari-

able
(c) makes its local variable constant
(d) none of the above

(4) The function abs() returns
(a) absolute value
(b) negative value
(c) both (a) and (b)
(d) none of the above

(5) The use of parentheses is optional for one
of the following statement:
(a) return
(b) main
(c) clrscr
(d) exit

(6) The following program will generate an
error message

void main()
{
return 0;
}

(a) main() cannot return value
(b) void keyword is not allowed in

main()
(c) function should return a non-zero

value
(d) return statement is not allowed

(7) Which of the following statements are
true?
(1) A return type for void specifies that

no value be returned
(2) Functions by default return int value
(3) The return type can only be int,

char, or double
(a) (1) and (2)
(b) (1), (2), and (3)
(c) (1) and (3)
(d) none of the above

(8) C++ provides inline functions to reduce
function call overhead, mainly for
(a) small functions
(b) large functions
(c) member function
(d) none of the above

(9) To ____ an inline function, we must
change it to an outline function.
(a) debug
(b) edit
(c) remove
(d) comment out

(10) Identify which of the following function
calls are allowed. The prototype declaration
is int sum(int j, int k = 4, int l = 3)
(1) sum(2)
(2) sum(2,3)
(3) sum()
(4) sum(3,4,5)
(a) 1, 2, and 4

(B) Answer the following by selecting the appropriate option

Exercises 253

254 Functions in C++

(1) Write a program to define a function with
default argument. Whenever the func-
tion needs default values of arguments, it
should prompt the user to enter a default
value. Also display the default values.

(2) Write a program to define a constant vari-
able. Change the value of the variable us-
ing pointer. Display the default and the
newly assigned values along with mem-
ory locations.

(3) Write a program to calculate the power of
a given number. Define user-defined func-
tion power(). Make it inline.

(4) Write a program to accept a double
number. Separate its integer and frac-
tional part.

(5) Write a program to calculate the absolute
value of long and float number.

(6) Write a program to round down and round
up the floating-point number.

(7) Write a program to overload the function
uabs(). The function should return ab-
solute value of the given number for data
type int and float.

(8) Write a program to enter quantity and
rate through the keyboard. Then calculate
the amount by multiplying quantity and
rate. If the fractional part of the amount
is greater than or equal to .50 then round
up the number, otherwise round down the
number. Enter a minimum of 10 records.
Calculate the total fractional parts of the

(b) 2, 3, and 4
(c) 1 and 5
(d) 2 and 4

(11) It is possible to overload functions
(a) when they have similar name and

return type
(b) when they have similar name, re-

turn type, and different arguments
(c) when they have similar name, dif-

ferent argument type, and different
return type

(d) when they have similar name, dif-
ferent type of argument, or dif-
ferent number of arguments and
return type does not matter

(12) What will be the output of the following
program?

int sub(int q)
{
int m;
m- = sub(q − 1);
return(m);
}
void main()
{
int r = sub(7);
cout<<r;
}

(a) 0
(b) stack overflow
(c) compilation error
(d) −5

(13) Compiler may reject the request for in-
line function if
(a) it is small
(b) the return type is void
(c) it is a loop, switch, or goto exists
(d) never

(14) The default return type of main function
is
(a) int
(b) double
(c) long int
(d) void

(15) Advantage of inline function is
(a) faster execution
(b) saves memory
(c) both (a) and (b)
(d) none

(16) Default arguments are defined when
functions are
(a) defined
(b) declared
(c) both (a) and (b)
(d) never

(C) Attempt the following programs

amount rounded up and rounded down
separately.

(9) Write a program to display only the inte-
ger portion of the given float numbers
without type casting.

(10) Write a program to accept a float num-
ber through the keyboard. Then calculate
the square of the number. Separate the
float number into integer and fractional
part. Individually calculate the square of
an integer and fractional parts and add
them in another variable. Compare the
two squares obtained. Write your obser-
vation regarding the squares obtained.
(Note: set precision to 2).

(11) Write a program to calculate the square
root of 1 to 10 numbers. Display the sum

of integer parts and fractional parts of the
square roots obtained. (Note: set preci-
sion to 2.)

(12) Write a program using function overload
to convert an integer number to an ASCII
character and float to ASCII string.

(13) Write an inline function to display lines
of different patterns.

(14) Write a program to display the Fibonacci
series up to 21 using recursion.

(15) Write a program to display the sum of
first 100 odd numbers using recursion.

(16) Write a program to find the power of inte-
ger number using pow() library function.

(17) Write a program to return more than one
values from function using call by refer-
ence method.

Exercises 255

 This page is intentionally left blank.

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology
	1.5 Disadvantage of Conventional Programming
	1.6 Programming Paradigms
	(1) Monolithic Programming
	(2) Procedural/Structured Programming

	1.7 Preface to Object Oriented Programming
	1.8 Key Concepts of Object Oriented Programming
	(1) Objects
	(2) Classes
	(3) Method
	(4) Data Abstraction
	(5) Encapsulation
	(6) Inheritance
	(7) Polymorphism
	(8) Dynamic Binding
	(9) Message passing
	(10) Reusability
	(11) Delegation
	(12) Genericity

	1.9 Advantages of OOP
	1.10 Object Oriented Languages
	SMALTALK
	CHARM++
	JAVA

	1.11 Usage of OOP
	1.12 Usage of C++
	Summary
	Exercises

	Chapter 2 : Basics of C++
	2.1 Introduction
	2.2 Steps to Create and Execute a C++ Program
	2.3 Flowchart for Creating a Source File, Compiling, Linking
and Executing in C++
	2.4 C++ Environments
	2.5 Typical C++ Environment (Borland C++)
	Step 1: Open any Text Editor
	Step 2: Write the Code for the Program
	Step 3: Save the File with .CPP AS an Extension
	Step 4: Compile the Program
	Step 5: Run the Program

	2.6 Structure of a C++ Program
	2.7 Illustrative Simple Program in C++ without Class
	2.8 Header Files and Libraries
	Summary
	Exercises

	Chapter 3 : Input and Output in C++
	3.1 Introduction
	3.2 Streams in C++ and Stream Classes
	3.3 Pre-defined Streams
	3.4 Buffering
	3.5 Stream Classes

