
13 D.c. circuit theory

At the end of this chapter you should be able to:

ž state and use Kirchhoff’s laws to determine unknown currents
and voltages in d.c. circuits

ž understand the superposition theorem and apply it to find
currents in d.c. circuits

ž understand general d.c. circuit theory
ž understand Th́evenin’s theorem and apply a procedure to

determine unknown currents in d.c. circuits
ž recognize the circuit diagram symbols for ideal voltage and

current sources
ž understand Norton’s theorem and apply a procedure to

determine unknown currents in d.c. circuits
ž appreciate and use the equivalence of the Thévenin and

Norton equivalent networks
ž state the maximum power transfer theorem and use it to

determine maximum power in a d.c. circuit

13.1 Introduction The laws which determine the currents and voltage drops in d.c.
networks are: (a) Ohm’s law (see Chapter 2), (b) the laws for resistors
in series and in parallel (see Chapter 5), and (c) Kirchhoff’s laws (see
Section 13.2 following). In addition, there are a number of circuit
theorems which have been developed for solving problems in electrical
networks. These include:

(i) the superposition theorem (see Section 13.3),
(ii) Thévenin’s theorem (see Section 13.5),

(iii) Norton’s theorem (see Section 13.7), and
(iv) the maximum power transfer theorem (see Section 13.8).

13.2 Kirchhoff’s laws Kirchhoff’s laws state:

(a) Current Law. At any junction in an electric circuit the total current
flowing towards that junction is equal to the total current flowing
away from the junction, i.e. I D 0
Thus, referring to Figure 13.1:

I1 C I2 D I3 C I4 C I5 or I1 C I2 � I3 � I4 � I5 D 0

(b) Voltage Law. In any closed loop in a network, the algebraic sum
of the voltage drops (i.e. products of current and resistance) takenFigure 13.1
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Figure 13.2

around the loop is equal to the resultant e.m.f. acting in that loop.

Thus, referring to Figure 13.2:E1 � E2 D IR1 C IR2 C IR3

(Note that if current flows away from the positive terminal of a
source, that source is considered by convention to be positive. Thus
moving anticlockwise around the loop of Figure 13.2,E1 is positive
andE2 is negative.)

Problem 1. (a) Find the unknown currents marked in Figure
13.3(a). (b) Determine the value of e.m.f.E in Figure 13.3(b).

Figure 13.3

(a) Applying Kirchhoff’s current law:

For junction B: 50D 20C I1. HenceI1 D 30 A

For junction C: 20C 15 D I2. HenceI2 = 35 A

For junction D: I1 D I3 C 120

i.e. 30D I3 C 120. HenceI3 = −90 A

(i.e. in the opposite direction to that shown in Figure 13.3(a))

For junction E: I4 C I3 D 15

i.e. I4 D 15� ��90�. HenceI4 = 105 A

For junction F: 120D I5 C 40. HenceI5 = 80 A

(b) Applying Kirchhoff’s voltage law and moving clockwise around the
loop of Figure 13.3(b) starting at point A:

3 C 6 C E � 4 D �I��2� C �I��2.5� C �I��1.5� C �I��1�

D I�2 C 2.5 C 1.5 C 1�

i.e. 5C E D 2�7�, sinceI D 2 A

Hence E D 14� 5 D 9 V

Figure 13.4

Problem 2. Use Kirchhoff’s laws to determine the currents
flowing in each branch of the network shown in Figure 13.4.

Procedure

1 Use Kirchhoff’s current law and label current directions on the original
circuit diagram. The directions chosen are arbitrary, but it is usual, as a
starting point, to assume that current flows from the positive terminals
of the batteries. This is shown in Figure 13.5 where the three branch
currents are expressed in terms ofI1 and I2 only, since the current
throughR is I1 C I2.

2 Divide the circuit into two loops and apply Kirchhoff’s voltage law to
each. From loop 1 of Figure 13.5, and moving in a clockwise directionFigure 13.5
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as indicated (the direction chosen does not matter), gives

E1 D I1r1 C �I1 C I2�R, i.e. 4D 2I1 C 4�I1 C I2�,

i.e. 6I1 C 4I2 D 4 �1�

From loop 2 of Figure 13.5, and moving in an anticlockwise direction
as indicated (once again, the choice of direction does not matter; it
does not have to be in the same direction as that chosen for the
first loop), gives:

E2 D I2r2 C �I1 C I2�R, i.e. 2D I2 C 4�I1 C I2�,

i.e. 4I1 C 5I2 D 2 �2�

3 Solve equations (1) and (2) forI1 andI2.

2 ð �1� gives: 12I1 C 8I2 D 8 �3�

3 ð �2� gives: 12I1 C 15I2 D 6 �4�

�3� � �4� gives:�7I2 D 2 henceI2 D �2

7
D −0.286 A

(i.e. I2 is flowing in the opposite direction to that shown in
Figure 13.5.)

From (1) 6I1 C 4��0.286� D 4

6I1 D 4 C 1.144

Hence I1 D 5.144

6
D 0.857 A

Current flowing through resistanceR is

I1 C I2 D 0.857C ��0.286� D 0.571 A

Figure 13.6

Note that a third loop is possible, as shown in Figure 13.6, giving a third
equation which can be used as a check:

E1 � E2 D I1r1 � I2r2

4 � 2 D 2I1 � I2

2 D 2I1 � I2

[Check: 2I1 � I2 D 2�0.857� � ��0.286� D 2]

Problem 3. Determine, using Kirchhoff’s laws, each branch
current for the network shown in Figure 13.7.

1 Currents, and their directions are shown labelled in Figure 13.8
following Kirchhoff’s current law. It is usual, although not essential,Figure 13.7
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Figure 13.8

to follow conventional current flow with current flowing from the
positive terminal of the source.

2 The network is divided into two loops as shown in Figure 13.8.
Applying Kirchhoff’s voltage law gives:

For loop 1:

E1 C E2 D I1R1 C I2R2

i.e. 16D 0.5I1 C 2I2 �1�

For loop 2:

E2 D I2R2 � �I1 � I2�R3

Note that since loop 2 is in the opposite direction to current(I1 � I2),
the volt drop acrossR3 (i.e. (I1 � I2)(R3) is by convention negative).

Thus 12D 2I2 � 5�I1 � I2� i.e. 12D �5I1 C 7I2 �2�

3 Solving equations (1) and (2) to findI1 andI2:

10ð �1� gives 160D 5I1 C 20I2 �3�

�2� C �3� gives 172D 27I2 henceI2 D 172

27
D 6.37 A

From (1): 16D 0.5I1 C 2�6.37�

I1 D 16� 2�6.37�

0.5
D 6.52 A

Current flowing in R3 D I1 � I2 D 6.52� 6.37 D 0.15 A

Problem 4. For the bridge network shown in Figure 13.9 deter-
mine the currents in each of the resistors.

Figure 13.9 Let the current in the 2
 resistor beI1, then by Kirchhoff’s current law,
the current in the 14
 resistor is (I � I1). Let the current in the 32

resistor beI2 as shown in Figure 13.10. Then the current in the 11

resistor is (I1 � I2) and that in the 3
 resistor is (I � I1 C I2). Applying
Kirchhoff’s voltage law to loop 1 and moving in a clockwise direction as
shown in Figure 13.10 gives:

54 D 2I1 C 11�I1 � I2�

i.e. 13I1 � 11I2 D 54 �1�

Figure 13.10 Applying Kirchhoff’s voltage law to loop 2 and moving in an anticlock-
wise direction as shown in Figure 13.10 gives:

0 D 2I1 C 32I2 � 14�I � I1�
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However I D 8 A

Hence 0D 2I1 C 32I2 � 14�8 � I1�

i.e. 16I1 C 32I2 D 112 �2�

Equations (1) and (2) are simultaneous equations with two unknowns,
I1 andI2.

16ð �1� gives: 208I1 � 176I2 D 864 �3�

13ð �2� gives: 208I1 C 416I2 D 1456 �4�

�4� � �3� gives: 592I2 D 592

I2 D 1 A

Substituting forI2 in (1) gives:

13I1 � 11 D 54

I1 D 65

13
D 5 A

Hence,

the current flowing in the 2
 resistor D I1 D 5 A

the current flowing in the 14
 resistorD I � I1 D 8 � 5 D 3 A

the current flowing in the 32
 resistorD I2 D 1 A

the current flowing in the 11
 resistorD I1 � I2 D 5 � 1 D 4 A and

the current flowing in the 3
 resistor D I � I1 C I2 D 8 � 5 C 1

D 4 A

Further problems on Kirchhoff’s laws may be found in Section 13.10, prob-
lems 1 to 6, page 189.

13.3 The superposition
theorem

The superposition theoremstates:

‘In any network made up of linear resistances and containing more than
one source of e.m.f., the resultant current flowing in any branch is the
algebraic sum of the currents that would flow in that branch if each source
was considered separately, all other sources being replaced at that time
by their respective internal resistances.’

Problem 5. Figure 13.11 shows a circuit containing two sources
of e.m.f., each with their internal resistance. Determine the current
in each branch of the network by using the superposition theorem.

Figure 13.11
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Figure 13.12

Procedure:

1 Redraw the original circuit with sourceE2 removed, being replaced
by r2 only, as shown in Figure 13.12(a).

2 Label the currents in each branch and their directions as shown in
Figure 13.12(a) and determine their values. (Note that the choice of
current directions depends on the battery polarity, which, by conven-
tion is taken as flowing from the positive battery terminal as shown.)
R in parallel withr2 gives an equivalent resistance of:

4 ð 1

4 C 1
D 0.8 


From the equivalent circuit of Figure 13.12(b)

I1 D E1

r1 C 0.8
D 4

2 C 0.8
D 1.429 A

From Figure 13.12(a)

I2 D
(

1

4 C 1

)
I1 D 1

5
�1.429� D 0.286 A

and

I3 D
(

4

4 C 1

)
I1 D 4

5
�1.429� D 1.143 A by current division

3 Redraw the original circuit with sourceE1 removed, being replaced
by r1 only, as shown in Figure 13.13(a).

Figure 13.13

4 Label the currents in each branch and their directions as shown in
Figure 13.13(a) and determine their values.
r1 in parallel withR gives an equivalent resistance of:

2 ð 4

2 C 4
D 8

6
D 1.333 


From the equivalent circuit of Figure 13.13(b)

I4 D E2

1.333C r2
D 2

1.333C 1
D 0.857 A

From Figure 13.13(a)

I5 D
(

2

2 C 4

)
I4 D 2

6
�0.857� D 0.286 A

I6 D
(

4

2 C 4

)
I4 D 4

6
�0.857� D 0.571 A

5 Superimpose Figure 13.13(a) on to Figure 13.12(a) as shown in
Figure 13.14.Figure 13.14
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6 Determine the algebraic sum of the currents flowing in each branch.
Resultant current flowing through source 1, i.e.

I1 � I6 D 1.429� 0.571

D 0.858 A (discharging)

Resultant current flowing through source 2, i.e.

I4 � I3 D 0.857� 1.143

D −0.286 A (charging)

Figure 13.15

Resultant current flowing through resistorR, i.e.

I2 C I5 D 0.286C 0.286

D 0.572 A

The resultant currents with their directions are shown in Figure 13.15.

Problem 6. For the circuit shown in Figure 13.16, find, using the
superposition theorem, (a) the current flowing in and the pd across
the 18
 resistor, (b) the current in the 8 V battery and (c) the
current in the 3 V battery.

Figure 13.16

1 Removing sourceE2 gives the circuit of Figure 13.17(a).

2 The current directions are labelled as shown in Figure 13.17(a),I1

flowing from the positive terminal ofE1.

From Figure 13.17(b),I1 D E1

3 C 1.8
D 8

4.8
D 1.667 A

From Figure 13.17(a),I2 D
(

18

2 C 18

)
I1 D 18

20
�1.667� D 1.500 A

and I3 D
(

2

2 C 18

)
I1 D 2

20
�1.667� D 0.167 A

3 Removing sourceE1 gives the circuit of Figure 13.18(a) (which is the
same as Figure 13.18(b)).

4 The current directions are labelled as shown in Figures 13.18(a) and
13.18(b),I4 flowing from the positive terminal ofE2

From Figure 13.18(c),I4 D E2

2 C 2.571
D 3

4.571
D 0.656 A

From Figure 13.18(b),I5 D
(

18

3 C 18

)
I4 D 18

21
�0.656� D 0.562 A

Figure 13.17
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Figure 13.18

I6 D
(

3

3 C 18

)
I4 D 3

21
�0.656� D 0.094 A

5 Superimposing Figure 13.18(a) on to Figure 13.17(a) gives the circuit
in Figure 13.19.

6 (a) Resultant current in the 18
 resistorD I3 � I6

D 0.167� 0.094

D 0.073 A

P.d. across the 18
 resistorD 0.073ð 18 D 1.314 V

(b) Resultant current in th

e 8 V battery

D I1 C I5 D 1.667C 0.562

D 2.229 A (discharging)

(c) Resultant current in th

e 3 V battery

D I2 C I4 D 1.500C 0.656

D 2.156 A (discharging)

Further problems on the superposition theorem may be found in
Section 13.10, problems 7 to 10, page 190.

13.4 General d.c. circuit
theory

The following points involving d.c. circuit analysis need to be appre-
ciated before proceeding with problems using Thévenin’s and Norton’s
theorems:

Figure 13.19

Figure 13.20

(i) The open-circuit voltage,E, across terminals AB in Figure 13.20
is equal to 10 V, since no current flows through the 2
 resistor
and hence no voltage drop occurs.

(ii) The open-circuit voltage,E, across terminals AB in Figure
13.21(a) is the same as the voltage across the 6
 resistor.
The circuit may be redrawn as shown in Figure 13.21(b).

E D
(

6

6 C 4

)
�50�

by voltage division in a series circuit, i.e.E = 30 V

(iii) For the circuit shown in Figure 13.22(a) representing a prac-
tical source supplying energy,V D E � Ir, whereE is the battery
e.m.f.,V is the battery terminal voltage andr is the internal resis-
tance of the battery (as shown in Section 4.6). For the circuit
shown in Figure 13.22(b),V D E � ��I�r, i.e. V D E C Ir

(iv) The resistance ‘looking-in’ at terminals AB in Figure 13.23(a)
is obtained by reducing the circuit in stages as shown in
Figures 13.23(b) to (d). Hence the equivalent resistance across
AB is 7 
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Figure 13.21

(v) For the circuit shown in Figure 13.24(a), the 3
 resistor carries
no current and the p.d. across the 20
 resistor is 10 V. Redrawing
the circuit gives Figure 13.24(b), from which

E D
(

4

4 C 6

)
ð 10 D 4 V

(vi) If the 10 V battery in Figure 13.24(a) is removed and replaced by
a short-circuit, as shown in Figure 13.24(c), then the 20
 resistor
may be removed. The reason for this is that a short-circuit has zero
resistance, and 20
 in parallel with zero ohms gives an equivalent
resistance of:�20ð 0/20C 0�, i.e. 0
. The circuit is then as
shown in Figure 13.24(d), which is redrawn in Figure 13.24(e).
From Figure 13.24(e), the equivalent resistance across AB,

r D 6 ð 4

6 C 4
C 3 D 2.4 C 3 D 5.4 Z

(vii) To find the voltage across AB in Figure 13.25:
Since the 20 V supply is across the 5
 and 15
 resistors in
series then, by voltage division, the voltage drop across AC,

VAC D
(

5

5 C 15

)
�20� D 5 V

Similarly, VCB D
(

12

12C 3

)
�20� D 16 V.

VC is at a potential ofC20 V.

VA D VC � VAC D C20� 5 D 15 V and

VB D VC � VBC D C20� 16 D 4 V.

Hence the voltage between AB isVA � VB D 15� 4 D 11 V and
current would flow from A to B since A has a higher potential
than B.

Figure 13.22

(viii) In Figure 13.26(a), to find the equivalent resistance across AB
the circuit may be redrawn as in Figures 13.26(b) and (c). From
Figure 13.26(c), the equivalent resistance across

AB D 5 ð 15

5 C 15
C 12ð 3

12C 3
D 3.75C 2.4 D 6.15Z

(ix) In the worked problems in Sections 13.5 and 13.7 following, it
may be considered that Thévenin’s and Norton’s theorems have

Figure 13.23
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Figure 13.24

Figure 13.26

no obvious advantages compared with, say, Kirchhoff’s laws.
However, these theorems can be used to analyse part of a circuit
and in much more complicated networks the principle of replacing
the supply by a constant voltage source in series with a resistance
(or impedance) is very useful.

Figure 13.25

13.5 Th́evenin’s theorem Thévenin’s theoremstates:

‘The current in any branch of a network is that which would result if an
e.m.f. equal to the p.d. across a break made in the branch, were introduced
into the branch, all other e.m.f.’s being removed and represented by the
internal resistances of the sources.’

The procedure adopted when using Thévenin’s theorem is summarized
below. To determine the current in any branch of an active network (i.e.
one containing a source of e.m.f.):

(i) remove the resistanceR from that branch,
(ii) determine the open-circuit voltage,E, across the break,

(iii) remove each source of e.m.f. and replace them by their internal
resistances and then determine the resistance,r, ‘looking-in’ at the
break,

(iv) determine the value of the current from the equivalent circuit shown

in Figure 13.27, i.e.I =
E

RY r

Problem 7. Use Th́evenin’s theorem to find the current flowing
in the 10
 resistor for the circuit shown in Figure 13.28(a).

Following the above procedure:

(i) The 10
 resistance is removed from the circuit as shown in
Figure 13.28(b)
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Figure 13.27

(ii) There is no current flowing in the 5
 resistor and currentI1 is
given by:

I1 D 10

R1 C R2
D 10

2 C 8
D 1 A

P.d. acrossR2 D I1R2 D 1 ð 8 D 8 V

Hence p.d. across AB, i.e. the open-circuit voltage across the break,
E D 8 V.

(iii) Removing the source of e.m.f. gives the circuit of Figure 13.28(c).

Resistance,r D R3 C R1R2

R1 C R2
D 5 C 2 ð 8

2 C 8

D 5 C 1.6 D 6.6 


(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.28(d).

CurrentI D E

R C r
D 8

10C 6.6
D 8

16.6
D 0.482 A

Hence the current flowing in the 10
 resistor of Figure 28(a) is
0.482 A

Figure 13.28

Problem 8. For the network shown in Figure 13.29(a) determine
the current in the 0.8
 resistor using Th́evenin’s theorem.

Following the procedure:

(i) The 0.8
 resistor is removed from the circuit as shown in
Figure 13.29(b).

(ii) Current I1 D 12

1 C 5 C 4
D 12

10
D 1.2 A

P.d. across 4
 resistorD 4I1 D �4��1.2� D 4.8 V

Hence p.d. across AB, i.e. the open-circuit voltage across AB,

E D 4.8 V

(iii) Removing the source of e.m.f. gives the circuit shown in
Figure 13.29(c). The equivalent circuit of Figure 13.29(c) is shown
in Figure 13.29(d), from which,

resistancer D 4 ð 6

4 C 6
D 24

10
D 2.4 


(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.29(e), from
which,

currentI D E

r C R
D 4.8

2.4 C 0.8
C 4.8

3.2
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Figure 13.29

I D 1.5 A = current in the 0.8 Z resistor

Problem 9. Use Th́evenin’s theorem to determine the currentI
flowing in the 4
 resistor shown in Figure 13.30(a). Find also the
power dissipated in the 4
 resistor.

Following the procedure:

(i) The 4 
 resistor is removed from the circuit as shown in
Figure 13.30(b).

(ii) Current I1 D E1 � E2

r1 C r2
D 4 � 2

2 C 1
D 2

3
A

P.d. across AB,E D E1 � I1r1 D 4 �
(

2
3

)
�2� D 22

3 V

(see Section 13.4(iii))

(Alternatively, p.d. across AB,E D E2 � I1r2

D 2 � �
(

2
3

)
�1� D 22

3 V�

(iii) Removing the sources of e.m.f. gives the circuit shown in
Figure 13.30(c), from which resistance

r D 2 ð 1

2 C 1
D 2

3



(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.30(d), from
which,

current,I D E

r C R
D 22

3
2
3 C 4

D 8/3

14/3
D 8

14
D 0.571 A

D current in the 4 Z resistorFigure 13.30

Power dissipated in 4
 resistor,P D I2R D �0.571�2�4� D 1.304 W

Problem 10. Use Th́evenin’s theorem to determine the current
flowing in the 3
 resistance of the network shown in
Figure 13.31(a). The voltage source has negligible internal
resistance.
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Figure 13.31

(Note the symbol for an ideal voltage source in Figure 13.31(a) which
may be used as an alternative to the battery symbol.)

Following the procedure

(i) The 3 
 resistance is removed from the circuit as shown in
Figure 13.31(b).

(ii) The 12
3
 resistance now carries no current.

P.d. across 10
 resistorD
(

10

10C 5

)
�24�

D 16 V (see Section 13.4(v)).

Hence p.d. across AB,E D 16 V

(iii) Removing the source of e.m.f. and replacing it by its internal
resistance means that the 20
 resistance is short-circuited as shown
in Figure 13.31(c) since its internal resistance is zero. The 20

resistance may thus be removed as shown in Figure 13.31(d) (see
Section 13.4 (vi)).

From Figure 13.31(d), resistance,r D 1
2

3
C 10ð 5

10C 5

D 1
2

3
C 50

15
D 5 


(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.31(e), from
which

current, I D E

r C R
D 16

3 C 5
D 16

8
D 2 A

D current in the 3 Z resistance

Problem 11. A Wheatstone Bridge network is shown in
Figure 13.32(a). Calculate the current flowing in the 32
 resistor,
and its direction, using Th́evenin’s theorem. Assume the source of
e.m.f. to have negligible resistance.

Following the procedure:

(i) The 32
 resistor is removed from the circuit as shown in
Figure 13.32(b)

(ii) The p.d. between A and C,VAC D
(

R1

R1 C R4

)
�E�

D
(

2

2 C 11

)
�54� D 8.31 V
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Figure 13.32

The p.d. between B and C,VBC D
(

R2

R2 C R3

)
�E�

D
(

14

14C 3

)
�54� D 44.47 V

Hence the p.d. between A and BD 44.47� 8.31 D 36.16 V
Point C is at a potential ofC 54 V. Between C and A is a
voltage drop of 8.31 V. Hence the voltage at point A is 54� 8.31 D
45.69 V. Between C and B is a voltage drop of 44.47 V. Hence the
voltage at point B is 54� 44.47 D 9.53 V. Since the voltage at A
is greater than at B, current must flow in the direction A to B. (See
Section 13.4 (vii)).

(iii) Replacing the source of e.m.f. with a short-circuit (i.e. zero internal
resistance) gives the circuit shown in Figure 13.32(c). The circuit is
redrawn and simplified as shown in Figure 13.32(d) and (e), from
which the resistance between terminals A and B,

r D 2 ð 11

2 C 11
C 14ð 3

14C 3
D 22

13
C 42

17
D 1.692C 2.471D 4.163Z

(iv) The equivalent Th́evenin’s circuit is shown in Figure 13.32(f), from
which,

currentI D E

r C R5
D 36.16

4.163C 32
D 1 A

Hence the current in the 32Z resistor of Figure 13.32(a) is 1 A,
flowing from A to B
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Further problems on Thévenin’s theorem may be found in Section 13.10,
problems 11 to 15, page 190.

13.6 Constant-current
source

A source of electrical energy can be represented by a source of e.m.f. in
series with a resistance. In Section 13.5, the Thévenin constant-voltage
source consisted of a constant e.m.f.E in series with an internal resis-
tancer. However this is not the only form of representation. A source of
electrical energy can also be represented by a constant-current source in
parallel with a resistance. It may be shown that the two forms are equiv-
alent. An ideal constant-voltage generatoris one with zero internal
resistance so that it supplies the same voltage to all loads. Anideal
constant-current generator is one with infinite internal resistance so
that it supplies the same current to all loads.

Figure 13.33

Note the symbol for an ideal current source (BS 3939, 1985), shown
in Figure 13.33.

13.7 Norton’s theorem Norton’s theorem states:

‘The current that flows in any branch of a network is the same as that which
would flow in the branch if it were connected across a source of electrical
energy, the short-circuit current of which is equal to the current that would
flow in a short-circuit across the branch, and the internal resistance of
which is equal to the resistance which appears across the open-circuited
branch terminals.’

The procedure adopted when using Norton’s theorem is summa-
rized below.

To determine the current flowing in a resistanceR of a branch AB of
an active network:

(i) short-circuit branch AB

(ii) determine the short-circuit currentISC flowing in the branch

(iii) remove all sources of e.m.f. and replace them by their internal
resistance (or, if a current source exists, replace with an open-
circuit), then determine the resistancer,‘looking-in’ at a break made
between A and B

(iv) determine the currentI flowing in resistanceR from the Norton
equivalent network shown in Figure 13.33, i.e.

I =
(

r
r Y R

)
I SC

Problem 12. Use Norton’s theorem to determine the current
flowing in the 10
 resistance for the circuit shown in
Figure 13.34(a).

Figure 13.34
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Figure 13.34 continued

Following the above procedure:

(i) The branch containing the 10
 resistance is short-circuited as
shown in Figure 13.34(b).

(ii) Figure 13.34(c) is equivalent to Figure 13.34(b). Hence

ISC D 10
2 D 5 A

(iii) If the 10 V source of e.m.f. is removed from Figure 13.34(b) the
resistance ‘looking-in’ at a break made between A and B is given by:

r D 2 ð 8

2 C 8
D 1.6 


(iv) From the Norton equivalent network shown in Figure 13.34(d) the
current in the 10
 resistance, by current division, is given by:

I D
(

1.6

1.6 C 5 C 10

)
�5� D 0.482 A

as obtained previously in problem 7 using Thévenin’s theorem.

Problem 13. Use Norton’s theorem to determine the currentI
flowing in the 4
 resistance shown in Figure 13.35(a).

Following the procedure:

(i) The 4 
 branch is short-circuited as shown in Figure 13.35(b).

(ii) From Figure 13.35(b),ISC D I1 C I2 D 4
2 C 2

1 D 4 A

(iii) If the sources of e.m.f. are removed the resistance ‘looking-in’ at a
break made between A and B is given by:

r D 2 ð 1

2 C 1
D 2

3



(iv) From the Norton equivalent network shown in Figure 13.35(c) the
current in the 4
 resistance is given by:

I D
[

2/3

�2/3� C 4

]
�4� D 0.571 A,

as obtained previously in problems 2, 5 and 9 using Kirchhoff’s
laws and the theorems of superposition and Thévenin.

Problem 14. Use Norton’s theorem to determine the current
flowing in the 3
 resistance of the network shown in
Figure 13.36(a). The voltage source has negligible internal
resistance.

Figure 13.35
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Figure 13.36

Following the procedure:

(i) The branch containing the 3
 resistance is short-circuited
as shown in Figure 13.36(b).

(ii) From the equivalent circuit shown in Figure 13.36(c),

ISC D 24

5
D 4.8 A

(iii) If the 24 V source of e.m.f. is removed the resistance ‘looking-in’
at a break made between A and B is obtained from Figure 13.36(d)
and its equivalent circuit shown in Figure 13.36(e) and is given by:

r D 10ð 5

10C 5
D 50

15
D 3

1

3



(iv) From the Norton equivalent network shown in Figure 13.36(f) the
current in the 3
 resistance is given by:

I D
[

31
3

31
3 C 12

3 C 3

]
�4.8� D 2 A,

as obtained previously in problem 10 using Thévenin’s theorem.

Problem 15. Determine the current flowing in the 2
 resistance
in the network shown in Figure 13.37(a).

Following the procedure:

(i) The 2 
 resistance branch is short-circuited as shown in
Figure 13.37(b).
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Figure 13.37

(ii) Figure 13.37(c) is equivalent to Figure 13.37(b).

HenceISC D
(

6

6 C 4

)
�15� D 9 A by current division.

(iii) If the 15 A current source is replaced by an open-circuit then from
Figure 13.37(d) the resistance ‘looking-in’ at a break made between
A and B is given by (6C 4) 
 in parallel with (8C 7) 
, i.e.

r D �10��15�

10C 15
D 150

25
D 6 


(iv) From the Norton equivalent network shown in Figure 13.37(e) the
current in the 2
 resistance is given by:

I D
(

6

6 C 2

)
�9� D 6.75 A

13.8 Th́evenin and
Norton equivalent

networks

The Th́evenin and Norton networks shown in Figure 13.38 are equivalent
to each other. The resistance ‘looking-in’ at terminals AB is the same in
each of the networks, i.e.r.

If terminals AB in Figure 13.38(a) are short-circuited, the short-circuit
current is given byE/r. If terminals AB in Figure 13.38(b) are short-
circuited, the short-circuit current isISC. For the circuit shown in
Figure 13.38(a) to be equivalent to the circuit in Figure 13.38(b) the same
short-circuit current must flow. ThusISC D E/r.

Figure 13.39 shows a source of e.m.f.E in series with a resistancer
feeding a load resistanceR.

From Figure 13.39,I D E

r C R
D E/r

�r C R�/r
D

(
r

r C R

)
E

r

i.e. I D
(

r

r C R

)
ISC

Figure 13.38
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Figure 13.39 Figure 13.40 Figure 13.41 Figure 13.42

From Figure 13.40 it can be seen that, when viewed from the load, the
source appears as a source of currentISC which is divided betweenr and
R connected in parallel.

Thus the two representations shown in Figure 13.38 are equivalent.

Problem 16. Convert the circuit shown in Figure 13.41 to an
equivalent Norton network.

If terminals AB in Figure 13.41 are short-circuited, the short-circuit
currentISC D 10

2 D 5 A

The resistance ‘looking-in’ at terminals AB is 2
. Hence the equiva-
lent Norton network is as shown in Figure 13.42.

Problem 17. Convert the network shown in Figure 13.43 to an
equivalent Th́evenin circuit.

Figure 13.43
The open-circuit voltageE across terminals AB in Figure 13.43 is
given by:E D �ISC��r� D �4��3� D 12 V.

The resistance ‘looking-in’ at terminals AB is 3
. Hence the equiva-
lent Th́evenin circuit is as shown in Figure 13.44.

Problem 18. (a) Convert the circuit to the left of terminals AB
in Figure 13.45(a) to an equivalent Thévenin circuit by initially
converting to a Norton equivalent circuit. (b) Determine the current
flowing in the 1.8
 resistor.

(a) For the branch containing the 12 V source, converting to a Norton
equivalent circuit givesISC D 12/3 D 4 A and r1 D 3
. For the
branch containing the 24 V source, converting to a Norton equivalent
circuit givesISC2 D 24/2 D 12 A andr2 D 2 
.Figure 13.44
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Figure 13.45

Thus Figure 13.45(b) shows a network equivalent to Figure 13.45(a).
From Figure 13.45(b) the total short-circuit current is 4C 12 D 16 A

and the total resistance is given by:
3 ð 2

3 C 2
D 1.2 


Thus Figure 13.45(b) simplifies to Figure 13.45(c).
The open-circuit voltage across AB of Figure 13.45(c),

E D �16��1.2� D 19.2 V, and the resistance ‘looking-in’ at AB is
1.2 
. Hence the Th́evenin equivalent circuit is as shown in
Figure 13.45(d).

(b) When the 1.8
 resistance is connected between terminals A and B
of Figure 13.45(d) the currentI flowing is given by:

I D 19.2

1.2 C 1.8
D 6.4 A

Problem 19. Determine by successive conversions between
Thévenin and Norton equivalent networks a Thévenin equivalent
circuit for terminals AB of Figure 13.46(a). Hence determine the
current flowing in the 200
 resistance.

Figure 13.46



D.c. circuit theory 187

For the branch containing the 10 V source, converting to a Norton equiv-
alent network gives

ISC D 10

2000
D 5 mA andr1 D 2 k
.

For the branch containing th

e 6 V source, converting to a Norton equiv-

alent network gives

ISC D 6

3000
D 2 mA andr2 D 3 k
.

Thus the network of Figure 13.46(a) converts to Figure 13.46(b).
Combining the 5 mA and 2 mA current sources gives the equivalent

network of Figure 13.46(c) where the short-circuit current for the original
two branches considered is 7 mA and the resistance is

2 ð 3

2 C 3
D 1.2 k
.

Both of the Norton equivalent networks shown in Figure 13.46(c) may
be converted to Th́evenin equivalent circuits. The open-circuit voltage
across CD is (7ð 10�3)(1.2 ð 103� D 8.4 V and the resistance ‘looking-
in’ at CD is 1.2 k
.

The open-circuit voltage acrossEF is �1 ð 10�3��600� D 0.6 V and the
resistance ‘looking-in’ atEF is 0.6 k
. Thus Figure 13.46(c) converts to
Figure 13.46(d). Combining the two Thévenin circuits gives

E D 8.4 � 0.6 D 7.8 V and the resistance

r D �1.2 C 0.6� k
 D 1.8 kZ.

Thus the Th́evenin equivalent circuit for terminals AB of Figure 13.46(a)
is as shown in Figure 13.46(e).

Hence the currentI flowing in a 200
 resistance connected between A
and B is given by:

I D 7.8

1800C 200
D 7.8

2000
D 3.9 mA

Further problems on Norton’s theorem may be found in Section 13.10,
problems 16 to 21, page 191.

13.9 Maximum power
transfer theorem

The maximum power transfer theorem states:

‘The power transferred from a supply source to a load is at its maximum
when the resistance of the load is equal to the internal resistance of the
source.’

Figure 13.47

Hence, in Figure 13.47, whenR D r the power transferred from the source
to the load is a maximum.
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Figure 13.48

Problem 20. The circuit diagram of Figure 13.48 shows dry cells
of source e.m.f. 6 V, and internal resistance 2.5
. If the load resis-
tanceRL is varied from 0 to 5
 in 0.5 
 steps, calculate the power
dissipated by the load in each case. Plot a graph ofRL (horizon-
tally) against power (vertically) and determine the maximum power
dissipated.

When RL D 0, currentI D E

r C RL
D 6

2.5
D 2.4 A and power dissipated

in RL, P D I2RL, i.e. P D �2.4�2�0� D 0 W

WhenRL D 0.5 
, currentI D E

r C RL
D 6

2.5 C 0.5
D 2 A

and P D I2RL D �2�2�0.5� D 2 W

WhenRL D 1.0
, currentI D 6

2.5 C 1.0
D 1.714 A

and P D �1.714�2�1.0� D 2.94 W

With similar calculations the following table is produced:

RL�
� 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I D E

r C RL
2.4 2.0 1.714 1.5 1.333 1.2 1.091 1.0 0.923 0.857 0.8

P D I2RL�W� 0 2.00 2.94 3.38 3.56 3.60 3.57 3.50 3.41 3.31 3.20

A graph ofRL againstP is shown in Figure 13.49.The maximum value
of power is 3.60 W which occurs whenRL is 2.5
, i.e. maximum
power occurs whenRL = r , which is what the maximum power transfer
theorem states.Figure 13.49

Problem 21. A d.c. source has an open-circuit voltage of 30 V and
an internal resistance of 1.5
. State the value of load resistance
that gives maximum power dissipation and determine the value of
this power.

The circuit diagram is shown in Figure 13.50. From the maximum
power transfer theorem, for maximum power dissipation,

RL D r D 1.5 Z

From Figure 13.50, currentI D E

r C RL
D 30

1.5 C 1.5
D 10 A

PowerP D I2RL D �10�2�1.5� D 150 W D maximum power dissipatedFigure 13.50
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Problem 22. Find the value of the load resistorRL shown in
Figure 13.51(a) that gives maximum power dissipation and deter-
mine the value of this power.

Using the procedure for Thévenin’s theorem:

(i) Resistance RL is removed from the circuit as shown in
Figure 13.51(b).

Figure 13.51

(ii) The p.d. across AB is the same as the p.d. across the 12
 resistor.

HenceE D
(

12

12C 3

)
�15� D 12 V

(iii) Removing the source of e.m.f. gives the circuit of Figure 13.51(c),

from which resistance,r D 12ð 3

12C 3
D 36

15
D 2.4 


(iv) The equivalent Th́evenin’s circuit supplying terminals AB is shown
in Figure 13.51(d), from which, current,I D E/�r C RL�

For maximum power,RL D r D 2.4 Z. Thus current,

I D 12

2.4 C 2.4
D 2.5 A.

Power,P, dissipated in loadRL, P D I2RL D �2.5�2�2.4� D 15 W

Further problems on the maximum power transfer theorem may be found
in Section 13.10 following, problems 22 and 23, page 192.

Figure 13.52

13.10 Further problems
on d.c. circuit theory

Kirchhoff’s laws

1 Find currentsI3, I4 andI6 in Figure 13.52

[I3 D 2 A; I4 D �1 A; I6 D 3 A]
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Figure 13.53

2 For the networks shown in Figure 13.53, find the values of the currents
marked.

[(a) I1 D 4 A, I2 D �1 A, I3 D 13 A
(b) I1 D 40 A, I2 D 60 A, I3 D 120 A,

I4 D 100 A, I5 D �80 A]

3 Use Kirchhoff’s laws to find the current flowing in the 6
 resistor
of Figure 13.54 and the power dissipated in the 4
 resistor.

[2.162 A, 42.07 W]

4 Find the current flowing in the 3
 resistor for the network shown in
Figure 13.55(a). Find also the p.d. across the 10
 and 2
 resistors.

[2.715 A, 7.410 V, 3.948 V]

5 For the networks shown in Figure 13.55(b) find: (a) the current in the
battery, (b) the current in the 300
 resistor, (c) the current in the
90 
 resistor, and (d) the power dissipated in the 150
 resistor.

[(a) 60.38 mA(b) 15.10 mA
(c) 45.28 mA(d) 34.20 mW]

6 For the bridge network shown in Figure 13.55(c), find the currentsI1

to I5.
[I1 D 1.26 A, I2 D 0.74 A, I3 D 0.16 A

I4 D 1.42 A, I5 D 0.59 A]

Figure 13.54

Superposition theorem

7 Use the superposition theorem to find currentsI1, I2 and I3 of
Figure 13.56(a). [I1 D 2 A, I2 D 3 A, I3 D 5 A]

8 Use the superposition theorem to find the current in the 8
 resistor
of Figure 13.56(b). [0.385 A]

9 Use the superposition theorem to find the current in each branch of
the network shown in Figure 13.56(c).

[10 V battery discharges at 1.429 A
4 V battery charges at 0.857 A

Current through 10
 resistor is 0.572 A]

10 Use the superposition theorem to determine the current in each
branch of the arrangement shown in Figure 13.56(d).

[24 V battery charges at 1.664 A
52 V battery discharges at 3.280 A

Current in 20
 resistor is 1.616 A]

Thévenin’s theorem

11 Use Th́evenin’s theorem to find the current flowing in the 14

resistor of the network shown in Figure 13.57. Find also the power
dissipated in the 14
 resistor. [0.434 A, 2.64 W]Figure 13.55
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Figure 13.56

Figure 13.57 Figure 13.58 Figure 13.59

12 Use Th́evenin’s theorem to find the current flowing in the 6

resistor shown in Figure 13.58 and the power dissipated in the 4

resistor. [2.162 A, 42.07 W]

13 Repeat problems 7–10 using Thévenin’s theorem.

14 In the network shown in Figure 13.59, the battery has negligible
internal resistance. Find, using Thévenin’s theorem, the current
flowing in the 4
 resistor. [0.918 A]

15 For the bridge network shown in Figure 13.60, find the current in
the 5
 resistor, and its direction, by using Thévenin’s theorem.

[0.153 A from B to A]

Figure 13.60

Norton’s theorem

16 Repeat problems 7–12, 14 and 15 using Norton’s theorem.

17 Determine the current flowing in the 6
 resistance of the network
shown in Figure 13.61 by using Norton’s theorem. [2.5 mA]

Figure 13.61

18 Convert the circuits shown in Figure 13.62 to Norton equivalent
networks.

[(a) ISC D 25 A, r D 2 

(b) ISC D 2 mA, r D 5 
]

19 Convert the networks shown in Figure 13.63 to Thévenin equivalent
circuits.

[(a) E D 20 V, r D 4 

(b) E D 12 mV, r D 3 
]Figure 13.62
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Figure 13.63 Figure 13.64 Figure 13.65

20 (a) Convert the network to the left of terminals AB in Figure 13.64
to an equivalent Th́evenin circuit by initially converting to a
Norton equivalent network.

(b) Determine the current flowing in the 1.8
 resistance connected
between A and B in Figure 13.64.

[(a) E D 18 V, r D 1.2 
 (b) 6 A]

21 Determine, by successive conversions between Thévenin and Norton
equivalent networks, a Thévenin equivalent circuit for terminals
AB of Figure 13.65. Hence determine the current flowing in a 6

resistor connected between A and B.

[E D 91
3 V, r D 1 
, 11

3 A]

Maximum power transfer theorem

22 A d.c. source has an open-circuit voltage of 20 V and an internal
resistance of 2
. Determine the value of the load resistance that
gives maximum power dissipation. Find the value of this power.

[2 
, 50 W]

23 Determine the value of the load resistanceRL shown in Figure 13.66
that gives maximum power dissipation and find the value of the
power. [RL D 1.6 
, P D 57.6 W]Figure 13.66
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