
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

8.1 Introduction

8.2 Structure in C

8.3 Structure in C++

8.4 Classes in C++

8.5 Declaring Objects

8.6 The public Keyword

8.7 The private Keyword

8.8 The protected Keyword

8.9 Access Specifiers and Their Scope

8.10 Defining Member Functions

8.11 Characteristics of Member Functions

8.12 Outside Member Function as Inline

8.13 Rules for Inline Functions

8.14 Data Hiding or Encapsulation

8.15 Classes, Objects, and Memory

8.16 static Member Variables

8.17 static Member Functions

8.18 static Object

8.19 Array of Objects

8.20 Objects as Function Arguments

8.21 friend Functions

8.22 The const Member Functions

8.23 The Volatile Member Function

8.24 Recursive Member Function

8.25 Local Classes

8.26 empty, static, and const Classes

8Classes and Objects

C
h

a
p

t
e

r
 O

u
t

l
in

e

C H A P T E R

258 Classes and Objects

8.1 INTRODUCTION

In C, structures are used to define custom or user-de-
fined data type. Structure is a combination of same
or different data types. Only variables are declared
inside a structure. The initialization of member vari-
ables inside the structure is not permitted. Objects can
directly access the data members of the structures.

Functions are not permitted as members in struc-
ture. Outside functions are also able to access the data
members of the structure through the object. Thus,
there is no security to data members declared inside

the structure in C as shown in Figure 8.1.
In C++, structure also combines function with data members. C++ introduces new key-

word class. A class in C++ is similar to structure. Using class or structure, a program-
mer can merge one or more dissimilar data types and a new custom data type can be created.
A class is nothing but grouping of variables of different data types with functions. Each
variable of a class is called as member variable. Functions are called as member functions
or methods.

In C++, it is possible to access data mem-
bers directly by objects, which is not possible
in C. It is always the programmer’s choice
to allow or disallow the direct access of data
members. The mechanism of restricting ac-
cess of data outside the class is called as
data hiding or encapsulation. In such a case,
only the member functions can access the
data. If class is used in place of struct, it
restricts the access of data members as shown
in Figure 8.2.

struct demo
{
variable 1;
variable 2;
}
struct demo d;

Object d

Direct access allowed

 Fig. 8.1 Structures in C

Object d

class demo
{

}
demo d

Direct access not allowed

variable 1;
variable 2;

 Fig. 8.2 class in C++

•
•
•
•
•
•
•
•

8.27 Member Function and Non-member Function

8.28 The main() Function as a Member Function

8.29 Overloading Member Functions

8.30 Overloading main() Functions

8.31 The main(), Member Function, and Indirect Recursion

8.32 Bit Fields and Classes

8.33 Nested class

8.34 More ProgramsC
h

a
p

t
e

r
 O

u
t

l
in

e

Structure in C 259

8.2 STRUCTURE IN C

In C, it is possible to combine dissimilar data types using structure but it has the following limitations:

a) Functions are not allowed as members of structure.
b) Direct access to data members is possible. So, by default all the structure members are

public. Hence, security to data or data hiding is not provided.
c) The struct data type is not treated as built-in type; that is the use of struct keyword

is necessary to declare objects.
d) The data members cannot be initialized inside the structure.

The syntax of structure declaration is as follows:

syntax:
struct <struct name>
{
 Variable1;
 Variable2;
};

Example:
sruct item
{
 int codeno;
 float prize;
 int qty;
};

In the above example, item is a structure name. The data members are codeno, prize, and qty.
Thus, a custom data type is created by combination of one or more data members.

The object of structure item can be declared as follows:

struct item a,*b

The object declaration is same as the declaration of variables of built-in data types. The object a
and the pointer *b are variables of type item and each of them has three data members. The a and
*b can access the data members of struct item. Use of keyword struct is necessary.

Access to structure members: The data members of a structure are accessed by using object
name and operators such as dot (.) or arrow (->). The dot (.) or arrow (->) operators are known
as referencing operators. The dot operator is used when simple object is declared and arrow
operator is used when object is pointer to structure. The access of members can be accomplished
as given in the following syntax:

[Object name][Operator][Member variable name]

When an object is a simple variable, access of members is done as follows:

Object name dot(.) member variable name
a.codeno
a.price
a.qty

260 Classes and Objects

When an object is a pointer to structure then members are accessed as follows:
a->codeno
a->price
a->qty

Note: A structure declaration must have a name or identifier followed by keyword struct,
else the compiler will display an error. This is because it will not recognize the type of object
declared. Hence, there is no possibility of accessing the structure member variables.

The following program illustrates the above discussion.

8.1 Write a program to access data members of a structure.

#include<stdio.h>
#include<conio.h>
struct item // struct declaration
{
 int codeno; // codeno=200 not possible as per 8.2 section
 float prize;
 int qty;
};
void main()
{
 struct item a,*b; // object declaration
 clrscr();
 a.codeno=123; // direct access & initialization of member variables
 a.prize=150.75;
 a.qty= 150;
 printf (“\n With simple variable”);
 printf (“\n Codeno : %d ”,a.codeno);
 printf (“\n Prize : %d”,a.prize);
 printf (“\n Qty : %d”,a.qty);
 b->codeno=124; // direct access & initialization of member vari-

ables
 b->prize=200.75;
 b->qty= 75;
 printf (“\n\n With pointer variable”);
 printf (“\n Codeno : %d ”,b->codeno);
 printf (“\n Prize : %d”,b->prize);
 printf (“\n Qty : %d”,b->qty);
}

OUTPUT
With simple variable
Codeno : 123
Prize : 150.75
Qty : 150

Structure in C++ 261

With pointer to structure
Codeno : 124
Prize : 200.75
Qty : 75

Explanation: The above program is compiled with C compiler. The following discussion is ac-
cording to C compiler. In the above program, the structure item is declared with three member vari-
ables. The initialization of member variables inside the struct is not permitted. The declaration of
member variables is enclosed within the curly braces. The struct declaration is terminated with
a semicolon.

In function main(), the objects a and b are declared. Consider the following statement.

struct item a,*b; // object declaration

The struct must be preceded by structure name. The member variables can be accessed and ini-
tialization is done directly by object. The dot and arrow operators are used to access the member
variables.

8.3 STRUCTURE IN C++

No doubt, C++ has made various improvements in structure. To know the improvements made
in C++, the last program is compiled and executed with C++ compiler. The explanation followed
by this program discusses the various improvements.

8.2 Write a program to declare struct. Initialize and display contents of data members.

#include<iostream.h>
#include<conio.h>
struct item // struct declaration
{
 int codeno; // codeno=200 not possible
 float prize;
 int qty;
};
int main()
{
 item a,*b; // object declaration
 clrscr();
 a.codeno=123; // direct access & initialization of member variables
 a.prize=150.75;
 a.qty= 150;
 cout<<“\n With simple variable”;
 cout<<“\n Codeno : ”<<a.codeno;
 cout<<“\n Prize : ”<<a.prize;
 cout<<“\n Qty : ”<<a.qty;
 b->codeno=124; // direct access & initialization of member variables
 b->prize=200.75;

262 Classes and Objects

 b->qty= 75;
 cout<<“\n\n With pointer to structure”;
 cout<<“\n Codeno : ”<<b->codeno;
 cout<<“\n Prize : ”<<b->prize;
 cout<<“\n Qty : ”<<b->qty;
 return 0;
}

Explanation: The above program is the same as previous one. The output is also same, hence not
shown. Consider the following statement.

item a,*b; // object declaration in c++

While declaring an object, the keyword struct is omitted, which is compulsory in C. The
structure item is a user-defined data type. C++ itself behaves as a structure data type which is
built-in type and allows variable declaration.

C++ introduces new keyword class, which is similar to structure. The other improvements
are discussed with the use of class in the following section.

8.4 ClASSES IN C++

A class is used to pack data members and member function together. The class has a mechanism
to prevent direct access to its members, which is the central idea of object-oriented programming. The
whole declaration of class is given in Table 8.1. The class declaration is also known as formation
of new abstract data type. The abstract data type can be used as basic data type such as int, float, etc.

 Table 8.1 Syntax and an Example of class
Syntax of class Declaration Example of class

class <name of class>
{
 private:
 declaration of variables;
 prototype declaration of function;
 public:
 declaration of variables;
 prototype declaration of function;
};

class item // class declaration
{
 private:
 int codeno;
 float prize;
 int qty;
 void values();
 public:
 void show();
};

The class is a keyword. The class declaration is same as struct declaration. The declaration
of a class is enclosed with curly braces and terminated with a semicolon. The data members and
member functions can be declared in two sections, that is private and public. The private
and public keywords are terminated with a colon (:). The object cannot directly access the data
members and member functions declared in private section, but it can access the data member and
member functions declared in public section. The private members of a class can only be accessed
by a public member function of the same class. Different sections of class are illustrated with
examples in the following sections.

It is also possible to access private member variables directly like public member variables
provided that the class should have at least one public member variable. Both the private and
public member variables are stored in consecutive memory locations in the memory. A pointer

Declaring Objects 263

to member variable provides address of member variable. By applying increment (++) and dec-
rement (--) operations on pointer, we can access all private and public member variables of the
class. The object of a class contains address of the first member variable. It can be also used
to access the private or public data.

8.5 DEClARING OBJECTS

A class declaration only builds the structure of an object. The member variables and functions
are combined in the class. The declaration of objects is same as declaration of variables of
basic data types. Defining objects of class data type is known as class instantiation. Only
when objects are created, memory is allocated to them.

Consider the following examples.

a) int x,y,z; // Declaration of integer variables
b) char a,b,c; // Declaration of character variables
c) item a,b, *c; // Declaration of object or class type variables

In the example (a), three variables x, y, and z of int types are declared. In the example (b),
three variables a, b, and c of char type are declared. In the same fashion the third example
declares the three objects a, b, and c of class item. The object *c is pointer to class item.

An object is an abstract unit with the following properties:

a) It is individual.
b) It points to a thing, either physical or logical that is identifiable by the user.
c) It holds data as well as operation method that handle data.
d) Its scope is limited to the block in which it is defined.

Access to class members: The object can access the public data member and member func-
tions of a class by using dot (.) and arrow (->) operators. The syntax is as follows:

[Object name][Operator][Member name]
To access data members of class the statement would be as follows:

a.show();

where a is an object and show() is a member function. The dot operator is used because a is
a simple object.

In statement
c->show();

*c is pointer to class item; therefore, the arrow operator is used to access the member.
Consider the given example.

class item // class declaration
{
 int codeno;
 float prize;
 int qty;
};

We replaced the struct keyword with class. If programs 8.1 and 8.2 are executed with
class, they will not work. For example,

264 Classes and Objects

void main()
{
 item a,*b; // object declaration
 clrscr();
 a.codeno=123; // Direct access is not allowed
 a.prize=150.75;
 a.qty= 150;
}

The above program will generate error messages such as “‘item::codeno’ is not acces-
sible”. This is because the object cannot directly access the member variables of a class,
which is possible with structure. Hence, we can say that the difference between class and
struct is that the member variables of struct can be accessed directly by the object, whereas
the member variables of class cannot be accessed directly by the object.

8.6 THE public kEywORD

In Section 8.3, we noticed that the object directly accesses the member variables of structure,
whereas the same is not possible with class members. The keyword public can be used to
allow objects to access the member variables of a class directly like structure. The public
keyword is written inside the class. It is terminated with a colon (:). The member variables and
functions declared followed by the keyword public can be accessed directly by the object. The
declaration can be done as follows:

class item // class declaration
{
 public: // public section begins
 int codeno;
 float prize;
 int qty;
};

Consider the following program that illustrates the use of public keyword with class.

8.3 Write a program to declare all members of a class as public. Access the elements
using object.

#include<iostream.h>
#include<conio.h>
class item
{
 public: // public section begins
 int codeno;
 float prize;
 int qty;
}; // end of class

The private Keyword 265

int main()
{
 clrscr();
 item one; // object declaration
 one.codeno=123; // member initialization
 one.prize=123.45;
 one.qty=150;
 cout<<“\n Codeno = ”<<one.codeno;
 cout<<“\n Prize = ”<<one.prize;
 cout<<“\n Quantity = ”<<one.qty;
 return 0;
 }

OUTPUT

Codeno = 123
Prize =123.449997
Quantity =150

Explanation: In the above program, the members of class item are declared followed by key-
word public. The object one of class item accesses the member variables directly. The
member variables are initialized and values are displayed on the screen.

8.7 THE private kEywORD

The private keyword is used to prevent direct access of member variables or function by the
object. The class by default produces this effect.

The structure variables by default are public. To prevent member variables and functions of
struct from direct access, the private keyword is used. The syntax of private keyword is same
as public. The private keyword is terminated with a colon. Consider the following example.

struct item
{
 private: // private section begins
 int codeno;
 float prize;
 int qty;
}; // end of class
int main()
{
 clrscr();
 item one; // object declaration
 one.codeno=123; // member initialization
 one.price=123.45;
 one.qty=150;
}

266 Classes and Objects

As soon as the above program is compiled, the compiler will display the following error message:

‘item::codeno’ is not accessible
‘item::prize’ is not accessible
‘item::qty’ is not accessible
‘item::codeno’ is not accessible
‘item::prize’ is not accessible

From the above discussion, we noticed that by default (without applying public or private
keyword) the class members are private (not accessible) whereas the struct members are
public (accessible).

The private members are not accessible by the object directly. Then the question is how will they
be accessed? To access the private members of a class, member functions of the same class are
used. The member function must be declared in the class in public section. A program on accessing
private members is given in the forthcoming sections. Through the public member function, an object
can access the private members.

8.8 THE protected kEywORD

The access mechanism of protected keyword is same as private keyword. We cannot
access protected section members from outside the class by any object.

The following example clears the above concept:

8.4 Write a program using class to declare member variable and function under pro-
tected section and make an attempt to access them using object.

#include<iostream.h>
#include<conio.h>
class A
{
 protected:
 int num;
 void display()
 {
 cout<<num;
 }
};
int main()
{
 A a;
 a.num=100;
 a.display();
 return 0;
}
Note: The above program gives an error A::num and A::display() are
not accessible.

Access Specifiers and Their Scope 267

The protected keyword is frequently used in inheritance of classes. Its detailed description is
given Chapter 11.

8.9 ACCESS SPECIFIERS AND THEIR SCOPE

As described in Table 8.2, the class object can access a public member of the class directly
without the use of member function. The private and protected mechanisms do not allow an
object to access data directly. The object can access private or protected members only through
public member functions of the same class.

 Table 8.2 Access Limits of class Members
Access Specifiers Access Permission

class Members class Object

Public Allowed Allowed

Private Allowed Disallowed

Protected Allowed Disallowed

The following program explains the working of the above keywords:

8.5 Write a program using class to declare member variable and functions private, pub-
lic and protected section and make an attempt to access them using object.

#include<iostream.h>
#include<conio.h>
class sample
{
 private:
 int num;
 void show1()
 {
 cout<<“Inside the private section”;
 cout<<“\nEnter a number:”;
 cin>>num;
 cout<<“Number is:”<<num;
 }
 public:
 int num1;
 void show()
 {
 show1();
 cout<<“\n\nInside the public section”;
 cout<<“\nEnter a number:”;
 cin>>num1;
 cout<<“Number is:”<<num1;
 show2();
 }

268 Classes and Objects

 protected:
 int num2;
 void show2()
{
 cout<<“\n\nInside the protected section”;
 cout<<“\nEnter a number:”;
 cin>>num2;
 cout<<“Number is:”<<num2;
 }
};
int main()
{
 sample s;
 s.show();
return 0;
}

OUTPUT

Inside the private section
Enter a number:4
Number is:4
Inside the public section
Enter a number:5
Number is:5
Inside the protected section
Enter a number:6
Number is:6

8.10 DEFINING MEMBER FUNCTIONS

The member function must be declared inside the class. They can be defined as (a) pri-
vate or public section and (b) inside or outside the class. The member functions
defined inside the class are treated as inline function. If the member function is small then it
should be defined inside the class. Otherwise, it should be defined outside the class.

If function is defined outside the class, its prototype declaration must be done inside the
class. While defining the function, scope access operator and class name should precede the
function name. The following programs illustrate all about member function and how to access
the private member of the class.

8.10.1 Member Function Inside the class

Member function inside the class can be declared in public or private section. The following
program illustrates the use of a member function inside the class in public section.

Defining Member Functions 269

8.6 Write a program to access private members of a class using member function.

#include<iostream.h>
#include<conio.h>
class item
{
 private: // private section starts
 int codeno;
 float price;
 int qty;
 public: // public section starts
 void show() // member function
 {
 codeno=125; // access to private members
 price=195;
 qty=200;
 cout<<“\n Codeno =”<<codeno;
 cout<<“\n Price =”<<price;
 cout<<“\n Quantity=”<<qty;
 }
};
int main()
{
 clrscr();
 item one; // object declaration
 one.show(); // call to member function
 return 0;
}

OUTPUT

Codeno =125
Price =195
Quantity=200

Explanation: In the above program, the member function show() is defined inside the class
in public section. In function main(), object one is declared. We know that an object has a per-
mission to access the public members of the class. The object one invokes the public member
function show(). The public member function can access the private members of the same
class. The function show() initializes the private member variables and displays the contents
on the console. For the sake of understanding only one function is defined.

In the above program the member function is defined inside the class in public section.
Now the following program explains how to define private member function inside the class.

270 Classes and Objects

8.10.2 Private Member Function

In the last section, we learned how to access private data of a class using public member func-
tion. It is also possible to declare a function in private section like data variables. To execute
private member function, it must be invoked by public member function of the same class. A
member function of a class can invoke any other member function of its own class. This
method of invoking function is known as nesting of member function. When one member func-
tion invokes other member function, the frequent method of calling function is not used. The
member function can be invoked by its name terminated with a semicolon only like normal func-
tion. The following program illustrates this point.

8.7 Write a program to declare private member function and access it using public mem-
ber function.

#include<iostream.h>
#include<conio.h>
struct item
{
 private: // private section starts
 int codeno;
 float price;
 int qty;
 void values() // private member function
 {
 codeno=125;
 price=195;
 qty=200;
 }
 public: // public section starts
 void show() // public member function
 {
 values(); // call to private member functions
 cout<<“\n Codeno =”<<codeno;
 cout<<“\n Price =”<<price;
 cout<<“\n Quantity=”<<qty;
 }
};
int main()
{
 clrscr();
 item one; // object declaration

 // one.values(); // not accessible

 one.show(); // call to public member function

Defining Member Functions 271

 return 0;
}

OUTPUT

Codeno =125
Price =195
Quantity=200

Explanation: In the above program, the private section of a class item contains one-member
function values(). The function show() is defined in public section. In function main(), one
is an object of class item. The object one cannot access the private member function. In order
to execute the private member function, the private function must be invoked using public member
function. In this example, the public member function show() invokes the private member func-
tion values(). In the invocation of function values(), object name and operator are not used.

8.10.3 Member Function Outside the class

In the previous examples, we observed that the member functions are defined inside the class. The
function prototype is also not declared. The functions defined inside the class are considered as
inline functions. If a function is small, it should be defined inside the class and if large it must be
defined outside the class. To define a function outside the class, following care must be taken.

a) The prototype of function must be declared inside the class.
b) The function name must be preceded by class name and its return type separated

by scope access operator.

The following example illustrates the function defined outside the class.

8.8 Write a program to define member function of class outside the class.

#include<iostream.h>
#include<conio.h>
class item
{
 private: // private section starts
 int codeno; // member data variables
 float price;
 int qty;
 public: // public section starts
 void show (void); // prototype declaration
}; // end of class
void item:: show() // definition outside the class
{
 codeno=101;
 price=2342;
 qty=122;

272 Classes and Objects

 cout<<“\n Codeno =”<<codeno;
 cout<<“\n Price =”<<price;
 cout<<“\n Quantity=”<<qty;
}
int main()
{
 clrscr();
 item one; // object declaration
 one.show(); // call to public member function
 return 0;
}

OUTPUT

Codeno =101
Price =2342
Quantity=122

Explanation: In the above program, the prototype of function show() is declared inside the class
terminated by class definition. The body of function show() is defined inside the class. The
class name that it belongs to and its return type precede the function name. The function declarator
of function show() is as follows:

void item:: show()

where void is return type; that is function is not returning a value. The item is a class name.
Scope access operator separates the class name and function name, followed by the body of
function that is defined.

8.11 CHARACTERISTICS OF MEMBER FUNCTIONS

(1) The difference between member and normal function is that the formal function can be in-
voked freely, whereas the latter function only by using an object of the same class.

(2) The same function can be used in any number of classes. This is possible because the scope
of the function is limited to their classes and cannot overlap one another.

(3) The private data or private function can be accessed by public member function. Other func-
tions have no access permission.

(4) The member function can invoke one another without using any object or dot operator.

8.12 OUTSIDE MEMBER FUNCTION AS INlINE

In Chapter 7, we learned how inline mechanism is useful for small function. It is good prac-
tice to declare function prototype inside the class and definition outside the class. The
inline mechanism reduces overhead relating to access the member function. It provides better
efficiency and allows quick execution of functions. An inline member function is similar to
macros. Call to inline function in the program, puts the function code in the caller program.
This is known as inline expansion. Inline functions are also called as open subroutines because

Outside Member Function as Inline 273

their code is replaced at the place of function call in the caller function. The normal functions
are known as closed subroutines because when such functions are called, the control passes to
the function.

By default, all member functions defined inside the class are inline function. The member
function defined outside the class can be made inline by prefixing the keyword inline to
function declarator as shown in Figure 8.3.

inline return type class name :: function name (signature)

 Fig. 8.3 Inline function outside the class

The inline is a keyword and acts as function qualifier. The return type is functions return
type; that is the function returns values of this type. The class name is the name of class that
the function belongs to. Scope access operator separates class name and function name. The
signature means argument list passed function. The following program illustrates inline function
outside the class.

8.9 Write a program to make an outside function as inline.

#include<iostream.h>
#include<conio.h>
class item
{
 private: // private section starts
 int codeno; // member data variables
 float price;
 int qty;
 public: // public section starts
 void show (void); // prototype declaration
}; // end of class
inline void item:: show() // outside inline function
{
 codeno=213;
 price=2022;
 qty=150;
 cout<<“\n Codeno =”<<codeno;
 cout<<“\n Price =”<<price;
 cout<<“\n Quantity=”<<qty;
}
int main()
{
 clrscr();
 item one; // object declaration

274 Classes and Objects

 one.show(); // call to public member function (inline)
 return 0;
}

OUTPUT

Codeno =213
Price =2022
Quantity=150

Explanation: The above program is same as last one. The only difference is that the function
show() is defined as inline outside the class. The function declarator is as follows inline
void item::show().

8.13 RUlES FOR INlINE FUNCTIONS

(1) Inline function should be used rarely. It should be applied only at appropriate circumstances.
(2) Inline function can be used when the member function contains few statements. For example,

inline int item :: square (int x)
{
 return (x*x);
}

(3) If function takes more time to execute, then it must be declared as inline. The following
inline function cannot be expanded as inline.

inline void item:: show()
{
 cout<<“\n Codeno =”<<codeno;
 cout<<“\n Price =”<<price;
 cout<<“\n Quantity=”<<qty;
}

The member function that performs input and output operation requires more times. Inline func-
tions have one drawback, the entire code of the function is placed at the point of call in caller
function and it must be noted at compile time. Therefore, inline functions cannot be placed in
standard library or run time library.

8.14 DATA HIDING OR ENCAPSUlATION

Data hiding is also known as encapsulation. It is a procedure of forming objects. An encapsu-
lated object is often called as an abstract data type. We need to encapsulate data, because pro-
grammer often makes various mistakes and the data get changed accidentally. Thus, to protect

Data Hiding or Encapsulation 275

data, we need to construct a secure and impassable wall to protect the data. Data hiding is noth-
ing but making data variable of the class or struct private. Thus, private data cannot be
accessed directly by the object. The objects using public member functions of the same class
can access the private data of the class. The keywords private and protected are used
for hiding the data. Table 8.2 shows the brief description of access specifiers. The following
program explains data hiding:

8.10 Write a program to calculate simple interest. Hide the data elements of the class
using private keyword.

#include<iostream.h>
#include<conio.h>
class interest
{
 private :
 float p_amount; // principle amount
 float rate; // rate of interest
 float period; // numbers of years
 float interest;
 float t_amount; // total amount

 public :
 void in()
 {
 cout<<“ Principle Amount : ”; cin>>p_amount;
 cout<<“ Rate of Interest : ”; cin>>rate;
 cout<<“ Number of years : ”; cin>>period;
 interest=(p_amount*period*rate)/100;
 t_amount=interest+p_amount;
 }
 void show()
 {
 cout<<“\n Principle Amount : ”<<p_amount;
 cout<<“\n Rate of Interest : ”<<rate;
 cout<<“\n Number of years : ”<<period;
 cout<<“\n Interest : ”<<interest;
 cout<<“\n Total Amount : ”<<t_amount;
 }
};
int main()
{
 clrscr();
 interest r;

276 Classes and Objects

 r.in();
 r.show();
 return 0;
}

OUTPUT

Principle Amount : 5000
Rate of Interest : 2
Number of years : 3

Principle Amount : 5000
Rate of Interest : 2
Number of years : 3
Interest : 300
Total Amount : 5300

Explanation: In the above program, the class interest is declared with the data members
p_amount, float rate, period, 4, and t_amount of float type. These entire data ele-
ments are declared in private section; hence, it is hidden (encapsulated) and cannot be directly
accessed by the object. Here, member functions in() is used to read data through the keyboard.
The function show() is used to display the contents of the variables.

8.11 Write a program to declare class with private, public and private sections. Declare
object and access data elements of these different sections.

#include<iostream.h>
#include<conio.h>
class access
{
 private :
 int p;
 void getp()
 {
 cout<<“ In pget() enter value of p :”;
 cin>>p;
 }
 public:
 int h;
 void geth()
 {
 cout<<“ In geth() : ”<<endl;
 getp();
 getm();

Classes, Objects, and Memory 277

 cout<<“ p = ”<<p <<“ h = ”<<h <<“ m = ”<<m;
 }
 protected :
 int m;
 void getm()
 {
 cout<<“ In mget() enter value of m : ”;
 cin>>m;
 }
};
int main()
{
 clrscr();
 access a; // object declaration
 // a.p=2; // access to private member is not possible.
 // a.pget() // -----------” -----------------
 // a.m=5; // access to protectd member is not possible
 // a.mget(); // ----------------” ---------------------
 a.h=4; // direct access to public member is possible
 a.geth();
 return 0;
}

OUTPUT

In geth():
In pget() enter value of p:7
In mget() enter value of m: 4
p = 7 h = 4 m = 4

Explanation: In the above program, the class access is declared with private, pro-
tected, and public sections. Each section holds one integer variable and one member func-
tion. The object cannot directly access the data variable and member function of the private and
protected sections. The object can access only the public section of the class and through
public section it can access the private or protected section. Here, the object an ac-
cesses the public variable h and initializes it with 4 whereas the private and protected
variables are accessed using member functions. The function getp() and getm() are invoked
by the public member function geth(). The geth() also displays the contents of the vari-
ables on the screen.

8.15 ClASSES, OBJECTS, AND MEMORy

Objects are the identifiers declared for class data type. Object is a composition of one more vari-
ables declared inside the class. Each object has its own copy of public and private data members.

278 Classes and Objects

An object can access to its own copy of data members and have no access to data members of other
objects.

Only declaration of a class does not allocate memory to the class data members. When
an object is declared, memory is reserved for only data member and not for member functions.

Consider the following program.

8.12 Write a program to declare objects and display their contents.

#include<iostream.h>
#include<constream.h>
class month
{
 public:
 char *name;
 int days;
}; // end of class
int main()
{
 clrscr();
 month M1,M3; // object declaration
 M1.name=”January”;
 M1.days=31;
 M3.name=”March”;
 M3.days=31;
 cout<<“\n Object M1 ”;
 cout<<“\n Month name : ”<<M1.name <<“ Address :”<<(unsigned)&M1.
name;

 cout<<“\n Days :” <<M1.days <<“\t\t Address : ”<<(unsigned)&M1.
days;

 cout<<“\n\n Object M3 ”;
 cout<<“\n Month name : ”<<M3.name <<“\t Address : ”<<(unsigned)&M3.
name;

 cout<<“\n Days :” <<M3.days <<“\t\t Address : ”<<(unsigned)&M3.
days;

 return 0;
}

OUTPUT

Object M1
Month name : January Address :65522
Days : 31 Address : 65524
Object M3
Month name : March Address : 65518
Days : 31 Address : 65520

Classes, Objects, and Memory 279

Explanation: M1 and M3 are objects of class
month. Separate memory is allocated to each ob-
ject. The contents and address of the member vari-
ables are displayed in the output. Figure 8.4 shows
it more visibly.

From the last program it is clear that memory is
allocated for data members. What about func-
tions? Member functions are created and memory
is allocated to them only once when a class is
declared. All objects of a class access the same
memory location where member functions are
stored. Hence, separate copies of member func-
tions are not present in every object like member
variables, which is illustrated in the following pro-
gram and Figure 8.5.

8.13 Write a program to display the size of the objects.

#include<iostream.h>
#include<constream.h>
class data
{
 long i; // By default private
 float f;
 char c;
};
int main()
{
 clrscr();
 data d1,d2;
 cout<<endl<<“ Size of object d1 = ”<<sizeof(d1);
 cout<<endl<<“ Size of object d2 = ”<<sizeof(d2);
 cout<<endl<<“ Size of class =”<<sizeof(data);
 return 0;
}

OUTPUT

Size of object d1 = 9
Size of object d2 = 9
Size of class = 9

name

days

M1

65522

65524

name

days

M2

65518

65520

Objects
Member
variables

Memory
locations

 Fig. 8.4 Memory occupied by objects

280 Classes and Objects

Explanation: In the above program, the class data has three member variables of long,
float, and char type. The d1 and d2 are objects of the class data. The sizeof operator
displays the size of objects. The size of any object is equal to the sum of sizes of all the data mem-
bers of the class. In the class data, the data type long occupies 4 bytes, float occupies 4
bytes, and char occupies 1 byte. Their sum is 9, which equals the size of an individual object.

The member functions are not considered in the size of the object. All the objects of a class
use the same member functions. Only one copy of member function is created and stored in the
memory whereas each object has its own set of data members.

Fun A()

Fun B()

:

Fun Z()

Variable 1

Variable 2

:

Variable n

Object A

Variable 1

Variable 2

:

Variable n

Object C

Variable 1

Variable 2

:

Variable n

Object Z

Variable 1

Variable 2

:

Variable n

Object B

 Fig. 8.5 Data members and member functions in memory

8.16 static MEMBER VARIABlES

We noticed that each object has a separate set of data member variables in memory. The member
functions are created only once and all objects share the functions. No separate copy of function
of each object is created in the memory like data member variables.

It is possible to create common member variables like function using the static keyword.
Once a data member variable is declared as static, only one copy of that member is created
for the whole class. The static is a keyword that is used to preserve the value of a variable.
When a variable is declared as static it is initialized to zero. A static function or data ele-
ment is only recognized inside the scope of the present compile.

In earlier version of Turbo C++, it was not necessary to explicitly define static data mem-
bers. It was linkers’ responsibility to find undefined static data. The linker would implicitly
define the static data and allocate the required memory without showing error message. In
new versions of Turbo C++, it is necessary to explicitly define static members.

static Member Variables 281

Syntax:
static <variable definition> ;
static <function definition>;

If a local variable is declared with static keyword, it preserves the last value of the variable.
A static data item is helpful when all the objects of the class should share a common data.
The static data variable is accessible within the class, but its value remains in the memory
throughout the whole program (Figure 8.6).

Examples:
static int c;
static void display() {}
a) int sumnum :: c=0;

Static
variable

Variable 1

Variable 2

:

Variable n

Object A

Variable 1

Variable 2

:

Variable n

Object C

Variable 1

Variable 2

:

Variable n

Object Z

Variable 1

Variable 2

:

Variable n

Object B

 Fig. 8.6 static members in memory

The class and scope of the static member variable is defined outside the class declaration
as per the statement (a). The reasons are as follows:

(1) The static data members are associated with the class and not with any object.
(2) The static data members are stored individually rather than an element of an

object.
(3) The static data member variable must be initialized otherwise the linker will gener-

ate an error.

282 Classes and Objects

(4) The memory for static data is allocated only once.
(5) Only one copy of static member variable is created for the whole class for any

number of objects. All the objects have common static data member.

8.14 Write a program to declare static data member. Display the value of static data
member

#include<iostream.h>
#include<constream.h>
class number
{
 static int c;

 public:
 void count()
 {
 ++c;
 cout<<“\n c=”<<c;
 }
};
int number :: c=0; // initialization of static member variable
int main()
{
 number a,b,c;
 clrscr();
 a.count();
 b.count();
 c.count();
 return 0;
}

OUTPUT

c=1
c=2
c=3

Explanation: In the above program, the class number has one static data variable c. The
count() is a member functions’ increment value of static member variable c by one when
called. The statement int number::c=0 initializes the static member with 0. It is also pos-
sible to initialize the static data members with other values. In the function main() a, b, and
c are three objects of class number. Each object calls the function count(). At each call
to the function count(), the variable c gets incremented and the cout statement displays the
value of the variable c. The objects a, b, and c share the same copy of static data member c.

static Member Variables 283

8.15 Write a program to show the difference between static and non-static member
variables.

#include<iostream.h>
#include<conio.h>
class number
{
 static int c; // static variable
 int k; // non-static variable
 public:
 void zero()
 {
 k=0;
 }
 void count()
 {
 ++c;
 ++k;
 cout<<“\n Value of c = ”<<c <<“ Address of c = ”<<(unsigned)&c;
 cout<<“\n Value of k = ”<<k <<“ Address of k = ”<<(unsigned)&k;
 }
};
int number :: c=0; // initialization of static member variable
int main()
{
 number A,B,C;
 clrscr();
 A.zero();
 B.zero();
 C.zero();
 A.count();
 B.count();
 C.count();
 return 0;
}

OUTPUT

Value of c = 1 Address of c = 11138
Value of k = 1 Address of k = 85524
Value of c = 2 Address of c = 11138
Value of k = 1 Address of k = 65522
Value of c = 3 Address of c = 11138
Value of k = 1 Address of k = 65520

284 Classes and Objects

Explanation: This program compares between static and non-static member variables.
The class number has two member variables c and k. The variable c is declared as static
and k as normal variable. The function zero() is used to initialize the variable k with zero. The
static member variable c is initialized with zero as follows:

int number::c=0; // initialization of static member variable

The function count() is used to increment values of c and k. In function main(), A, B, and C
are objects of class number. The function zero() is invoked three times by object A, B, and C.
Each object has its own copy of variable k, and, hence, each object invokes the function zero()
to initialize its copy of k. The static member variable c is common among the object A, B, and
C. Hence, it is initialized only once. Figure 8.7 shows the object and member variables in memory.

Object A

int k;

65524

1

Object B

int k;

65522

1

Object C

int k;

65520

1

static int c;

Address 11138

Addresses

Values

Non static Variables

 Fig. 8.7 static and non-static members

8.16 Write a program to enter a number. Count the total number of digits from 0 to 9 oc-
curring from 1 to entered number.

#include<iostream.h>
#include<conio.h>
class digit
{
 static int num[10];
 public :
 void check(int n);
 void show();
 void input();
 void ini();
};
int digit :: num[]={0,0,0,0,0,0,0,0,0,0};
void digit :: show()

static Member Variables 285

{
 for (int j=0;j<10;j++)
 {
 if (num[j]==0) continue;
 cout<<“\n Number ”<<j <<“ occurs ” <<num[j] <<“ times”;
 }
}
void digit :: ini()
{
 for (int k=0;k<10;k++)
 num[k]=0;
}
void digit :: input()
{
 int x,y;
 cout<<endl<<“\n Enter a Number : ”;
 cin>>y;
 check(y);
}
void digit :: check (int u)
{
 int m;
 while (u!=0)
 {
 m=u%10;
 num[m]++;
 u=u/10;
 }
}
int main()
{
 clrscr();
 digit d;
 // d.ini();
 d.input();
 d.show();
 return 0;
}

OUTPUT

Enter Numbers Number : 22151
Number 1 occurs 2 times
Number 2 occurs 2 times
Number 5 occurs 1 times

286 Classes and Objects

Explanation: In the above program, the class digit is declared with one static array
member num[10] and four member functions check(), show(), input(), and ini().
The function input() reads an integer through the keyboard. The entered number is passed
to function check(). The function check() is invoked by function input(). The func-
tion check() separates individual digits of the entered number using repetitive modular di-
vision and division operation. The separated digits are counted and the count value is stored
in the array num[10] according to the element number. The function show() displays the
contents of array num[]. The function ini() is declared and when called initializes all array
elements with zero. In case the array is not declared as static, this function is useful. Here, in
this program the array is static, hence we initialized it with the statement int digit::n
um[]={0,0,0,0,0,0,0,0,0,0}. If this statement is removed, we need to call the function
ini().

8.17 static MEMBER FUNCTIONS

Like member variables, function can also be declared as static. When a function is defined
as static, it can access only static member variables and functions of the same class.
The not-static members are not available to these functions. The static member function
declared in public section can be invoked using its class name without using its objects. The
static keyword makes the function free from the individual object of the class and its scope
is global in the class without creating any side effect for other part of the program. The pro-
grammer must follow the following points while declaring static function:

1) Just one copy of a static member is created in the memory for entire class. All
objects of the class share the same copy of static member.

2) static member function can access only static data members or functions.
3) static member function can be invoked using class name.
4) It is also possible to invoke static member functions using objects.
5) When one of the objects changes the value of data member variables, the effect is visible

to all the object of the class.

8.17 Write a program to declare static member functions and call them from the
main() function.

#include<iostream.h>
#include<conio.h>
class bita
{
 private :
 static int c;
 public :
 static void count() { c++; }
 static void display()
 {
 cout<<“\nValue of c : ”<<c;
 }
};

static Member Functions 287

int bita ::c=0;
int main()
{
 clrscr();
 bita:: display();
 bita::count();
 bita::count();
 bita::display();
 return 0;
}

OUTPUT

Value of c : 0
Value of c : 2

Explanation: In the above program, the member variables c and functions of class bita are
static. The function count() when called increases the value of static variable c. The
function display() prints the current value of the variable c. The static function can be
called using class name and scope access operator from the following statements:

bita::count(); // invokes count() function
bita::display(); // invokes display() function

8.17.1 static Private Member Function

A static member function can also be declared in private section. The private static func-
tion must be invoked using static public function. The following program illustrates the point.

8.18 Write a program to define private static member function and invoke it.

#include<iostream.h>
#include<conio.h>
class bita
{
 private :
 static int c;
 static void count() { c++; }
 public:
 static void display()
 {
 count(); // Call to private static member function
 cout<<“\nValue of c : ”<<c;
 }
};
int bita ::c=0;
int main()

288 Classes and Objects

{
 clrscr();
 bita:: display();
 bita::display();
 return 0;
}

OUTPUT

Value of c : 1
Value of c : 2

Explanation: In the above program, count() is a private static member function. The pub-
lic static function display() invokes the private static function count(). The func-
tion display() also displays the value of static variable c.

8.17.2 static Public Member Variable

The static public member variable can also be initialized in function main() like other
variables. The static member variable using class name and scope access operator can be
accessed. The scope access operator is also used when variables of same name are declared in
global and local scope, which is illustrated in the following program:

8.19 Write a program to declare static public member variable, global and local vari-
able with the same name. Initialize and display their contents.

#include<iostream.h>
#include<constream.h>
int c=11; // global variable
class bita
{
 public:
 static int c;
};
int bita ::c=22; // class member variable
int main()
{
 clrscr();
 int c=33; // local variable
 cout<<“\nClass member c = ”<<bita::c;
 cout<<“\nGlobal variable c = ”<<::c;
 cout<<“\nLocal variable c = ”<<c;
 return 0;
}

static Object 289

OUTPUT

Class member c = 22
Global variable c = 11
Local variable c = 33

Explanation: In the above program, the variable c is declared and initialized in three different scopes
such as global, local, and inside the class. The variable c declared inside is static variable and
initialized to 22. The global variable c is initialized to 11 and local variable c is initialized to 33.

static member variable: The value of static variable is displayed using variable name
preceded by class name and scope access operator as per the statement cout<<“\nClass
member c = ”<<bita::c;.

Global variable: The global variable can be access using variable name preceded by scope
access operator from the statement cout<<“\nGlobal variable c = ”<<::c;.

Local variable: The local variable can be access only by putting its name as per the state-
ment cout<<“\nLocal variable c = ”<<c;.

8.18 static OBJECT

In C, it is common to declare variable static and it gets initialized to zero. The object is a com-
position of one or more member variables. There is a mechanism called constructor to initialize
member variables of the object to desired values. The constructors are explained in the next chap-
ter. The static keyword can be used to initialize all class data member variables to zero.
Declaring object itself as static can do this. Thus all its associated members get initialized to
zero. The following program illustrates the working of static object.

8.20 Write a program to declare static object. Display its contents.

#include<iostream.h>
#include<constream.h>
class bita
{
 private:
 int c;
 int k;
 public :
 void plus()
 {
 c+=2;
 k+=2;
 }
 void show()
 {
 cout<<“ c= ”<<c<<“\n”;

290 Classes and Objects

 cout<<“ k= ”<<k;
 }
};
int main()
{
 clrscr();
 static bita A;
 A.plus();
 A.show();
 return 0;
}

OUTPUT

c= 2
k= 2

Explanation: The class bita has two member variables c and k and two member functions
plus() and show(). In function main(), the object A is declared. It is also declared as
static. The data members of object A are initialized to zero. The function plus() is invoked,
which adds 2 to the values of c and k. The function displays values of c and k. Declare object
static does not mean that entire class is static including member function. The declara-
tion of static object removes garbage of its data members and initializes them to zero.

8.19 ARRAy OF OBJECTS

Arrays are collection of similar data types. Arrays can be of any data type including user-defined
data type created using struct, class, and typedef declarations. We can also create an
array of objects. The array elements are stored in continuous memory locations as shown in
Figure 8.8. Consider the following example.

class player
{
 private:
 char name [20];
 int age;
 public:
 void input (void);
 void display (void);
};

The player is a user-defined data type and can be used to declare an array of object of type
player. Each object of an array has its own set of data variables.

player cricket[5];
player football [5];
player hockey [5];

Array of Objects 291

name
cricket[0]

cricket[1]

cricket[5]

age

name

age

name

age

 Fig. 8.8 Arrays of objects

As shown above, arrays of object of type player are created. The array cricket[5] con-
tains name and age information for five objects. The next two declarations can maintain the same in-
formation for other player in arrays hockey[5] and football[5]. These arrays can be initialized
or accessed like an ordinary array. The following program describes the working of array of objects.

8.21 Write a program to declare the array of objects. Initialize and display the contents
of arrays.

#include<iostream.h>
#include<constream.h>
class player
{
 private:
 char name [20];
 int age;
 public:
 void input (void);
 void display (void);
};
void player :: input()
{
 cout<<“\n Enter Palyer name : ”;
 cin>>name;
 cout<<“ Age : ”;
 cin>>age;
}
void player :: display()

292 Classes and Objects

{
 cout<<“\n Player name : ”<<name;
 cout<<“\n Age : ”<<age;
}
int main()
{
 clrscr();
 player cricket[3]; // array of objects
 cout<<“\n Enter Name and age of 3 players ”;
 for (int i=0;i<3;i++)
 cricket[i].input();
 for (i=0;i<3;i++)
 cricket[i].display();
 return 0;
}

OUTPUT

Enter Name and age of 3 players
Enter Palyer name : Sachin
Age : 29
Enter Palyer name : Rahul
Age : 28
Enter Palyer name : Saurav
Age : 30
Player name : Sachin
Age : 29
Player name : Rahul
Age : 28
Player name : Saurav
Age : 30

Explanation: In the above program, the member function input() reads information of play-
ers. The display() function displays information on the screen. In function main() the
statement player cricket[3]; creates an array cricket[3] of three objects of type
player. The for loops are used to invoke member function input() and display() using
array of objects.

8.20 OBJECTS AS FUNCTION ARGUMENTS

Similar to variables, object can be passed to functions. The following are the three methods to
pass argument to a function:

a) Pass-by-value – A copy of object (actual object) is sent to function and assigned to the
object of callee function (formal object). Both actual and formal copies of objects are

Objects as Function Arguments 293

stored at different memory locations. Hence, changes made in formal object are not
reflected to actual object.

b) Pass-by-reference – Address of object is implicitly sent to function.
c) Pass-by-address – Address of the object is explicitly sent to function.

In pass-by-reference and pass-by-address methods, an address of actual object is passed to the
function. The formal argument is reference/pointer to the actual object. Hence, changes made
in the object are reflected to actual object. These two methods are useful because an address is
passed to the function and duplicating of object is prevented.

The following examples illustrate both the methods of passing objects to the function as an
argument.

8.22 Write a program to pass objects to the function by pass-by-value method.

#include<iostream.h>
#include<conio.h>
class life
{
 int mfgyr;
 int expyr;
 int yr;
 public :
 void getyrs()
 {
 cout<<“\nManufacture Year : ”;
 cin>>>mfgyr;
 cout<<“\n Expiry Year : ”;
 cin>>>expyr;
 }
 void period (life);
};
void life :: period (life y1)
{
 yr=y1.expyr-y1.mfgyr;
 cout<<“Life of the product : ” <<yr <<“ Years”;
}
int main()
{
 clrscr();
 life a1;
 a1.getyrs();
 a1.period(a1);
 return 0;
}

294 Classes and Objects

OUTPUT

Manufacture Year : 1999
Expiry Year : 2002
Life of the product : 3 Years

Explanation: In the above program, the class life is declared with three member inte-
ger variables. The function getrys() reads the integers through the keyboard. The function
period() calculates the difference between the two integers entered. In the function main(),
a1 is an object to the class life. The object a1 calls the function getyrs(). Immediately
after this, the same object (a1) is passed to the function period(). The function period()
calculates the difference between two integers (dates) using the two data members of the same
class. Thus, an object can be passed to the function. To pass an object by reference, the pro-
totype of function period() should be as follows:

void period (life &);

8.23 Write a program to pass objects to the function pass-by-address method.

#include<iostream.h>
#include<conio.h>
class life
{
 int mfgyr;
 int expyr;
 int yr;
 public :

 void getyrs()
 {
 cout<<“\nManufacture Year : ”;
 cin>>>mfgyr;
 cout<<“\n Expiary Year : ”;
 cin>>>expyr;
 }
 void period (life*);
};
void life :: period (life *y1)
{
 yr=y1->expyr-y1->mfgyr;
 cout<<“Life of the product : ” <<yr;
}
int main()
{
 clrscr();
 life a1;

friend Functions 295

 a1.getyrs();
 a1.period(&a1);
 return 0;
}

OUTPUT

Manufacture Year : 1999
Expiry Year : 2002
Life of the product : 3 Years

Explanation: The above program is same as previous one. In this program, the object a1 is
passed by address. Consider the following statements.

a) void period (life*);
b) a1.period (&a1);
a) Yr=y1->expyr-y1->mfgyr;

The statement (a) is the prototype of the function period(). In this statement, the deference
operator (*) indicates that the function will accept address of the actual argument. The statement
(b) is used to pass the address of the argument to the function period(). The statement (c)
is used to access the member variables of the class. When an object is a pointer to the class
members, then its elements are accessed by using arrow (->) operator. In this case, use of a dot
operator (.) is invalid.

8.21 friend FUNCTIONS

The central idea of encapsulation and data hiding concept is that any non-member function has
no access permission to the private data of the class. The private members of the class are
accessed only from member functions of that class.

C++ allows a mechanism, in which a non-member function has access permission to the
private members of the class. This can be done by declaring a non-member function friend to
the class whose private data is to be accessed. The friend is a keyword. Consider the fol-
lowing example.

class ac
{ private:
 char name [15];
 int acno;
 float bal;
 public:
 void read();
 friend void show-
bal();
};

296 Classes and Objects

The keyword friend must precede the function declaration, whereas function declarator must
not. The function can be defined at anyplace in the program like normal function. The function
can be declared as friend function in one or more classes. The keyword friend or scope ac-
cess operator must not precede the definition of the friend function. The declaration of
friend function is done inside the class in private or public part and a function can be declared
as friend function in any number of classes. These functions use objects as arguments. Thus the
following statement is wrong.

a) friend void :: showbal (ac a) // Wrong function defini-
tion
{
 statement1;
 statement2;
}

The above declaration of function is wrong because the function declarator precedes the keyword
friend.

The friend functions have the following properties:

a) There is no scope restriction for the friend function; hence, they can be called directly
without using objects.

b) Unlike member functions of class, the friend cannot access the member directly. On
the other hand it uses object and dot operator to access the private and public mem-
ber variables of the class.

c) By default, friendship is not shared (mutual). For example, if class X is declared
as friend of Y, this does not meant that Y has privileges to access private members of
class X.

d) Use of friend functions is rare, since it violates the rule of encapsulation and data hiding.
e) The function can be declared in public or private sections without changing its meaning.

8.24 Write a program to access private data using non-member function. Use friend func-
tion.

#include<iostream.h>
#include<conio.h>
class ac
{
 private:
 char name[15];
 int acno;
 float bal;
 public:
 void read()
 {
 cout<<“\nName :” ;

friend Functions 297

 cin>>>name;
 cout<<“\nA/c No. :”;
 cin>>>acno;
 cout<<“\n Balance :”;
 cin>>>bal;
 }
 friend void showbal(ac); // friend function declaration
};
void showbal (ac a)
{
 cout<<“\n Balance of A/c no. ” <<a.acno <<“ is Rs.” <<a.bal;
}
int main()
{
 ac k;
 k.read();
 showbal(k); // call to friend function
 return 0;
}

OUTPUT

Name :Manoj
A/c No. :474
Balance :40000
Balance of A/c no. 474 is Rs.40000

Explanation: In the above program, class ac is declared. It has three member variables and
one member function. Also, inside the class ac, showbal() is a function, which is declared
as friend of the class ac. Once the outside function is declared as friend to any class,
it gets an authority to access the private data of that class. The function read() reads the
data through the keyboard such as name, account number, and balance. The friend function
showbal() display the balance and acno.

8.25 Write a program to declare friend function in two classes. Calculate the sum of
integers of both the classes using friend sum() function.

#include<iostream.h>
#include<conio.h>
class first;
class second
{
 int s;
 public :

298 Classes and Objects

 void getvalue()
 {
 cout<<“\nEnter a number : ”;
 cin>>>s;
 }
 friend void sum (second, first);
};
class first
{
 int f;
 public :
 void getvalue()
 {
 cout<<“\nEnter a number : ” ;
 cin>>>f;
 }
 friend void sum (second , first);
};
void sum (second d, first t)
{
 cout<<“\n Sum of two numbers : ” <<t.f + d.s;
}
int main()
{
 clrscr();
 first a;
 second b;
 a.getvalue();
 b.getvalue();
 sum(b,a);
}

OUTPUT

Enter a number: 7
Enter a number: 8
Sum of two numbers: 15

Explanation: In the above program, two classes first and second are declared with one inte-
ger and one member function in each. The member function getvalue() of both classes reads
integers through the keyboard. In both the classes the function sum() is declared as friend.
Hence, this function has an access to the members of both the classes. Using sum(), function
addition of integers is calculated and displayed.

friend Functions 299

8.26 Write a program to exchange values between two classes. Use friend functions.

#include<iostream.h>
#include<conio.h>
class second;
class first
{
 int j;
 public:
 void input()
 {
 cout<<“Enter value of j : ”;
 cin>>>j;
 }
 void show (void)
 {
 cout<<“\n Value of J = ”;
 cout<<j <<“\n”;
 }
 friend void change (first &, second &);
};
class second
{
 int k;
 public :
 void input()
 {
 cout<<“\nEnter value of k : ”;
 cin>>>k ;
 }
 void show (void)
 {
 cout<<“ Value of K = ”;
 cout<<k ;
 }
 friend void change (first & , second &);
};
void change (first &x, second &y)
{
 int tmp=x.j;
 x.j=y.k;
 y.k=tmp;
}

300 Classes and Objects

main()
{
 clrscr();
 first c1;
 second c2;
 c1.input();
 c2.input();
 change (c1,c2);
 cout<<“\nAfter change values are” <<“\n”;
 c1.show();
 c2.show();
 return 0;
}

OUTPUT

Enter value of j : 4
Enter value of k : 8
After change values are
Value of J = 8
Value of K = 4

Explanation: In the above program, two classes first and second are defined. Each class
contains one integer variable and two member functions. The function input() is used to
read an integer through the keyboard. The function show() is used to display the integer on
the screen. The function change() is declared as friend function for both the classes. Passing
values by reference of member variables of both the classes, values are exchanged.

8.27 Write a program to declare three classes. Declare integer array as data member in
each class. Perform addition of two data member array into array of third class. Use
friend function.

#include<iostream.h>
#include<conio.h>
class B;
class C;
class A
{
 int a[5];
 public :
 void input();
 friend C sum (A,B,C);
};
void A :: input()
{

friend Functions 301

 int k;
 cout<<“\n Enter five integers : ”;
 for (k=0;k<5;k++)
 cin>>a[k];
}
class B
{
 int b[5];
 public :
 void input();
 friend C sum (A,B,C);
};
void B:: input()
{
 int k;
 cout<<“\n Enter five integers : ”;
 for (k=0;k<5;k++)
 cin>>b[k];
}
class C
{
 int c[5];
 public :
 void show();
 friend C sum (A,B,C);
};
void C :: show()
{
 cout<<“\n\t Addition : ”;
 for (int k=0;k<5;k++)
 cout<<“ ” <<c[k];
}
C sum (A a1 ,B b1, C c1)
{
 for (int k=0;k<5;k++)
 c1.c[k]=a1.a[k]+b1.b[k];
 return c1;
}
int main()
{
 clrscr();
 A a;
 B b;
 C c;

302 Classes and Objects

 a.input();
 b.input();
 c=sum(a,b,c);
 c.show();
}

OUTPUT

Enter five integers : 5 4 8 7 5
Enter five integers : 2 4 1 2 3
Addition : 7 8 9 9 8

Explanation: In the above program, three classes A, B, and C are declared. Each class con-
tains single integer arrays as data member a[5], b[5], and c[5], respectively. The class
A and B contains member function input() to read integers. The function sum() is declared
as friend in all the three classes. This function performs addition of arrays of class A and
B and stores results in the array of class C. The result obtained is returned in main() where
the return value is assigned to object c. In main() a, b, and c are objects of classes A, B, and
C, respectively. The member function show() of class C displays the contents of object c.

8.21.1 friend Classes

It is possible to declare one or more functions as friend functions or an entire class can also
be declared as friend class. When all the functions need to access another class in such a
situation we can declare an entire class as friend class. The friend is not transferable or
inheritable from one class to another. Declaring class A to be a friend of class B does not
meant class B a friend of class A; that is, friendship is not exchangeable. The friend classes
are applicable when we want to make available private data of a class to another class.

8.28 Write a program to declare friend classes and access the private data.

#include<iostream.h>
#include<constream.h>
class B;
class A
{
 private :
 int a;
 public :
 void aset() {a=30;}
 void show (B);
};
class B
{
 private :

friend Functions 303

 int b;
 public :
 void bset() { b=40 ;};
 friend void A :: show (B bb);
};
void A :: show (B b)
{
 cout<<“\n a = ”<<a;
 cout<<“\n b = ”<<b.b;
}
int main()
{
 clrscr();
 A a1;
 a1.aset();
 B b1;
 b1.bset();
 a1.show(b1);
}

OUTPUT

a = 30
b = 40

Explanation: In the above program, two classes A and B are declared. The class A is friend
of class B. The member function of class A can access the data of class B. Thus, the
show() function displays the values of data members of both the classes.

8.29 Write a program to demonstrate friend classes.

#include<iostream.h>
#include<conio.h>
class CPP;
class C
{
 private :
 int j;
 public :
 void set() { j=22; }
 friend CPP;
};
class CPP

304 Classes and Objects

{
 public :
 void joy(C a)
 {
 cout<<endl<<“ j = ”<<a.j;
 }
 void joya(C o)
 {
 cout<<endl<<“ j = ”<<o.j;
 }
};
int main()
{
 clrscr();
 C x;
 CPP y;
 x.set();
 y.joy(x);
 y.joya(x);
 return 0;
}

OUTPUT

j = 22
j = 22

Explanation: In the above program, class C and class CPP are declared as friend. The
class CPP is declared as friend class of class C. Member function of class CPP can
access the private data variables of the class C.

8.22 THE const MEMBER FUNCTIONS

The member functions of a class can also be declared as constant using const keyword. The
constant functions cannot modify any data in the class. The const keyword is suffixed to the
function prototype as well as in function definition. If these functions attempt to change the data,
compiler will generate an error message.

8.30 Write a program to declare const member function and attempt any operation
within it.

#include<iostream.h>
#include<conio.h>

class A
{

The Volatile Member Function 305

 int c;
 public :
 void add (int a,int b) const
 {
 // c=a+b; // invalid statement
 a+b;
 cout<<“a+b = ”<<_AX ;
 }
};
int main()
{
 clrscr();
 A a;
 a .add(5,7);
 return 0;
}

OUTPUT

a+b = 12

Explanation: In the above program, the class A is declared with one member variable (c) and
one constant member function add(). The add() function is invoked with two integers. The
constant member function cannot perform any operation. Hence, the expression c=a+b will gen-
erate an error. The expression a+b is valid and cannot alter any value. The result obtained from
the equation a+b is displayed using CPU register.

8.23 THE VOlATIlE MEMBER FUNCTION

In C++, one can declare a member function with volatile specifies. This step leads to call safely
the volatile object. Calling volatile member function with volatile object is safe. This concept is
supported with the following programming example.

8.31 Write a program to call a volatile member function from a volatile object.

#include<iostream.h>
#include<conio.h>
class A
{
 private:
 int x;
 public:
 void f() volatile // The volatile member function
 {
 int x=10;
 cout<<“Value of x:”<<++x;
 }

306 Classes and Objects

};
int main()
{
 clrscr();
 volatile A c; // The c is a volatile object
 c.f(); // Call a volatile member function safely
 return 0;
}

OUTPUT

Value of x:11

Explanation: The volatile member function f() is called from a volatile object c and the
value of x is initialized to 10. Its value is increased by one and displayed on the screen.

8.24 RECURSIVE MEMBER FUNCTION

Like C, C++ also supports recursive feature; that is, a function is called repetitively by itself. The
recursion can be used directly or indirectly. The direct recursion function calls to itself until the
condition is true. In indirect recursion, a function calls to another function and then the called
function calls to the calling function. Here, the recursion with member function is illustrated in
the following program:

8.32 Write a program to calculate triangular number by creating a member function. Call
it recursively.

#include<iostream.h>
#include<conio.h>
class num
{
 public :
 tri_num(int m)
 { int f=0;
 if (m==0)
 return(f);
 else
 f=f+m+tri_num(m-1);
 return (f);
 }
};
int main()
{
 clrscr();
 num a;
 int x;

Local Classes 307

 cout<<“\n Enter a number : ”;
 cin>>x;
 cout<<“Triangular number of ”<<x<<“ is : ”<<a.tri_num(x);
 return 0;
}

OUTPUT

Enter a number : 5
Triangular number of 5 is : 15

Explanation: In the above program, class num is declared with one member function tri_
num(). This function is used to calculate the triangular number of the entered number. The triangu-
lar number is nothing but the sum from 1 to the number entered. In function main(), a number is
read through the keyboard and it is passed to function tri_num(), which is invoked by the object a
of class num. The tri_num() is invoked and tri_num() invokes itself repetitively till the val-
ue of m becomes 0. The variable f holds the cumulative total of successive numbers and return()
statement returns value of f in function main(), where it displays triangular number on the screen.

8.25 lOCAl ClASSES

When classes are declared inside the function then such classes are called as local classes. The
local classes have access permission to global variables as well as static variables. The glo-
bal variables need to be accessed using scope access operator when the class itself contains
member variable with same name as global variable. The local classes should not have static
data member and static member functions. If at all they are declared, the compiler provides
an error message. The following programs illustrate the local classes.

8.33 Write a program to define classes inside and outside main() function and access the
elements.

#include<iostream.h>
#include<conio.h>
class A
{
 private :
 int a;
 public :
 void get()
 {
 cout<<“\n Enter value for a : ”;
 cin>>>a;
 }
 void show()
 { cout<<endl<<“ a = ” <<a; }
};

308 Classes and Objects

main()
{
 clrscr();
 class B
 {
 int b;
 public :
 void get()
 {
 cout<<“\n Enter value for b : ”;
 cin>>>b;
 }
 void show()
 {
 cout<<“ b = ” <<b;
 }
 };
 A j;
 B k;
 j.get();
 k.get();
 j.show();
 k.show();
 return 0;
}

OUTPUT

Enter value for a : 8
Enter value for b : 9
a = 8 b = 9

Explanation: In the above program, class A is declared before main() function as usual.
The class B is declared inside the main() function. Both the functions have two member
functions get() and show(). The get() function reads integers through the keyboard. The
show() functions display the values of data members on the screen.

8.34 Write a program to declare global variables, read and display data using member
functions.

#include<iostream.h>
#include<conio.h>
int j, k, l, m; // global variable
class A
{
 private :

Local Classes 309

 int a;
 int j;
 public :
 void get()
 {
 cout<<“\n Enter value for a,j,j and k : ”;
 cin>>>a >>j>>::j >>k;
 }
 void show()
 {
 cout<<endl<<“ a = ” <<a <<“ j = ”<<j <<“ ::j = ”<<::j <<“ k = ”<<k ;
 }
};
int main()
{
 clrscr();
 class B
 {
 int b;
 int l;
 public :
 void get()
 {
 cout<<“\n Enter value for b,l,l and m : ”;
 cin>>>b >>l>>::l>>m;
 }
 void show()
 {
 cout<<“\n b = ” <<b <<“ l = ”<<l <<“ ::l = ”<<::l <<“ m = ”<<m;
 }
 };
 A x;
 B y;
 x.get();
 y.get();
 x.show();
 y.show();
 return 0;
}

OUTPUT

Enter value for a,j,j and k : 1 2 3 4
Enter value for b,l,l and m : 5 6 4 3
a = 1 j = 2 ::j = 3 k = 4
b = 5 l = 6 ::l = 4 m = 3

310 Classes and Objects

Explanation: The above program is so far same as previous one. In addition, in this program
global variables j, k, l, and m are declared. The member functions get() and show() read
and display values of member variables as well as global variables. Here, both the classes contain
a single data member variable with the same name as global variables. Thus, to access the global
variable where necessary, scope access operator is used. The output of the program is as shown
in the above program.

8.26 empty, static, and const ClASSES

The classes without any data members or member functions are called as empty classes. These
types of classes are not frequently used. The empty classes are useful in exception handling. For
exception handling, refer the chapter 19 exception handling. The syntax of empty class
is as follows:

EMPTY CLASSES

class nodata { };
class vacant { };

We can also precede the declaration of classes by the keywords static, const, volatile,
etc. But there is no any effect in the class operations. Such declaration can be done as follows:

CLASSES AND OTHER KEYWORDS

static class boys { };
const class data { };
volatile class area { };

8.27 MEMBER FUNCTION AND NON-MEMBER FUNCTION

So far we used non-member function main() for declaring objects and calling member func-
tions. Apart from main() function other non-member functions can also be used. The member
function can also invoke a non-member function and vice versa. When a member function calls a
non-member function, it is necessary to put its prototype inside the calling function or at the be-
ginning of the program. It is a better practice to put prototype at the beginning of the program that
is visual to the entire program. It is also possible to put definition of the non-member function
before class declaration. This method allows member function to invoke outside non-member
function without need of prototype declaration. But this approach creates problem when an out-
side non-member function attempts to invoke member function.

We know that member functions can be called using object of that class. If a non-member
function is defined before class declaration, it is not possible to create an object in that func-
tion. Hence, the best choice is to put prototype of the non-member function at the beginning of
the program that makes easy for both non-member function and member function to call each
other. The following program explains practically whatever we learned about member function
and non-member function in this section.

The main() Function as a Member Function 311

8.35 Write a program to call a member function using non-member function.

#include<iostream.h>
#include<conio.h>
void moon(void); // Function prototype declaration
class mem
{
 public :
 void earth() { cout<<“On earth”; }
};
int main()
{
 clrscr();
 mem k;
 moon();
 return 0;
}
void moon()
{
 mem j;
 j. earth();
 cout<<endl<<“On moon ”;
}

OUTPUT

On earth
On moon

Explanation: In the above program, moon() is a non-member function and its prototype is
declared at the beginning of the program. The function main() calls function moon(). In
function moon(), object j of type class mem is declared and a member function earth() is
invoked. Thus, non-member function calls the member function.

8.28 THE main() FUNCTION AS A MEMBER FUNCTION

We know that the function main() is the starting execution point of every C/C++ program. The
main() can be used as a member function of the class. But the execution of program will not
start from this member function. The compiler treats member function main() and the user-
defined main() differently. No ambiguity is observed while calling function. The following
program narrates this concept.

8.36 Write a program to make main() as a member function.

#include<conio.h>
#include<iostream.h>

312 Classes and Objects

class A
{
 public:
 void main()
 {
 cout<<endl<<“In member function main()”;
 }
};
int main()
{
 clrscr();
 A *a;
 a->main();
 return 0;
}

OUTPUT

In member function main()

Explanation: In the above program, class A is declared and has one member function main().
In the non-member function main(), the object a invokes the member function main() and a
message is displayed as shown in the output.

8.29 OVERlOADING MEMBER FUNCTIONS

Member functions are also overloaded in the same fashion as other ordinary functions. We learned
that overloading is nothing but a function is defined with multiple definitions with same function
name in the same scope. The following program explains the overloaded member function.

8.37 Write a program to overload member function of a class.

#include<iostream.h>
#include<stdlib.h>
#include<math.h>
#include<conio.h>
class absv
{
 public :
 int num (int);
 double num (double);
};
int absv:: num (int x)
{
 int ans;
 ans=abs(x);

Overloading main() Functions 313

 return (ans);
}
double absv :: num (double d)
{
 double ans;
 ans=fabs(d);
 return (ans);
}
int main()
{
 clrscr();
 absv n;
 cout<<“\n Absolute value of -25 is ”<<n.num(-25);
 cout<<“\n Absolute value of -25.1474 is ”<<n.num(-25.1474);
 return 0;
}

OUTPUT

Absolute value of -25 is 25
Absolute value of -25.1474 is 25.1474

Explanation: In the above program, the class absv has a member function num(). The
num() function is overloaded for integer and double. In function main() the object n in-
vokes the member function num() with one value. The compiler invokes the overloaded func-
tion according to the value. The function returns the absolute value of the number.

8.30 OVERlOADING main() FUNCTIONS

In the last two subtitles, we learnt how to make main() as member function and how to over-
load member function. Like other member function, main() can be overloaded in the class
body as a member function. The following program explains this concept:

8.38 Write a program to declare main() as a member function and overload it.

#include<conio.h>
#include<iostream.h>
class A
{
 public:
 void main(int i)
 {
 cout<<endl<<“In main (int) :”<<i;
 }
 void main (double f)
 {

314 Classes and Objects

 cout<<“\nIn main(double) :”<<f;
 }
 void main (char *s)
 {
 cout<<endl<<“In main (char) : ”<<s;
 }
};
int main()
{
 clrscr();
 A *a;
 a->main(5);
 a->main(5.2);
 a->main(“C++”);
 return 0;
}

OUTPUT

In main (int) :5
In main (double) :5.2
In main (char) : C++

Explanation: This program is same as the previous one. Here, the main() function is used as a
member function and it is overloaded for integer, float, and character.

It is not possible to overload the non-member main() function, which is the source of the
C/C++ program and hence the following program will not be executed and displays the error
message “Cannot overload ‘main’”.

#include<iostream.h>
void main()
{ }
main (float x, int y)
{
 cout<<x<<y;
 return 0;
}

 TIP
The main() is the only function that cannot be overloaded.

8.31 THE main(), MEMBER FUNCTION, AND INDIRECT RECURSION

When a function calls itself, then this process is known as recursion or direct recursion. When
two functions call each other repetitively, such type of recursion is known as indirect recursion.

The main(), Member Function, and Indirect Recursion 315

Consider the following program and explanation to understand the indirect recursion using OOP.
The program without using OOP is also described for programmers who are learning C++.

8.39 Write a program to call function main() using indirect recursion.

//Indirect Recursion Using OOP//
#include<iostream.h>
#include<conio.h>

int main (int);
class rec
{
 int j;
 public:
 int f;
 rec (int k, int i)
 {
 clrscr();
 cout<<“[”;
 f=i;
 j=k;
 }
 ~rec()
 { cout<<“\b\b] Factorial of number : ”<<f ; }
 void pass()
 {
 cout<<main (j--)<<“ * ”;
 }
};
rec a(5,1);
main (int x)
{
 if (x==0)
 return 0;
 a.pass();
 a.f=a.f*x;
 return x;
}

OUTPUT

[0 * 1 * 2 * 3 * 4 * 5] Factorial of number : 120

Explanation: In the above program, class rec is declared with constructor, destruc-
tor, member function pass(), and two integer variables. The integer variable j is
private and f is public. The function main() is defined with one integer argument. Usually,

316 Classes and Objects

main() with arguments is used for the applications on the dos prompt. In this program, main() is
called recursively by member function pass(). When a function call is made, the value of member
data variable is decreased first and then passed. Thus, the main() passes value to itself. In function
pass(), main() function is invoked and its return value is displayed. The public data member is
directly used and by applying multiplication operation, factorial of a number is calculated.

Generally, objects are declared inside the function main(). But in this program func-
tion main() is used in recursion. Hence, if we put the object declaration statement inside the
main(), in every call of main() object is created and the program will not run properly. To
avoid this, the object is declared before main().

Constructor is used to initialize data members as well as to clear the screen. Destructor is
used to display the factorial value of the number. All the statements that we frequently put in
main() are written outside of main().

Before the class declaration, prototype of main() is given, because the member func-
tions do not know about; and the prototype declaration provides information about main() to
member function.

 TIP
For C programmers the previous program in C style is explained as follows.

8.40 Write a program to call function main() using in-direct recursion in C style.

//Indirect Recursion in C style//
#include<iostream.h>
#include<conio.h>
#include<process.h>
int m=5;
int f=1;
int j;
main (int x)
{
 void pass (void);
 if (x==0)
 { clrscr();
 cout<<endl<<“Factorial of number =”<<f;
 return 0;
 }
 f=f*x;
 pass();
 return x;
}
void pass() { main (m--); }

OUTPUT

Factorial of number =120

Bit Fields and Classes 317

Explanation: The logic of the program is same as the previous one. The user-defined function
pass() has only one job to invoke function main(). The if conditions inside main() check
the value of variable x. If value of x is zero, then if block is executed that displays factorial of
the number and terminates the programs.

8.32 BIT FIElDS AND ClASSES

Bit field provides exact amount of bits required for storage of values. If a variable value is 1 or 0
we need a single bit to store it. In the same way, if the variable is expressed between 0 and 3, then
the two bits are sufficient for storing these values. Similarly if a variable assumes values between
0 and 7, then three bits will be enough to hold the variable and so on. The number of bits required
for a variable is specified by non-negative integer followed by a colon.

To hold the information, we use the variables. The variables occupy minimum one byte for
char and two bytes for integer. Instead of using complete integer if bits are used, memory
space can be saved. For example, to know the information about the vehicles, following informa-
tion has to be stored in the memory:

(1) PETROL VEHICLE
(2) DIESEL VEHICLE
(3) TWO_WHEELER VEHICLE
(4) FOUR_WHEELER VEHICLE
(5) OLD MODEL
(6) NEW MODEL

In order to store the status of the above information, we may need two bits for the type of fuel as
to whether the vehicle is of petrol or diesel type, three bits for its type as to whether the vehicle
is two- or four-wheeler, and similarly, three bits for the model of the vehicle. Total bits required
for storing the information would be 8 bits, that is one byte. It means that the total information
can be packed into a single byte. Eventually bit fields are used for conserving the memory. The
amount of memory saved by using bit fields will be substantial which is proved from the above
example.

However, there are restrictions on bit fields when arrays are used. Arrays of bit fields are not
permitted. Also the pointer cannot be used for addressing the bit field directly, although the use of
the member access operator (->) is acceptable. The unnamed bit fields could be used for padding
as well as for alignment purposes.

(1) Bits fields should have integral type. A pointer and array type is now allowed.
(2) Address of bit fields cannot be obtained using & operator.

The class for the above problem would be as follows:

class vehicle
{
 unsigned type: 3;
 unsigned fuel: 2;
 unsigned model: 3;
};

The colon (:) in the above declaration tells to the compiler that bit fields are used in the class

318 Classes and Objects

and the number after it indicates how many bits are required to allot for the field. A simple pro-
gram is illustrated as follows:

8.41 Write a program to use bit fields with classes and display the contents of the bit
fields.

#include<conio.h>
#include<iostream.h>
#define PETROL 1
#define DISEL 2
#define TWO_WH 3
#define FOUR_WH 4
#define OLD 5
#define NEW 6
class vehicle
{
 private :
 unsigned type : 3;
 unsigned fuel : 2;
 unsigned model :3;
 public:
 vehicle()
 {
 type=FOUR_WH;
 fuel=PETROL;
 model=NEW;
 }
 void show()
 {
 if (model==NEW)
 cout<<“\n New Model ”;
 else
 cout<<“\n Old Model ”;
 cout<<“\n Type of Vehicle : ”<< type;
 cout<<“\n Fuel : ”<<fuel;
 }
};
int main()
{
 clrscr();
 vehicle v;
 cout<<“ Size of Object : ”<<sizeof(v)<<endl;

 v.show();

Nested class 319

 return 0;
}

OUTPUT

Size of Object : 1
New Model
Type of Vehicle : 4
Fuel : 1

Explanation: In the above program, using #define macros are declared. The information about
the vehicle is indicated with integers from 1 to 6. The class vehicle is declared with bit
fields. The number of bits required for each member is initialized. As per the program, type
of vehicle requires 3 bits, fuel requires 2 bits, and model requires 3 bits. An object
v is declared. The constructor initializes bits fields with data. The output of the program displays
integer value stored in the bit fields, which can be verified with macro definitions initialized at
the beginning of the program.

8.33 NESTED class

When a class is defined in another class, it is known as nesting of classes. In nested class
the scope of inner class is restricted by outer class. Simple programming example using
public specifier is demonstrated for understanding.

8.42 Write a program to display some message using nested class.

#include<iostream.h>
#include<conio.h>
class one
{
 public:
 class two
 {
 public:
 void display()
 {
 cout<< “Wonderful language C++\n”;
 }
 };
};
int main()
{
 clrscr();
 one::two x;
 x.display();

320 Classes and Objects

 return 0;
}

OUTPUT

Wonderful language C++

Explanation: In the above example, one class is nested in another; that is class two is nested
in class one. By using scope resolution operator, the inner class member function is ac-
cessed and “Wonderful language C++” is displayed in the above program.

8.34 MORE PROGRAMS

8.43 Write a program to accept string and display the string. Use null character for deter-
mining the end of string.

#include<iostream.h>
#include<conio.h>
class text
{
 char str[50];
 public :

 void get()
 {
 cout<<“Enter text : ”;
 cin.getline(str,50);
 }

 show (int x)
 {
 if (str[x]==’\0’)
 return 0;
 else
 {
 cout<<str[x];
 return 1;
 }
 }
};
int main()
{
 clrscr();
 int k=-1;
 text s;
 s.get();

More Programs 321

 cout<<“Entered text : ”;
 while (s.show (++k));
 return 0;
}

OUTPUT

Enter text : Object Oriented Programming
Entered text : Object Oriented Programming

Explanation: In the above program, the class text is defined with one data member of char-
acter type. The get() function is used to read text through the keyboard. The show() function
is defined with integer argument. The show() function displays the string character by char-
acter. The integer variable x shows the element number in the character array str[50]. The
if statement checks whether the current character is null or other. If the character is null then it
returns 0, otherwise it displays the character and returns 1. In function main(), s is an object
of class text. The object s calls gets() and reads text.

The show() function is called within the bracket of while loop. The integer variable k
is incremented before passing it to the function show(). In the statement, ++k increment first
takes place and then incremented value is sent. The array element counting starts from zero. In
order to display the string from first character, the initial value of k should be 0. Thus, initializing
k to –1 and applying increment operator as prefix can do this.

We know that the while loop is executed till the given test condition evaluates to 1. Thus,
till the function show() returns 1 the loop is executed and when it returns 0 the loop is termi-
nated. The function show() returns 0 only when it reaches the end of text. Meanwhile, the
entire text is displayed on the screen.

8.44 Write a program to enter two strings and concatenate them. Display the resulting
string.

#include<iostream.h>
#include<string.h>
#include<conio.h>
class text
{
 char str1[15];
 char str2[15];
 char str3[30];
 public :

 void get()
 {
 cout<<“\n Enter First String : ”;
 cin.getline(str1,15);
 cout<<“\n Enter Second String : ”;

322 Classes and Objects

 cin.getline (str2,15);
 }

 len()
 {
 return (strlen(str1));}

 void show()
 {
 cout<<“\nFirst String : ”<<str1;
 cout<<“\nSecond Strng : ”<<str2;
 cout<<“\nThird String : ”<<str3;
 }
 combine (int x,int y)
 {
 str3[x]=str1[x];
 if (x>=y)
 str3[x]=str2[x-y];
 if (str2[x-y]==’\0’)
 return 0;
 else
 return 1;
 }
};
int main()
{
 clrscr();
 int k=-1,y;
 text s;
 s.get();
 y=s.len();
 while (s.combine (++k,y));
 s.show();
return 0;
}

OUTPUT

Enter First String : CPLUS
Enter Second String : PLUS
First String : CPLUS
Second String : PLUS
Third String : CPLUSPLUS

Explanation: In the above program, the class text has three character array data members,
namely str1[15], str2[15], and str3[30], and has also four member functions, name-
ly get(), len(), show(), and combine(). The get() function is used to read strings
through the keyboard; the len() function returns the length of the first string; the show()
function displays the strings; and the combine() function combines the first and second strings
and assigns to the third string. The integer variable k is initialized to –1. The integer variable y
contains the length of the first string. The function combine() is called within the bracket of
while loop and two integers variable k and y are passed.

In combine() function, x indicates character element position in character arrays
str3[] and str1[]. The statement str3[x]=str1[x] assigns characters of str1[]
array-to-array str3[]. This assignment continuous till x >= y (y is length of the first string).
When x is greater than y, the statement str3[x]=str2[x-y] is executed; that is, assign-
ment of second string is now carried out.

The x-y displays the element number of second string. The second if statement in the com-
bine() function checks whether the null character has met or not. If yes it returns 0, otherwise
1. The values 0 or 1 returned by combine() are collected by the while loop. The while loop
is executed till it gets 1 from function combine(). When the combine() function returns 0,
the while loop is terminated. The show() function after while loop displays all the strings.

 TIP
The reader may be in confusion as to why so much effort is required to write simple programs in C++. We
can easily solve these problems with very short codes in C. The objective is to master how to solve these
problems using OO concepts and to make the reader think more on objects. In the previous examples, the
reader might have noticed that even for a small task, it might be calculation or comparison, and for every
task, we defined member functions. The class should provide every operation in the form of method or
member function needed by objects and the object should not be dependent on main() or other non-
member function for any requirement. This is the pure object-oriented programming.

8.45 Write a program to declare data member of a class as public. Initialize and display
them without using function.

#include<iostream.h>
#include<conio.h>
class boy
{ public:
 int weight;
 float height;
};
int main()
{
 clrscr();
 boy raj, sonu;

More Programs 323

324 Classes and Objects

 raj.weight=35;
 raj.height=4.5;

 sonu.weight=30;
 sonu.height=4.1;
 cout<<“\n Weight of Raj = ”<<raj.weight;
 cout<<“ Height of Raj = ”<<raj.height;
 cout<<“\n Weight of Sonu = ”<<sonu.weight;
 cout<<“ Height of Sonu = ”<<sonu.height;
 return 0;
}

OUTPUT

Weight of Raj = 35 Height of Raj = 4.5
Weight of Sonu = 30 Height of Sonu = 4.1

Explanation: In the above program, the class boy contains two public members, namely
weight and height. The members are public and can be accessed directly without using
member function. In function raj and sonu are two objects of the class boy. The data ele-
ments of weight and height of both objects are initialized and displayed.

8.46 Write a program to declare constant member function arguments.

#include<iostream.h>
#include<conio.h>
class data
{
 private :
 int d;
 public :
 void set() { d=10; }
 void show() { cout<<endl<<“d=”<<d; }
 void sub (data const &a, data const &b)
 { d=a.d-b.d; }
};
int main()
{
 clrscr();
 data a,b,c;
 a.set();
 b.set();
 c.sub(a,b);
 c.show();

 return 0;
}

OUTPUT

D=0

Explanation: In the above program, the arguments of function sub() are declared as constant.
Hence, an attempt to modify these arguments will generate an error. Thus, by declaring the mem-
ber variable arguments const, we can prevent them from modification.

8.47 Write a program to show the difference between private and public data members
of a class.

#include<iostream.h>
#include<conio.h>
class player
{
 private :
 char name[20];
 int age;
 public :
 float height;
 float weight;
};
int main()
{
 clrscr();
 class player a;
 // a.name =”Sanjay”; // not accessible
 a.height=5.5;
 a.weight=38;
 cout<<“Height : ” <<a.height;
 cout<<“\nWeight : ” <<a.weight;
 return 0;
}

OUTPUT

Height : 5.5
Weight : 38

Explanation: In the above program, a class player is defined with four member variables
char name[20], int age, float height, and float weight. The first two members
are private and last two members are public. In the function main(), a is an object

More Programs 325

326 Classes and Objects

of type class player. The public member variables of class player are height and
weight initialized with 5.5 and 38, respectively, through object a. It is not possible to ac-
cess the private member of the class directly. Hence, the variables name and age can-
not be accessed. Any attempt to access them through the object will display an error message
“‘player::name’ is not accessible” or “ ‘player::age’ is not accessible”.

8.48 Write a program to initialize private and public member variables of the class.
Display the contents of member variables.

#include<iostream.h>
#include<conio.h>
class num
{
 int x;
 float y;

 public :
 char z;
 void readdata(int j, float k)
 {
 x=j;
 y=k;
 }

 void display()
 {
 cout<<“x=”<<x <<“ y=”<<y;
 }
};

int main()
{
 clrscr();
 class num j;
 j.z=’C’;
 j.readdata(10,10.5);
 j.display();
 cout<<“ z= ”<<j.z;
 return 0;
}

OUTPUT

x=10 y=10.5 z= C

Explanation: In the above example, the class num contains private as well as public
member variables. The two private member variables x and y are assigned values using member

functions. The public member variable z is assigned directly in function main(). The variable
j is an object, readdata() is a member function. The variables j and k are parameters to be
passed. Consider the following statements.

a) j.y=10.5 // invalid statement
b) j.z=’C’ // valid statement

The statement (a) is invalid because member variable y is private whereas statement (b) is a
valid because member variable z is public and accessible by the object of the same class.

8.34.1 Member Function Inside the class

8.49 Write a program to declare class with member variables and functions. Read and
display the data using the member functions.

#include<iostream.h>
#include<conio.h>
class player
{
 private :

 char name[20];
 int age;
 float height;
 float weight;
 public:
 void setdata()
 {
 cout<<“Enter Name Age Height Weight \n”;
 cin>>> name >>age >> height >> weight;
 }

 void show()
 {
 cout<<“\nName :” <<name;
 cout<<“\nAge :” <<age;
 cout<<“\nHeight :” <<height;
 cout<<“\nWeight :” <<weight;
 }
};
int main()
{
 clrscr();
 class player a;
 a.setdata();
 a.show();

More Programs 327

328 Classes and Objects

 return 0;
}

OUTPUT

Enter Name Age Height Weight
Sanjay 24 5.5 54
Name :Sanjay
Age :24
Height :5.5
Weight :54

Explanation: In the above program, the class player contains four private member vari-
ables and two public member functions setdata() and show().The definition of both the
functions is inside the class. In the previous example, we noticed that the object of any
class could not access the private member variables of the class. To access the private member
variables of the class, member function of that class are used. In this program, setdata()
and show() are the member functions of class player. The setdata() function reads
data through the keyboard and show() functions display the data on the screen. These member
functions cannot be called directly as ordinary functions. Consider the statement a.setdata().
Here, a is an object of class player followed dot(.) operator and function name.
An attempt to call these member functions directly without using object of that class will gener-
ate an error in the program such as “Function ‘ ‘ should ‘ ‘ have a prototype”.

In this program, function definition of the member function is inside the class. It is also
possible to put prototype of the function inside the class and definition outside the class.
While defining the function, it is necessary to specify class name followed by scope access
operator. This declaration tells the compiler the relation between the class and the member
function. For understanding this concept, the following program is illustrated as follows.

8.34.2 Member Function Outside the class

8.50 Write a program to declare class with member variables and functions. Read
and display the data using the member functions. Declare function definition outside the
class.

#include<iostream.h>
#include<conio.h>
class player
{
 private :
 char name[20];
 int age;
 float height;
 float weight;
 public:

 void setdata();
 void show();
};
void player :: setdata()
{
 cout<<“Enter Name Age Height Weight \n”;
 cin>>> name >>age >> height >> weight;
}
void player :: show()
{
 cout<<“\nName :” <<name;
 cout<<“\nAge :” <<age;
 cout<<“\nHeight :” <<height;
 cout<<“\nWeight :” <<weight;
}
int main()
{
 clrscr();
 class player a;
 a.setdata();
 a.show();
 return 0;
}

OUTPUT

Enter Name Age Height Weight
Ajay 24 5.2 45
Name :Ajay
Age :24
Height :5.2
Weight :45

Explanation: The above program is same as previous one. The only difference is that the func-
tion definition of the member functions is outside the class. The prototypes of these functions
are inside the class, which are enough for these functions to join membership with class
player.

Consider the following statements.

void player:: setdata()
Void player:: show()

Both these statements tell the compiler that the functions setdata() and show() are member
functions of class player.

So far we declared the entire member functions as public. It is also possible to declare member
functions as private. A private function can be called only from public member functions. Even an

More Programs 329

330 Classes and Objects

object of same class cannot access the private function. An example is illustrated below based
on this idea.

8.34.3 Private Member Functions

8.51 Write a program to declare private member function and call this member function
using another public member function.

#include<iostream.h>
#include<conio.h>
#include<math.h>
class num
{
 private :
 int x;
 int sqr(int);
 public:

 input()
 {
 int n;
 cout<<“Enter a Non-zero Number :”;
 cin>>>n;
 return sqr(n);
 }
};
num :: sqr (int k)
{
 return k*k;
}
int main()
{
 clrscr();
 int sq;
 class num j;
 sq=j.input();
 cout<<“\nSquare of ”<<sqrt(sq) <<“ is ” <<sq;

 // j.sqr(5); not accessible

 return 0;
}

OUTPUT

Enter a Non-zero Number : 25
Square of 25 is 625

Explanation: In the above program, the function sqr() is declared as private and the func-
tion input() as public. The input() function reads an integer through the keyboard and
calls the private function sqr(). The function sqr() calculates the square of the number
and returns result to the input() function. The input() function again returns this value to
the variable sq declared in main(). The last cout statement displays the entered number and
its square. The statement given in remark is invalid statement, because an object cannot access
private member. The input() public function acts as an inter-mediator in between pri-
vate function and an object of the class. Without public functions, it is not possible for
the object to access private functions.

8.52 Write a program to enter hours. Convert it into seconds and minutes. Display re-
sults.

#include<iostream.h>
#include<conio.h>
class hour
{
 int hours;
 int minutes;
 int seconds;
 public :
 void input(void);
 void show(void);
 void convert();
};
void hour :: input()
{
 cout<<“\n Enter Hour: ”;
 cin>>>hours;
}
void hour :: show()
{
 cout<<“ Hour = ” <<hours <<“ Minute = ”<<minutes <<“ Second = ” <<sec-

onds;
}
void hour :: convert()
{ minutes=hours*60;
 seconds=minutes*60;}
main()
{ clrscr();
 hour X,Z;
 cout<<“\n Object X”;
 X.input();
 X.convert();
 cout<<“\nX : ”;

More Programs 331

332 Classes and Objects

 X.show();
 return 0;
}

OUTPUT

Object X
Enter Hour : 4
X : Hour = 4 Minute = 240 Second = 14400

Explanation: In the above program, the class hour is declared with three integer members
and three member functions. The input() function reads number of hours through the key-
board. The function convert() calculates minutes and seconds and assigns results to minutes
and seconds variables. The function show() displays the contents of all the member variables.
In the function main(), X is an object of class hour. The object X calls all the member
functions one by one. The values of member variables after execution are displayed at the output.

8.53 Write a program to count the number of vowels present in the entered string.

#include<stdio.h>
#include<iostream.h>
#include<conio.h>
#include<ctype.h>
#include<string.h>
struct vowels
{
 private :
 char str [20];
 public :
 void input()
 {
 cout<<“Enter text in small case : ”;
 gets(str);
 }
 length()
 {
 int l=strlen(str);
 return l;
 }
 vowel (int x)
 {
 if (str[x]==’a’ || str[x]==’e’ || str[x]==’i’ || str[x]==’o’ ||
str[x]==’u’)

 {
 cout<<“ ” <<str[x];
 return 1;

 }
 else
 return 0;
 }
};
main()
{
 clrscr();
 int i,l,c=0;
 vowels b;
 b.input();
 l=b.length();
 for (i=0;i<l;i++)
 {
 c=c+b.vowel(i);
}
cout<<“\n”<<c<<“ Vowels are present in the string”;
return 0;
}

OUTPUT

Enter text in small case : Programming
o a i
3 Vowels are present in the string

Explanation: In the above program, instead of class keyword struct keyword is used. The
struct vowels has only one member variable, which is a character array str. The function
input() reads text through the keyboard and assigns it to the member variable str[20].
The function length() determines the length of the string. The function vowel() when
called receives an integer from calling function. The if statement checks whether the (x) the
character of the string is vowel or consonant. If it is one of the vowels, the function returns 1
otherwise 0.

In main(), b is an object of struct vowels. Using for loop, the object b calls the func-
tion vowel() repetitively. The return value (0 or 1) is added to a variable c during repetitive
calls. The value of c finally displays the number of vowels present in the string.

8.54 Write a program to enter text. Find a given character in the string and replace it with
another given character.

#include<stdio.h>
#include<iostream.h>
#include<conio.h>
#include<string.h>
class fandr

More Programs 333

334 Classes and Objects

{
 char str [40];
 char f;
 char r;
 public :

 void accept()
 {
 cout<<“ Enter text : ”;
 cin.getline(str,40);
 cout<<“ Find what (char) : ”;
 f=getche();
 cout<<“\n Replace with (char) : ”;
 r=getche();
 }

 void display (int d)
 {
 cout.put(str[d]);
 }

 len()
 { int l=strlen(str);
 return(l);
 }

 void find (int i)
 {
 if (str[i]==f)
 replace(i);
 }

 void replace (int k)
 { str[k]=r; }
};

main()
{
 clrscr();
 int i,l;
 fandr b;
 b.accept();
 l=b.len();
 cout<<“\n Replaced text : ”;
 for (i=0;i<l;i++)
 {
 b.find(i);
 b.display(i);

 }

return 0;
}

OUTPUT

Enter text : Progra__er
Find what (char) : _
Replace with (char) : m
Replaced text : Programmer

Explanation: In the above program, the class fandr have three character data type member
variables. The function accept() reads the text through the keyboard. Here, the function cin.
getline(str, 40) is used to connect with the keyboard. The first argument is the name
of array and second is size of array. Followed by this, the character to be traced and
replaced is entered in variable f and r. The function len() is obviously used for calculating
length of the string. The function find() receives an integer from calling function. The if state-
ment checks whether the specified character by the integer is equal to a given character or not.
If the character is found, the replace() function is called which replaces the traced character
with value of ‘r’ variable. The for loop in main() function repetitively calls the functions
find() and display(). Remember, the function replace() is called by find() function
whenever the if condition is true. The cout.put() is used to display the character on the
screen. Thus, find and replace operations execute.

8.55 Write a program to find largest out of ten numbers.

#include<iostream.h>
#include<conio.h>
#include<process.h>
class num {

int number[10];
public :
input (int i)
{
 cout<<“ Enter Number (“<<i+1<<”) :” ;
 cin>>>number[i];
 return(number[i]);
}

void large (int s, int m)
{
 if (number[s]==m)
 {
 cout<<“\n Largest number : ”<<number[s];
 exit(1);
 }

More Programs 335

336 Classes and Objects

}
};

main()
{
clrscr();
int i,sum=0,k;
num b;

for (i=0;i<10;i++)
sum=sum+ b.input(i);

for (k=sum;k>=0;k--)
{
 for (i=0;i<10;i++)
 b.large(i,k);
}
return 0;
}

OUTPUT

Enter Number (1) :125
Enter Number (2) :654
Enter Number (3) :246
Enter Number (4) :945
Enter Number (5) :258
Enter Number (6) :159
Enter Number (7) :845
Enter Number (8) :940
Enter Number (9) :944
Enter Number (10) :485
Largest number : 945

Explanation: In the above program, the class num has one integer array as its member
variable with element size 10 (number[10]). The input() function reads an integer through
the keyboard and returns it to main() function. The first for loop repetitively calls function
input(). The return value of input() function is added to variable sum. The second and
third for loops together are used to find the largest number in the array. The second and
third for loop variables are used as arguments for the function large(). As per iteration,
the successive element numbers and decremented value of sum assigned to variable k. The val-
ues of variables k and loop variable i are sent to function large(). In each third for loop
iteration, the second for loop executes once and value of sum is decremented. The if condi-
tion in large() function checks both the arguments. If the arguments are the same, the largest
number is displayed, and the exit(1) function terminates the program, otherwise the program
execution continues.

8.56 Write a program to count the numbers between 1 and 100, which are not divisible by
2,3, and 5.

#include<stdio.h>
#include<iostream.h>
#include<conio.h>
class div
{
 static int num;
 public :
 void check(int n)
 {
 if (n%2!=0 && n%3!=0 && n%5!=0)
 {
 cout<<n <<“\t”;
 num++;
 }
 }
 void show()
{ cout<<endl <<“\n Total numbers : ”<<num; }
 void loop();
};
void div :: loop()
{
 int x;
 cout<<endl<<“\n Numbers from 1 to 100 not divisible by 2,3 & 5\n\n”;
 for (x=0 ;x<=100;x++)
 check(x);
}
int div :: num=0;
int main()
{
 clrscr();
 int x;
 div d;
 d.loop();
 d.show();
 return 0;
}

OUTPUT

Numbers from 1 to 100 not divisible by 2,3 & 5
1 7 11 13 17 19 23 29 31 37

More Programs 337

338 Classes and Objects

41 43 47 49 53 59 61 67 71 73
77 79 83 89 91 97
Total numbers : 26

Explanation: In the above program, the class div is declared with one static data member
variable, that is num. The class div also contains member functions check(), show(),
and loop(). The function check() checks the received value with if statement whether it
is divisible by 2, 3, and 5 or not. If it is not divisible, the number is displayed and the value of
static data member num is incremented. The loop() function contains for loop and calls
the function check() with one argument. The prototype of function is given inside the class
and definition outside the function, because the member function with any loop defined inside
the class cannot be expanded inline and will result in a warning message. The more applica-
ble practice is to write the definition of this kind of function outside the class. The function
show() displays the total number of numbers that satisfies the condition. The object d declared
in function main() invokes the member functions loop() and show().

8.57 Write a program to generate the nth Fibonacci number by using recursion.

Fibonacci series:1 1 2 3 5 8 13

#include<iostream.h>
#include<conio.h>
class Fibonacci
{
 public:
 fib(int x)
 {
 int f;
 if(x==0)
 return 0;
 if(x==1)
 return 1;
 else
 f=fib(x-1)+fib(x-2);
 return f;
 }
};
int main()
{
 clrscr();
 Fibonacci a;
 int y;
 cout<<“\nEnter the number:”;

 cin>>y;
 cout<<“\nSum of Fibonacci numbers upto ”<<y<<“ is ”<<a.fib(y);
 getch();
 return 0;
}
Output:
Enter the number:7
Sum of Fibonacci numbers upto 7 is 13

SUMMARy

(1) A class in C++ is similar to structure
in C. Using class or structure, a pro-
grammer can merge one or more dissim-
ilar data types and a new custom data
type can be created.

(2) In C++, classes and structures contain
member variables and member func-
tions in their declarations with pri-
vate and public access blocks that
restrict the unauthorized use. The de-
fined classes and structures further can
be used as custom data type in the pro-
gram to declare objects.

(3) The private and public are new key-
words in C++. The private keyword is
used to protect specified data and func-
tions from illegal use whereas the pub-
lic keyword allows access permission.

(4) The member function can be defined
as private or public inside the
class or outside the class.

(5) To access private data members of a
class, member functions are used.

(6) The difference between member func-
tion and normal function is that the
normal function can be invoked freely,
whereas the member function can be in-
voked only using the object of the same
class.

(7) The static is a keyword used to pre-
serve the value of a variable. When a

variable is declared as static, it is ini-
tialized to zero. A static function or
data element is only recognized inside
the scope of the present compile.

(8) When a function is defined as stat-
ic, it can access only static mem-
ber variables and functions of the same
class. The static member func-
tions are called using its class name
without using its objects.

(9) The member functions of a class
can also be declared as constant using
const keyword. The constant func-
tions cannot modify any data in the
class.

(10) An object of a class can be passed
to the function as arguments like vari-
ables of other data type. When an object
is passed-by-value, then this method is
called as pass-by-value, whereas
when reference of an object is passed to
the function then this method is called as
pass-by-reference.

(11) When classes are declared inside a func-
tion, then such classes are called as local
classes. The local classes have access
permission to global variables as well
as static variables. The local classes
should not have static data member
and functions.

Summary 339

340 Classes and Objects

EXERCISES

(A) Answer the following questions

(1) Explain class and struct with
their differences.

(2) Which operators are used to access
members?

(3) Explain the uses of private and
public keywords. How are they dif-
ferent from each other?

(4) Explain the features of a member func-
tion.

(5) What are static member variables
and functions?

(6) How are static variables initialized?
Explain with a statement.

(7) What are friend functions and
friend classes?

(8) How are static functions and friend
functions invoked?

(9) What do you mean by constant

function?
(10) What are local classes?
(11) What is recursion?
(12) What are bit fields?
(13) List the keywords terminated with a co-

lon with their use.
(14) Can member functions be private?
(15) What is the concept of data hiding?

What are its advantages in applica-
tions?

(16) Is it possible to access private data
members without using member func-
tion? If yes, explain the procedure with
an example.

(17) What are static objects?
(18) What is the difference between object

and variable?

(B) Answer the following by selecting the appropriate option

(1) The members of a class are by default
(a) private
(b) public
(c) protected
(d) none of the above

(2) class data members can be accessed by
(a) public member functions
(b) private member function
(c) both (a) and (b)
(d) none of the above

(3) The objects of class can directly access
(a) public members
(b) private members
(c) protected members
(d) all of the above

(4) The private data members can be ac-
cessed through functions declared under
(a) private section
(b) public section
(c) protected section
(d) all of the above

(5) The protected data members can be ac-
cessed by private and protected member
functions using
(a) non-member functions
(b) public member functions
(c) directly by object
(d) scope resolution operator

(6) For data hiding, data are generally de-
clared in
(a) private section
(b) public section
(c) both (a) and (b)
(d) none of the above

(7) class declaration provides
(a) data hiding
(b) abstraction
(c) encapsulation
(d) all of the above

(8) Member functions can be defined
(a) only inside the class
(b) only outside the class

Exercises 341

(c) inside as well as outside class
(d) none of the above

(9) A class contains
(a) only data
(b) only functions
(c) data and functions
(d) neither data nor functions

(10) When a class is defined, memory al-
location is done
(a) at the same time
(b) when objects are declared
(c) when functions are called
(d) when values are passed

(11) Private data are accessible to
(a) objects directly
(b) objects through public member

functions
(c) main function
(d) none of the above

(12) Public data members and functions are
accessible by
(a) objects directly
(b) private members
(c) external function
(d) both (a) and (c)

(13) Inline function is not possible when
(a) a function contains a loop
(b) goto statement exists
(c) both (a) and (b)
(d) none of the above

(14) Functions defined outside the class
can be accessed using
(a) scope resolution operator
(b) logical operator
(c) reference
(d) arithmetic operator

(15) Inline function
(a) saves memory
(b) takes extra time
(c) executes slowly
(d) wastes memory

(16) An inline function
(a) duplicates code
(b) speeds up the execution
(c) both (a) and (b)
(d) neither (a) nor (b)

(17) When inline function is called
(a) control is passed to function

(b) function is executed directly
(c) function code is replaced at that

point
(d) none of the above

(18) The public member function can access
(a) private data
(b) public data
(c) protected data
(d) all of the above

(19) Public data can be accessed by
(a) private member function
(b) public member function
(c) protected member function
(d) all of the above

(20) By default, all member functions de-
fined inside the class are treated as
(a) inline function
(b) external functions
(c) main function
(d) none of the above

(21) An encapsulated object is often called as
(a) abstract data type
(b) abstract class
(c) both (a) and (b)
(d) neither (a) nor (b)

(22) When one member function is called
inside another member function, it is
called
(a) cascading functions
(b) referencing functions
(c) nesting member function
(d) none of the above

(23) static data member is stored in
memory as
(a) only one copy
(b) number of copies
(c) two copies
(d) no copy

(24) When a variable is declared as stat-
ic, it is
(a) initialized to one
(b) initialized to zero
(c) not initialized
(d) none of the above

(25) A static data member can be recog-
nized
(a) inside scope of class
(b) outside the class

342 Classes and Objects

(c) in main() function
(d) in non-member function

(26) When a variable is declared as stat-
ic, objects share
(a) common data
(b) different data
(c) no data
(d) none of the above

(27) A static variable is accessible only
within
(a) class
(b) main() function
(c) non-member function
(d) none of the above

(28) The memory for static data member
is allocated
(a) only once
(b) twice
(c) thrice
(d) number of times

(29) If count is a static data member and
item is a class, then

int item::count;
 what is the value of count in-
itially?

(a) zero
(b) one
(c) no value
(d) cannot be determined.

(30) Initialization of static data member
must be done
(a) inside the class
(b) right after class definition
(c) in main() function
(d) in member function

(31) Which static data member can
be accessed by objects of the same
class?
(a) private
(b) protected

(c) public
(d) none of the above

(32) A static member function can ac-
cess
(a) only static member variable
(b) non-static member variable
(c) static as well as non-static

variables
(d) only non-static member vari-

able
(33) A static member function can be

called by
(a) objects only
(b) class name and scope resolu-

tion operator
(c) object as well as class name

and scope resolution operator
(d) none of the above

(34) A private static member function
can be accessed by
(a) private static member function
(b) public static member function
(c) objects of class
(d) both (a) and (b)

(35) A non-member function that can access
the private data of class is known as
(a) friend function
(b) static function
(c) member function
(d) library function

(36) The size of object is equal to
(a) total size of data variables
(b) total size of member functions
(c) both (a) and (b)
(d) none of the above

(37) The class without any data members
or member functions is called as
(a) empty class
(b) non-empty class
(c) both a and b
(d) none of the above

(C) Attempt the following programs
(1) Write a program to declare a class with

three integer public data variables. Initial-
ize and display them.

(2) Write a program to declare private data
member variables and public member
function. Read and display the values of
data member variables.

(3) Write a program to declare private data
member and a function. Also declare a
public member function. Read and dis-
play the data using private function.

(4) Write a program to declare three classes
S1, S2, and S2. The classes have a pri-
vate data member variable of character
data type. Read strings for the classes
S1 and S2. Concatenate the strings read
and assign it to the data member variable
of class S3.

(5) Write a program to enter positive and
negative numbers. Enter at least 10
numbers. Count the positive and nega-
tive numbers using classes and objects.

(6) Write a program to declare class
with private member variables. Declare
member function as static. Read and
display the values of member variables.

(7) Write a program to declare a class
temp_ture as given below. Declare
an array of five objects. Read and dis-
play the data using arrays.

class temp_ture
{
 private:
 char date[12],

ct1[15], ct2[15],
ct3[15], ct4[15];

 int temp [4]
}

(8) Write a program to declare a class
with two integers. Read values using a
member function. Pass the object to an-
other member function. Display the dif-
ference between them.

(9) Write a program to define three classes.
Define a friend function. Read and

display the data for three classes using
common functions. Use friend func-
tions.

(10) Write a program to define a local
class. Also define global variables
with the same name as that of member
variables of class. Read and display
the data for global and member vari-
ables.

(11) Write a program to generate Fibonacci
series using recursion with member
function.

(12) Write a program to overload a member
function and display the string, int,
and float using overloading function.

(13) Write a program to calculate sum of dig-
its of an entered number using indirect
recursion. Recursion should be between
main() and member function.

(14) Write a program to display a string in
reverse using recursion.

(15) Write a program to add numbers from
1 to 10.

(16) Write a program to find area of a right
angle triangle.

(17) Write a program to compute area and
perimeter of a square.

(18) Write a program to compute average
marks obtained by a student in five sub-
jects.

(19) Write a program to display even num-
bers from 1 to 10.

(20) Write a program to display numbers di-
visible by 5 between 1 and 100.

(21) Write a program to display numbers di-
visible by 11 and 3 between 1 and 100.

(22) Write a program to find area of a cube.
(23) Write a program to find negative and

positive numbers of an array.

(D) Find the bugs in the following programs

(1)

class data
{
 private ;
};

(2)

class data
{
 private:
 int x=20;
}

Exercises 343

344 Classes and Objects

(3)

#include<iostream.h>
#include<conio.h>
class data
{ int x; };
void main()
{ data A;
A.x=30; }

(4)

#include<iostream.h>
#include<conio.h>
class data
{ int x;
 public:
 void show(void);
};
void show() { cout<<“\n
In show()”; }
void main()
{ data A;
A.show(); }

(5)

class
{
 public:
 void print()
 { cout<<a; }
};
void main()
{
}

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology
	1.5 Disadvantage of Conventional Programming
	1.6 Programming Paradigms
	(1) Monolithic Programming
	(2) Procedural/Structured Programming

	1.7 Preface to Object Oriented Programming
	1.8 Key Concepts of Object Oriented Programming
	(1) Objects
	(2) Classes
	(3) Method
	(4) Data Abstraction
	(5) Encapsulation
	(6) Inheritance
	(7) Polymorphism
	(8) Dynamic Binding
	(9) Message passing
	(10) Reusability
	(11) Delegation
	(12) Genericity

	1.9 Advantages of OOP
	1.10 Object Oriented Languages
	SMALTALK
	CHARM++
	JAVA

	1.11 Usage of OOP
	1.12 Usage of C++
	Summary
	Exercises

	Chapter 2 : Basics of C++
	2.1 Introduction
	2.2 Steps to Create and Execute a C++ Program
	2.3 Flowchart for Creating a Source File, Compiling, Linkingand Executing in C++
	2.4 C++ Environments
	2.5 Typical C++ Environment (Borland C++)
	Step 1: Open any Text Editor
	Step 2: Write the Code for the Program
	Step 3: Save the File with .CPP AS an Extension
	Step 4: Compile the Program
	Step 5: Run the Program

	2.6 Structure of a C++ Program
	2.7 Illustrative Simple Program in C++ without Class
	2.8 Header Files and Libraries
	Summary
	Exercises

	Chapter 3 : Input and Output in C++
	3.1 Introduction
	3.2 Streams in C++ and Stream Classes
	3.3 Pre-defined Streams
	3.4 Buffering
	3.5 Stream Classes
	3.6 Formatted and Unformatted Data
	3.7 Unformatted Console I/O Operations
	Input and Output Streams

	3.8 Type Casting with the cout Statement
	3.9 Member Functions of the istream Class
	3.10 Formatted Console I/O Operations
	3.11 Bit Fields
	3.12 Flags without Bit Fields

