
•
•
•
•
•
•
•
•
•
•
•
•

12.1 INTRODUCTION

An array is a very popular, linear, homogenous, and useful data structure that is used to store
similar types of data elements in contiguous memory locations under one variable name. An ar-
ray can be declared to be of any standard or custom data type. The array of characters (strings)
type works somewhat differently from the array of integers, floating numbers, and so on.

12.2 ONE-DIMENSIONAL ARRAY DECLARATION AND INITIALIZATION

The declaration of a one-dimensional array is as follows:

Declaration

int a[5];

12.1 Introduction

12.2 One-dimensional Array Declaration and Initialization

12.3 Characteristics of Arrays

12.4 Accessing Array Elements Through Pointers

12.5 Arrays of Pointers

12.6 Passing Array Elements to a Function

12.7 Passing Complete Array Elements to a Function

12.8 Initialization of Arrays Using Functions

12.9 Two-dimensional Arrays

12.10 Pointers and Two-dimensional Arrays

12.11 Three- or Multi-dimensional Arrays

12.12 Arrays of Classes

12Arrays

C
h

a
p

t
e

r
 O

u
t

l
in

e

C H A P T E R

512 Arrays

It tells the compiler that ‘a’ is an integer type of array, and it should store five integers. In this
example, 5 is the subscript enclosed within square brackets. The compiler reserves two bytes of
memory for each integer array element; that is, 10 bytes are reserved for storing five integers in
the memory.

In the same way, arrays of different data types are declared as follows:

One-dimensional Array Declaration

char ch[10];
float real[10];
long num[5];

The array initialization is done as follows:

Array Initialization

int a[5] = {1,2,3,4,5};

Here, five elements are stored in an array ‘a’. The array elements are stored sequentially in sepa-
rate locations. Then, the question arises of how to call each element individually from this bunch
of integer elements. The reading of array elements begins from zero.

Array elements are accessed with the name of the array, and the number within the square
brackets specifies the element number. In other words, array elements are called with array names
followed by element numbers. Table 12.1 explains the accessing elements.

 Table 12.1 Calling Array Elements

 a[0] refers to 1st element i.e. 1
 a[1] refers to 2nd element i.e. 2
 a[2] refers to 3rd element i.e. 3
 a[3] refers to 4th element i.e. 4
 a[4] refers to 5th element i.e. 5

12.3 CHARACTERISTICS OF ARRAYS

(1) The Declaration int a[5] is nothing but a creation of five variables of integer types.
Instead of declaring five variables for five values, the programmer can define them in
an array.

(2) All the elements of an array share the same name, and they are distinguished from one
another with the help of an element number.

(3) The element number in an array plays a major role for calling each element.
(4) Any particular element of an array can be modified separately without disturbing the

other elements.
For example, int a[5] = {1,2,3,4,8};

If the programmer needs to replace 8 with 10, he/she is not required to change all the
other elements except 8. To carry out this task, the statement a[4] = 10 can be used.
Here, the other four elements are left unchanged.

(5) Any element of an array a[] can be assigned/equated to another ordinary variable or an
array variable of its type.

Characteristics of Arrays 513

For example
b = a[2];
a[2] = a[3];

(a) In the statement b = a[2] or vice versa, the value of a[2] is assigned to ‘b’,
where ‘b’ is an integer.

(b) In the statement a[2] = a[3] or vice versa, the value of a[3] is assigned to
a[2], where both the elements are of the same data type.

(6) The array elements are stored in contiguous memory locations. The amount of storage
required for holding the elements of the array depends on its type and size. The total size
in bytes for a single-dimensional array is computed as shown below.

Total bytes = size of (data type) × size of array

The rules for array declaration are similar in both C and C++. Simple programs on arrays are
demonstrated with C and C++.

12.1 Program executed in C 12.2 Program executed in C++

#include<stdio.h>
#include<conio.h>

void main()
{
 char text[3] = “xyz”;
 char txt[3] = “abc”;
 clrscr();
 printf (“\n %s”,text);
}

#include<conio.h>
#include<iostream.h>

void main()
{
 char text[3] = “xyz”;
 char txt[3] = “abc”;
 clrscr();
 cout<<text;
}

OUTPUT OUTPUT

xyz_abcW__ XyzÅ

Explanation: Both the above programs are similar except for the syntax. The first and second
programs are executed in C (Ver 2.0) and C++ (ver 3.0), respectively.. The character
arrays are declared to be exactly equal to the length of the string. The null character is not taken
into account. That is why in C the printf() statement displays the contents of the next charac-
ter array followed by the character array. In C++, the cout also displays the garbage. It is better
to take the null character into account while declaring and initializing the string array. Thus, the
above character array can be accurately declared as follows:

(a) char text[4] = “xyz”;
(b) char txt[4] = “abc”;

Now, you will get the correct output.

514 Arrays

Given below are a few programs on one-dimensional arrays

12.3 Program to read 5 integers through keyboard and display them.

#include<iostream.h>
#include<conio.h>

int main()
{
 int num[5],i;
 clrscr();
 for(i=0;i<5;i++)
 {
 cout<<“\n Enter any no:”;
 cin>>num[i];
 }
 cout<<“ Numbers are:”;
 for(i=0;i<5;i++)
 {
 cout<<num[i];
 }
return 0;
}

OUTPUT

Enter any no:12
Enter any no:34
Enter any no:45
Enter any no:67
Enter any no:89
Numbers are:12 34 45 67 89

12.4 Program to enter 5 numbers through keyboard and display them in ascending or-
der.

#include<iostream.h>
#include<conio.h>

int main()
{
 int num[5],i,j,temp;
 clrscr();
 cout<<“\n Enter 5 numbers:”;
 for(i=0;i<5;i++)
 {
 cin>>num[i];

Accessing Array Elements Through Pointers 515

 }
 for(i=0;i<5;i++)
 {
 for(j=i+1;j<5;j++)
 {
 if(num[i]>num[j])
 {
 int temp=num[i];
 num[i]=num[j];
 num[j]=temp;
 }
 }
}
 cout<<“\n Numbers in ascending order are as follows:”;
 for(i=0;i<5;i++)
 {
 cout<<“ ”<<num[i];
 }
return 0;
}

OUTPUT

Enter 5 numbers:23 56 78 99 2
Numbers in ascending order are as follows: 2 23 56 78 99

Explanation: For arranging numbers in the ascending order, the numbers are sorted with two for
loops, and the same sorted numbers are displayed.

12.4 ACCESSING ARRAY ELEMENTS THROUGH POINTERS

We can quickly and easily access array elements using pointers, as these elements are stored in
contiguous memory locations. A pointer variable contains an address, and it is easy to manipulate
data with the help of addresses. When a pointer is incremented, the address gets incremented, and
we can access the contents of memory locations. This particular method requires less memory;
hence, execution is fast.

12.5 Program to display elements of an array using pointer. Display addresses of ele-
ments.

#include<iostream.h>
#include<conio.h>

int main()
{
 int *p,num[5]={1,2,3,4,5},j;

516 Arrays

 clrscr();
 p=&num[0];
 cout<<“\nNumber Address”<<endl;
 for (j=0;j<5;j++)
 cout<<“ ”<<*(p+j) <<“ ”<<unsigned(p+j)<<endl;
 return 0;
}

OUTPUT

Number Address
1 65452
2 65454
3 65456
4 65458
5 65460

12.5 ARRAYS OF POINTERS

So far, we have studied arrays of different standard data types, such as arrays of int, float, and
char. In the same way, the ‘C++’ language also supports arrays of pointers. It is nothing but a
collection of addresses. Here, we store the addresses of variables for which we have to declare
arrays as pointers.

12.6 Write a program to store addresses of different elements of an array using array of
pointers.

#include<conio.h>
#include<iostream.h>

int main()
{
 int *arrp[3];
 int arr[3]={5,10,15},k;
 for(k=0;k<3;k++)
 arrp[k]=arr+k;
 clrscr();
 cout<<“\n\t Address Element”<<endl;
 for (k=0;k<3;k++)
 {
 cout<<“\t” <<unsigned(arrp[k]);
 cout<<“\t”<<*(arrp[k])<<endl;
 }
return 0;

Passing Array Elements to a Function 517

}

OUTPUT

Address Element
65418 5
65420 10
65422 15

Explanation: In the above program, *arrp[3] is declared as an array of pointers. Using first
for loop, the addresses of various elements of array ‘arr[]’ are assigned to ‘*arrp[]’.
The second for loop picks up addresses from ‘*arrp[]’ and displays the values present at
those locations. Here, each element of ‘*arrp[]’ points to the respective element of array
‘arr[]’.

 Table 12.2 Arrays of pointers in memory

Element no. Array of values Element no. Array of addresses

arr[0] 5 arrp[0] 65418

arr[1] 10 arrp[1] 65420

arr[2] 15 arrp[2] 65422

12.6 PASSING ARRAY ELEMENTS TO A FUNCTION

We can pass elements to a function by using call-by-value or call-by-reference methods. In the
call-by-value method, elements (values) of an array are passed to the function; whereas in the
call-by-reference method, addresses of elements are passed to the function.

The following program demonstrates the call-by-value method:

12.7 Program to pass elements of an array to a function by using call by value.

#include<iostream.h>
#include<conio.h>
void display(int);

void main()
{
 int num[5]={1,2,3,4,5},i;
 clrscr();
 cout<<“\nElements in the reverse order are as follows:”;
 for(i=4;i>=0;i--)
 {
 display(num[i]);
 }

518 Arrays

}
 void display(int x)
{
 cout<<“ ”<<x;
}

OUTPUT

Elements in the reverse order are as follows: 5 4 3 2 1

Explanation: In the above program, individual elements of array num[5] are passed to the func-
tion display(int), and the same are displayed in the called function.

The following program demonstrates the call-by-reference method:

12.8 Program to pass elements of an array to a function by using call by reference.

#include<iostream.h>
#include<conio.h>
void display(int *);

void main()
{
 int num[5]={1,12,3,4,5},i;
 clrscr();
 cout<<“\nElements of the array are as follows:”;
 for(i=0;i<5;i++)
 {
 display(&num[i]);
 }
}
void display(int *x)
{
 cout<<“ ”<<*x;
}

OUTPUT

Elements of the array are as follows: 1 2 3 4 5

Explanation: In the above program, addresses of individual array elements are passed to the
function display(int *). The x contains the address of an array element, and ∗x is the value
stored at that address.

12.7 PASSING COMPLETE ARRAY ELEMENTS TO A FUNCTION

It is also possible to pass the entire elements of an array to a function instead of passing the
individual elements of an array. The following program explains the concept:

Initialization of Arrays Using Functions 519

12.9 Program to pass entire elements of an array to a function.

#include<iostream.h>
#include<conio.h>
void show(int *,int);

void main()
{
 int num[5]={1,2,3,4,5},i;
 clrscr();
 cout<<“\nElements of the array are as follows:”;
 show(&num[0],5);
}
void show(int *x,int y)
{
 int i;
 for(i=0;i<=y-1;i++)
 {
 cout<<“ ”<<*x;
 x++;
 }
}

OUTPUT

Elements of the array are as follows: 1 2 3 4 5

Explanation: In the above program, the address of the zeroth element, that is, &num[0], is
passed to the function show(). The for loop is used to access the array elements using point-
ers. The show() function is invoked with two arguments. The first argument is the address of
the zeroth element, and the second one is the number that represents the total number of elements
in the array.

12.8 INITIALIZATION OF ARRAYS USING FUNCTIONS

The programmers always initialize the arrays using statements such as int d[] = {1,2,3,4,5};
instead of this, the function can also be directly called to initialize the array. The following pro-
gram illustrates this point.

12.10 Write a program to initialize an array using functions.

#include<stdio.h>
#include<conio.h>

main()
{
 int k,c(),d[]={c(),c(),c(),c(),c()};
 clrscr();

520 Arrays

 printf (“\n Array d[] elements are :”);
 for (k=0;k<5;k++)
 printf (“%2d”,d[k]);
 return (NULL);
}
c()
{
 static int m,n;
 m++;
 printf (“\nEnter Number d[%d] : ”,m);
 scanf (“%d”,&n);
 return(n);
}

OUTPUT

Enter Number d[1] : 4
Enter Number d[2] : 5
Enter Number d[3] : 6
Enter Number d[4] : 7
Enter Number d[5] : 8
Array d[] elements are : 4 5 6 7 8

Explanation: A function can be called in the declaration of an array. In the above program, d[]
is an integer array, and c() is a user-defined function. When called, the function c() reads val-
ues through the keyboard. The function c() is called from an array; that is, the values returned
by the function are assigned to the array. The above program will not work in C.

12.9 TWO-DIMENSIONAL ARRAYS

Two-dimensional arrays can be considered a rectangu-
lar display of elements with rows and columns, and this
is also known as a matrix. Consider the following
example int x[3][3]. The two-dimensional array can
be declared as shown in Fig. 12.1.

 Table 12.1 Arrangement of two-dimensional
array elements

Column 0 Column 1 Column 2

Row 0 x[0][0] x[0][1] x[0][2]

Row 1 x[1][0] x[1][1] x[1][2]

Row 2 x[2][0] x[2][1] x[2][2]

The arrangement of array elements shown in Table 12.1 is only for the sake of understanding.
Actually, the elements are stored in continuous memory locations. The two-dimensional array
is a collection of two one-dimensional arrays. The meaning of the first argument is in x[3][3]

Row 1

Row 2

Row 3

[0][0] [0][1] [0][2]

[0][0] [0][1] [0][2]

[0][0] [0][1] [0][2]

 Fig. 12.1 Two-dimensional array

Two-Dimensional Arrays 521

and means the number of rows; that is, the number of one-
dimensional arrays, and the second argument indicates the
number of elements. The x[0][0] means the first element of
the first row and column. In one row, the row number re-
mains the same but the column number changes. The num-
ber of rows and columns is called the range of the array. A
two-dimensional array clearly shows the difference between
logical assumptions and the physical representation of data.
The computer memory is linear and any type of array may
one, two- or multi-dimensional array it is stored in continuous
memory location Fig. 12.2.

12.11 Program to demonstrate two dimensional array.

#include<iostream.h>
#include<conio.h>

int main()
{
 int i,j;
 int a[3][3]={1,2,3,4,5,6,7,8,9};
 clrscr();
 cout<<“\n Array elements and address ”;
 cout<<“\n \t Col-0 Col-1 Col-2”;
 cout<<“\n \t ====== ====== ======”;
 cout<<“\nRow0”;
 for (i=0;i<3;i++)
 {
 for (j=0;j<3;j++)
 cout<<“\t ”<< a[i][j];
 if(i==2)
 break;
 cout<<“\nRow”<<i+1;
 }
return 0;
}

OUTPUT

 Array elements and address
 Col-0 Col-1 Col-2
 ====== ====== ======
Row0 1 2 3
Row1 4 5 6
Row2 7 8 9

x[0][0] Base Address
x[0][1]
x[0][2]
x[1][0]
x[1][1]
x[1][2]
x[2][0]
x[2][1]
x[2][2]

 Fig. 12.2 Storage of two-
dimensional array

522 Arrays

Explanation: From the above program’s output, we can conclude that the one-dimensional ar-
ray can be accessed using a single loop. However, for the two-dimensional array, two loops are
required for rows and columns. The inner loop helps access the row-wise elements, and the outer
loop changes the column number.

12.12 Program to read marks and percentage of students using two dimensional array.

#include<iostream.h>
#include<conio.h>

int main()
{
 int student[5][2],i,j;
 clrscr();
 for(i=0;i<5;i++)
 {
 cout<<“\n Enter the Roll no and percentage of the student:”;
 cin>>student[i][0]>>student[i][1];
 }
 cout<<“\n Roll_no \t percentage ”;
 for(i=0;i<5;i++)
 {
 cout<<“\n”;
 cout<<student[i][0]<<“\t”<<(student[i][1]);
 }
return 0;
}

OUTPUT

Enter the Roll no and percentage of the student:1 89
Enter the Roll no and percentage of the student:2 78
Enter the Roll no and percentage of the student:3 76
Enter the Roll no and percentage of the student:4 56
Enter the Roll no and percentage of the student:5 90
Roll_no percentage
1 89
2 78
3 76
4 56
5 90

Explanation: In the above program, student [5][2] is declared as an array. The array student
[5][2] contains 5 rows and 2 columns. Roll number and percentage scored by the students are
read through the keyboard and displayed.

Pointers and Two-Dimensional Arrays 523

12.10 POINTERS AND TWO-DIMENSIONAL ARRAYS

A matrix can represent the two-dimensional elements of an array. In order to display the elements
of the two-dimensional array using pointers, it is essential to have ‘&’ operator as a prefix with
the array name followed by element numbers.

12.13 Write a program to display array elements and their addresses using pointers.

#include<iostream.h>
#include<stdio.h>
#include<conio.h>

void main()
{
 clrscr();
 int i,j=1,*p;
 int a[3][3]={{1,2,3},{4,5,6},{7,8,9}};
 cout<<“\n\tElements of an array with their addresses”;
 p=&a[0][0];
 cout<<“\n”;
 for (i=0;i<9;i++,j++)
 {
 cout<<“ ”<<*(p)<<“ ”<<unsigned(p);
 if (j==3)
 {
 cout<<“\n”;
 j=0;
 }
 p++;
}
}

OUTPUT

Elements of an array with their addresses
1 65506 2 65508 3 65510
4 65512 5 65514 6 65516
7 65518 8 65520 9 65522

Explanation: In the above program, the two-dimensional array is declared and initialized.
The base address of the array is assigned to integer pointer ‘p’. While assigning the base
address of the two-dimensional array, the ‘&’ operator is pre-fixed with the array name fol-
lowed by the element numbers; otherwise, the compiler shows an error. The statement p =
&a[0][0] is used in this context. The pointer ‘p’ is printed and incremented in the for
loop till it prints the entire array of elements. The if statement splits a line when three ele-
ments in each row are printed.

524 Arrays

12.11 THREE- OR MULTI-DIMENSIONAL ARRAYS

The ‘C++’ program helps in creating an array of multi dimensions. The compiler determines the
restrictions on it. The syntax of the declaration of multi-dimensional arrays is as follows:

Data Type_Arrayname [S1][S2][S3]...[Si];

where Si is the size of the ith dimensions.
Three-dimensional arrays can be initialized as follows.

int mat[3][3][3] = { 1,2,3, 4,5,6, 7,8,9, 1,4,7, 2,5,8,
3,6,9, 1,4,4, 2,4,7, 8,8,5};

A three-dimensional array can be considered an array of arrays of arrays. The outer array contains
three elements. The inner array is two dimensional with regard to size [3][3].

12.14 Write a program to explain the working of three-dimensional array.

#include<iostream.h>
#include<conio.h>

int main()
{
 int array_3d[3][3][3];
 int a,b,c;
 clrscr();
 for (a=0;a<3;a++)
 for (b=0;b<3;b++)
 for (c=0;c<3;c++)
 array_3d[a][b][c]=a+b+c;
 for (a=0;a<3;a++)
 {
 cout<<“\n”;
 for (b=0;b<3;b++)
 {
 for (c=0;c<3;c++)
 cout<<“ ”<<array_3d[a][b][c];
 cout<<“\n”;
 }
 }
return 0;
}

OUTPUT

0 1 2
1 2 3
2 3 4

Arrays of Classes 525

1 2 3
2 3 4
3 4 5
2 3 4
3 4 5
4 5 6

Explanation: The three-dimensional array array_3d is initialized. The first three for loops
are used for adding the values of a, b & c. Here, initially, a & b are zero, and ‘c’ varies
from 0 to 2. Hence, the addition of a, b & c will be 0 1 2. This will be printed in the first row.
The second output row is one in which a = 0, b = 1, and c varies from 0 to 2. Thus, the
output of the second row will be 1 2 3. In this way, the values of a, b & c are changed, and a
total of 27 iterations are carried out.

12.12 ARRAYS OF CLASSES

As we know, an array is a collection of similar data types. In the same way, we can also define
an array of classes. In such a type of an array, every element is of class type. An array of class
objects can be declared as follows.

class stud
{
public:
char name[12]; // class declaration
int rollno;
char grade[2];
};
class stud st[3]; // declaration of array of class objects

In the above example, st[3] is an array of three elements containing three objects of class
stud. Each element of st[3] has its own set class of member variables; that is, char name[12],
int rollno, and char grade[2]. A program is explained as given below.

12.15 Write a program to display names, roll numbers, and grades of 3 students who
have appeared for the examination. Declare the class of name, roll numbers, and grade.
Create an array of class objects. Read and display the contents of the array.

#include<stdio.h>
#include<conio.h>
#include<iostream.h>

void main()
{
 int k=0;
 class stud
 {

526 Arrays

 public:
 char name[12];
 int rollno;
 char grade[2];
};
class stud st[3];
while (k<3)
{ clrscr();
 gotoxy(2,4);
 cout<<“Name:”;
 gotoxy(17,4);
 cin>>st[k].name;
 gotoxy(2,5);
 cout<<“Roll No.:”;
 gotoxy(17,5);
 cin>>st[k].rollno;
 gotoxy(2,6);
 cout<<“Grade:”;
 gotoxy(17,6);
 cin>>st[k].grade;
 st[k].grade[1]=‘\0’;
 puts (“press any key..”);
 getch();
 k++;
}
 k=0;
 clrscr();
 cout<<“\nName\tRollno Grade\n”;
 while (k<3)
 {
 cout<< st[k].name<<“\t”<<st[k].rollno<<“ \t”<<st[k].

grade<<“\n”;
 k++;
}
}

OUTPUT

Name Rollno Grade
Balaji 50 A
Manoj 51 B
Sanjay 55 C

Arrays of Classes 527

Explanation: In the above program, class stud is declared. Its members are char name[12],
int rollno, and char grade[2], and all are public. The array st[3] of class stud is
declared. The first while loop and cin() statements within it are used for repetitive data reading.
The second while loop and printf() statements within it display the contents of the array.
In the above program, all the member variables are public. If the members are private, the above
program will not work. Next, we need to declare member functions to access the data. The program
given below explains the reading of private data using member functions.

12.16 Write a program to display names, roll numbers, and grades of 3 students who
have appeared for the examination. Declare the class of name, roll numbers, and grade
private. Create an array of class objects. Read and display the contents of the array us-
ing member functions.

#include<stdio.h>
#include<conio.h>
#include<iostream.h>

void put()
{
cout<<name<<“\t”<<rollno<<“\t”<<grade<<“\n”;
}
};
class stud
{
 private :
 char name[12];
 int rollno;
 char grade[2];
 public :
void get()
{ clrscr();
 gotoxy(2,4);
 cout<<“Name : ”;
 gotoxy(17,4);
 cin>>name;
 gotoxy(2,5);
 cout<<“Roll No. : ”;
 gotoxy(17,5);
 cin>>rollno;
 gotoxy(2,6);
 cout<<“Grade :”;
 gotoxy(17,6);
 cin>>grade;
 grade[1]=‘\0’;

528 Arrays

 puts (“press any key..”);
 getch();
}
int main()
{
int m=0;
class stud st[3];
while (m<3)
{
 st[m].get();
 m++;
 }
 cout<<“\nName\tRollno Grade\n”;
 m=0;
 while (m<3)
 {
 st[m].put();
 m++;
 }
return 0;
}

OUTPUT

Name Rollno Grade
Balaji 50 A
Manoj 51 B
Sanjay 55 C

Explanation: The above program is similar to the previous one. Here, the class members are
private. It is not possible to access the private members directly. Using member functions get()
and put(), data are read and displayed.

SUMMARY

(1) An array is a collection of similar data
types that are stored in different memory
locations.

(2) The array elements are stored in continu-
ous memory locations. The amount of
storage required for holding the elements
of an array depends on its type and size.

(3) The declaration and initialization of one-,
two-, and multi-dimensional arrays are

studied in this chapter with programming
examples.

(4) How can array elements be accessed
through pointers? The answer to this
question is supported by theory and pro-
grams.

(5) Passing individual array elements to a
function and passing entire elements to a
function are studied in this chapter.

EXERCISES

(A) Answer the following questions

(6) Pointers and two-dimensional arrays are
dealt with in this chapter.

(7) Arrays and classes are also explained.

(1) What are arrays? How are the elements
of an array stored?

(2) Explain two-dimensional arrays.
(3) Explain multi-dimensional arrays.
(4) The array name contains the base address

of the array. Can we change the base ad-
dress of the array?

(5) What is the relationship between array
name and element number? How are ele-
ments referred to by using the base ad-
dress?

(6) Can we store values and addresses in the
same array? Explain.

(7) Mention the differences between charac-
ter array and integer array.

(8) Explain the accessing of array elements
by passing value to a function with a pro-
gramming example.

(9) Explain the meaning of call by ref-
erence with a programming example.

(10) What do you mean by initialization of ar-
ray with function?

(C) Attempt the following programs
(1) Write a program to display all the ele-

ments of a character array using pointers.
(2) Write a program to read the elements of

two-dimensional arrays and display them
with and without pointers.

(3) Write a program to read five elements
from an array. Perform addition and mul-
tiplication of these elements.

(4) Write a program to read a number con-
taining three digits. Perform the square

Exercises 529

(1) What will happen if you assign values in
a few locations of an array?
(a) Rest of the elements will be set to

0
(b) Compiler error message will be dis-

played
(c) Possible system crash

(2) When an array is passed to function,
what gets passed in reality?
(a) Address of the array
(b) Element numbers
(c) Values of the array

(3) Which is the correct statement to declare
an array?
(a) int x[];
(b) int x[5];
(c) int x{5}’

(4) The array name itself is a pointer to
(a) 0th element
(b) 1st element
(c) last element

(5) The array name itself is a
(a) constant pointer objet
(b) pointer
(c) address
(d) none of the above

(6) int x[5],*p; and p = x; then, following
which one operation is wrong?
(a) x++;
(b) p++;
(c) p = x;

(7) int x[3]; the base address of x is
65460, and the elements are stored at lo-
cations
(a) 65460, 65462, 65464
(b) 65460, 65461, 65462
(c) 65460, 65464, 65468

(8) int j[4] the sizeof(j) and
sizeof(int) will display the value
(a) 8, 2
(b) 2, 8
(c) 2, 2

(B) Answer the following by selecting the appropriate option

530 Arrays

roots of each digit. For example, the
number is 149. Output should be the
square root of each digit, that is, 1 2 3.

(5) Write a program to read the numbers of
any lengths. Count the odd numbers and
display them in ascending order.

(6) Write a program to find the total marks
of three subjects Physics, Chemistry, and
Math of three students. Display their ids
and marks with the declaration and ini-
tialization of arrays.

(7) Write a program to initialize two arrays
having equal elements. Compute addi-
tion and subtraction of the respective el-
ements of both these arrays and display
them.

(8) Write a program to initialize and read
26 six alphabets in upper case and their
ASCII values in reverse (Z to A).

(9) Write a program to enter a string in lower
as well as in upper case. Convert lower
case to upper case and vice versa and dis-
play them in reverse order.

(10) Read the marks of five subjects obtained
by five students in an examination. Dis-
play the top two student codes and their
marks.

(11) Initialize two arrays and merge them.
Display the elements in descending or-
der.

(12) Write a program to perform the transpose
of the matrix.

(13) Write a program to check whether the
given string is a palindrome.

(14) Write a program to sort the numbers us-
ing the bubble-sort method.

(15) Write a program to sort the numbers us-
ing the selection-sort method.

(16) Write a program to search for the target
element in an array and its position from
the last element.

(17) Write a program to merge two arrays.
(18) Write a program to compute the sum of

even and odd numbers.
(19) Write a program on the multiplication

table of the entered number.

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology

