
C
h

a
p

t
e

r
 O

u
t

l
in

e

C h a p t e r

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

3.1 Introduction

3.2 Streams in C++ and Stream Classes

3.3 Pre-defined Streams

3.4 Buffering

3.5 Stream Classes

3.6 Formatted and Unformatted Data

3.7 Unformatted Console I/O Operations

3.8 Type Casting with the cout Statement

3.9 Member Functions of the istream Class

3.10 Formatted Console I/O Operations

3.11 Bit Fields

3.12 Flags without Bit Field

3.13 Manipulators

3.14 User-defined Manipulators

3.15 Manipulator with One Parameter

3.16 Manipulators with Multiple Parameters

3.17 More Programs

3Input and Output
in C++

3.1 intrODuCtiOn

Computer applications generally involve tremendous amount of data to be read from input de-
vices and sending them to the output devices. Hence, to control such operations, every program-
ming language provides a set of inbuilt functions. C++ supports all input/output (I/O) functions
of C. C++ also has library functions. A library is a set of .obj files, which is linked to the
program and gives additional beneficial support with its functions. The programmer can use the
library functions in the programs. The library is also called as iostream library. The difference

C
h

a
p

t
e

r
 O

u
t

l
in

e

34 Input and Output in C++

between C and C++ I/O function is that C functions do not support object-oriented platform
whereas C++ supports object-oriented platform.

3.2 StreaMS in C++ anD StreaM ClaSSeS

The C++ supports a number of I/O operations to perform read and write operations. These
C++ I/O functions help the user to work with different types of devices such as keyboard, disk,

tape drivers, etc. Stream is an inter-medi-
ator between I/O devices and the user. The
standard C++ library contains the I/O stream
functions. The I/O functions are part of the
standard library that provides portability to
the language itself. A library is a set of .obj
files connected to the user’s program.

The stream is a flow of data, measured
in bytes, in sequence. If data is received from
input devices in sequence, then it is called as
source stream, and when the data is passed to
output devices, then it is called as destination
stream. This process of flow of data is also
known as encapsulation through streams. The
data is received from the keyboard or disk and
can be passed to the monitor or to the disk.
Figure 3.1 describes the concept of stream
with input and output devices.

The data in source stream can be used
as input data by the program. So, the source
stream is also called as input stream. The
destination stream that collects output data
from the program is known as the output
stream. The mechanism of the input and out-
put stream is illustrated in Figure 3.2.

As discussed earlier, the stream is an
inter-mediator between I/O devices and the
user. The input stream receives data from
keyboard or storage devices such as hard
disk, floppy disk, etc. The data present in out-
put stream is passed on to the output devices
such as monitor or printer according to the
user’s choice.

3.3 pre-DeFineD StreaMS

C++ has a number of pre-defined streams. These pre-defined streams are also called as standard
I/O objects. These streams are automatically activated when program execution starts. Table 3.1
describes the pre-defined streams.

Input Stream Output Stream

Program

Input Devices Output Devices

Extraction of
inputted data

Entry into input
stream

 Fig. 3.2 C++ input and output streams

Keyboard Monitor

Disk Disk

Stream

 Fig. 3.1 Streams and I/O devices

Buffering 35

 table 3.1 Pre-defined C++ Stream or I/O Global Objects
cin Standard input, usually keyboard, corresponding to stdin in C. It handles input from

input devices usually from keyboard.

cout Standard output, usually screen, corresponding to stdout in C. It passes data to output
devices such as monitors and printers. Thus, it controls output.

clog A fully buffered version of cerr (no C equivalent). It controls error messages that are
passed from buffer to the standard error device.

cerr Standard error output, usually screen, corresponding to stderr in C. It controls the un-
buffered output data. It catches the errors and passes to standard error device monitor.

Explanation: In this program the pre-defined objects cout, cerr, and clog are used to dis-
play the message “STREAMS” on the screen.

3.4 BuFFerinG

It is a block of memory used to hold data temporarily. It is always located between a periph-
eral device and a faster computer. Buffers are used to pass data between computer and devices.
The buffer increases the performance of the computer by allowing read/write operation in larger
chunks. For example, if the size of the buffer is N, the buffer can hold N number of bytes of data.

Writing data to the disk is very costly. The read/write operation with disk takes a long time.
When these operations are carried out, the execution of the program will be slow for few seconds.
If the program involves many read and write operations, the program execution speed will be
slower. To avoid this problem, the stream provides buffer. Buffer holds the data temporarily. The
input data is passed to the stream buffer. The data is not written to the disk immediately till the
buffer fills. When the buffer is completely filled, the data is written to the disk. This is explained
with an example in Figure 3.3.

3.1 Write a program to display a message using pre-defined objects.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout<<“\nSTREAMS”;
 cerr<<“\nSTREAMS”;
 clog<<“\nSTREAMS”;
 return 0;
}

OUTPUT

STREAMS
STREAMS
STREAMS

36 Input and Output in C++

(a) Filling the Buffer (b) Filled Buffer (c) Flushing the Buffer

 Fig. 3.3 Working of buffer

In Figure 3.3a, the level of the steam in the pressure cooker is increasing. The steam is not full,
hence the whistle will not blow, and the steam will not be released from the pressure cooker.

In Figure 3.3b, the pressure cooker is completely filled. The level of the steam reaches to the
top. Due to high-pressure the whistle blows automatically and the steam comes out of the pres-
sure cooker.

After the steam comes out the whistle falls down. Even when the cooker is not completely
filled with steam, the steam can be released manually by pulling up the whistle. It is just like
flushing the buffer even when the buffer is not completely filled.

3.5 StreaM ClaSSeS

C++ streams are based on class and object theory. C++ has number of classes that work with
console and file operations. These classes are known as stream classes. Figure 3.4 shows the

stream classes. All these classes are declared in the header
file iostream.h. The file iostream.h must be in-
cluded in the program, if we are using the functions of these
classes.

As described in Figure 3.4a the classes istream and
ostream are derived classes of base class ios. The ios
class contains member variable object streambuf. The stre-
ambuf places the buffer. The member function of streambuf
class handles the buffer by providing the facilities to flush

istream

istream_withassing iostream_withassing

(b)

ostream_withassing

iostream

ostream

 Fig. 3.4 Hierarchy of stream classes

ios

(a)

istream ostream

iostream

streambuffer

file buffer

Formatted and Unformatted Data 37

clear and pour the buffer. The class iostream is derived from the classes istream and os-
tream by using multiple inheritance. The ios class is a virtual class and it is present to avoid
ambiguity that frequently appears in multiple inheritance. Chapter 11 describes multiple inherit-
ance and virtual classes.

The ios class has an ability to handle formatted and unformatted I/O operations. The is-
tream class gives support for both formatted and unformatted data. The ostream classes handle
the formatting of output data. The iostream contains functions of both istream and ostream
classes. The classes istream_withassign, ostream_withassign, and iostream_
withassign append appropriate assignment operators as shown in Figure 3.4b. Table 3.2 de-
scribes functions/contents of C++ stream classes.

 table 3.2 Functions/Contents of C++ Stream Classes

Class Function/Contents

ios (1) It is an input and output stream class.
(2) It is used to implement a buffer, i.e. it is pointer to a buffer streambuf.
(3) ios maintains the information on the state of streambuf, i.e. good, bad,

eof, etc.

istream (1) istream provides formatted input.
(2) It is used to handle formatted as well as unformatted conversion of

character from a streambuf.
(3) The properties of ios are inherited in istream class.
(4) The instance of class does not carry out the actual input.
(5) istream declares functions such as peek(), tellg(), seekg(), get-

line(), read(), etc.
(6) istream class overloads the ‘>>’ operator.

ostream (1) It is used for general-purpose output.
(2) It is used to declare the output functions such as tellp(), put(),

write(), seekp(), etc.
(3) It is the parent of all output stream.
(4) ostream overloads the ‘<<’ operator.

iostream (1) It is used to handle both input and output streams.

istream_withassign (1) It is derived from istream.
(2) It is used for cin input.

iostream_withassign (1) It is a bidirectional stream.

3.6 FOrMatteD anD unFOrMatteD Data

Formatting means representation of data with different settings as per the requirement of the user.
The various settings that can be done are number format, field width, decimal points, etc.

The data accepted or printed with default setting by the I/O function of the language is
known as unformatted data. For example, when the cin statement is executed, it asks for a
number. The user enters a number in decimal. For entering decimal number or displaying the
number in decimal using cout statement, the user will not need to apply any external setting. By
default, the I/O function represents the number in decimal format. Thus, the data handled in such
a way is called as unformatted data.

If the user needs to accept or display data in hexadecimal format, manipulators with I/O
functions should be used. The data obtained or represented with these manipulators are known as

38 Input and Output in C++

formatted data. For example, if the user needs to display the data in hexadecimal format, then the
manipulator can be used as follows.

cout<<hex<<15;

The above statement converts decimal 15 to hexadecimal F.

3.7 unFOrMatteD COnSOle i/O OperatiOnS

input and Output Streams

The input stream uses cin object to read data and the output stream uses cout object to display the
data on the screen. The cin and cout are pre-defined streams for input and output data. The data
type is identified by these functions using operator overloading of the operators << (insertion opera-
tor) and >> (extraction operator). The operator << is overloaded in ostream class and the op-
erator >> is overloaded in istream class. Figure 3.5 shows the flow of input and output stream.

Input Devices
Output Devices

Memory

CIN

>> Variables Variables

COUT

<<

>> Extraction operator
<< Insertion operator

 Fig. 3.5 Working of cin and cout statements

Input Stream

The input stream reads operation through keyboard. It uses cin as object. The cin statement
uses >> (extraction operator) before a variable name. The cin statement is used to read data
through the input device. Its syntax and example are as follows.

Syntax:

cin>>variable;

Example:

int v1;
float v2;
char v3;
cin>> v1>> v2>> v3…>> vn;

Unformatted Console I/O Operations 39

where v1, v2, and v3 are variable names. The response of the user to this statement would be
as shown below.

2 5.4 A // input data

If the user enters data in the manner 2 5.4 A, then the operator will assign 2 to v1, 5.4 to v2 and
A to v3. If the entered data is greater than the variable, it remains in the input stream. While en-
tering string, blank spaces are not allowed. More than one variable can be used in cin statement
to input data. Such operations are known as cascaded input operations.

For example,

cin>>v1>>v3;

where v1 and v2 are variables.
The operator >> accepts the data and assigns it to the memory location of the variables. Each
variable requires >> operator. Both these statements should not be included in the bracket. The
enter data is separated by space, tab, or enter. Similar to scanf() statement, cin does not re-
quire control strings such as %d for integer, %f for float, etc.

More examples

int weight;
cin>>weight // Reads integer value
float height;
cin>>height; // Reads float value
double volume;
cin>>volume; // Reads double value
char result[10];
cin>>result; // Reads char string

Output Streams

The output streams manage output of the stream, that is, display contents of variables on the
screen. It uses << insertion operator before the variable name. It uses the cout object to perform
console write operation. The syntax and example of cout statement are as follows.

Syntax:

cout<<variable

Example:

cout<<v1 <<v2 <<v3 … <<vn;

where, v1, v2, and v3 are variables. The above statement displays the contents of these variables
on the screen. The syntax rules are similar to cin. Here, the cout statement uses the insertion
operator <<. The cout statement does not use the format specification such as %d, %f as used
in C, etc. The cout statement allows us to use all ‘C’ escape sequences such as ‘\n’, ‘\t’, etc.

More examples

int weight;
cout<<weight // Displays integer value
float height;

40 Input and Output in C++

cout<<height; // Displays float value
double volume;
cout<<volume; // Displays double value
char result[10];
cout<<result; // Reads char string

The table given below illustrates comparative programs on cout statements.

PROGRAM 3.2

#include
<iostream.h>

int main()
{
 cout<<“ C PLUS

PLUS”;
 return 0;
}

PROGRAM 3.3

#include
<iostream.h>

int main()
{
 char *n=“Hello”;
 cout<<n;
 return 0;
}

PROGRAM 3.4

#include
<iostream.h>

int main()
{
 int x=10;
 float f=3.14;
 cout<<x;
 cout<<“\t”;

OUTPUT

C PLUS PLUS

OUTPUT

Hello

 cout<<f;
 return 0;
}

OUTPUT

10 3.14

In this program, the
cout statement displays
the message “C PLUS
PLUS” on the screen.

In this program, the string is
first assigned to character point-
er n. The cout statement dis-
plays the contents of variable n.

In this program, integer and float
values are assigned to variables x
and f. The cout statement dis-
plays the values of x and f.

3.5 Write a program to accept a string through the keyboard and display it on the screen.
Use cin and cout statements.

#include<iostream.h>
#include<conio.h>

int main()
{
 char name[15];
 clrscr();
 cout<<“Enter Your Name :”;
 cin>>name;
 cout<<“Your name is”<<name;

Unformatted Console I/O Operations 41

 return 0;
}

OUTPUT

Enter Your Name :Amit
Your name is Amit

3.6 Write a program to read two integers and display them. Use cin and cout state-
ments.

#include<iostream.h>
#include<conio.h>

int main()
{
 int num,num1;
 clrscr();
 cout<<“Enter Two numbers :”;
 cin>>num>>num1;
 cout<<“Entered Numbers are :”;
 cout<<num<<“\t”<<num1;
 return 0;
}

OUTPUT

Enter Two numbers : 8 9
Entered Numbers are : 8 9

Explanation: In the above program, cout statement displays a given string on the screen. It
is similar to printf() statement. The cin statement reads data through the keyboard. It is
similar to scanf() statement.

Explanation: In the above program, the cin statement reads two integers in variables num and
num1. The cout statement displays the read numbers. The escape sequence ‘\t’ is used to insert
tab between two numbers.

3.7 Write a program to display data using cout statements.

#include<iostream.h>
#include<conio.h>

int main()
{

42 Input and Output in C++

Explanation: Explanation of each of the cout statement is as follows.

(a) cout<<“================” – Displays line of on the screen.
(b) cout<<endl – Breaks a line.
(c) cout<<“Hello” – Display string “Hello” on the screen.
(d) cout<<“\n” – Breaks a line.
(e) cout<<123; – Displays integer 123.
(f) cout<<endl<<3.145 – Breaks a line and displays float number 3.145.
(g) cout<<endl<<“NUMBER: ”<<“\t”<< 452 – Breaks a line, displays the string

“number”, inserts a tab and integer number
452.

(h) cout<<“\n==== The end =====” – Displays the line and string.

 clrscr();
 cout<<“================”;
 cout<<endl;
 cout<<“Hello”; // prints hello
 cout<<“\n”;
 cout<<123; // prints 123
 cout<<endl<<3.145; // prints 3.145
 cout<<endl<<“NUMBER:”<<“\t”<<452; // prints string and value
 cout<<“\n==== The end =====”;
 return 0;
}

OUTPUT

================
Hello
123
3.145
NUMBER : 452
==== The end =====

3.8 Write a program to display int, float, char, and string using cout statement.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x=5;
 float y=5.2;
 char z=‘z’;

Explanation: In the above program, the statement cout<<“x = ”<<x <<“ y =”<<y
<<“ z = ”<<z <<endl displays values of x, y, and z. The statement cout<<“City =
”<<city displays the contents of character array city.

 char city[]=“NANDED”;
 cout<<“x = ”<<x <<“ y =”<<y <<“ z = ”<<z <<endl;
 cout<<“City = ”<<city;
 return 0;
}

OUTPUT

X = 5 y =5.2 z = z
City = NANDED

Unformatted Console I/O Operations 43

3.9 Write a program to input int, float, char, and string using cin statement and
display using cout statement.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x;
 float y;
 char z;
 char city[15];
 cout<<“\n Enter integer, float and char”;
 cin>>x>>y>>z;
 cout<<“\n Enter a string :”;
 cin>>city;
 cout<<“x = ”<<x <<“ y =”<<y <<“ z = ”<<z <<endl;
 cout<<“City = ”<<city;
 return 0;
}

OUTPUT

Enter integer, float and char 12 1.2 H
Enter a string : NAGPUR
X = 12 y =1.2 z = H
City = NAGPUR

44 Input and Output in C++

Explanation: In the above program, the variables of int float, double, and char type are
declared and initialized. The variable a is initialized with 66, f with 2.5, d with 85.22, and c
with character ‘K’.

Explanation: Explanation of the program is as follows.

(a) cout<<“\n Enter integer, float, and char” – Prompts message “Enter integer, float,
and char”

(b) cin>>x>>y>>z – Accepts integer, float, and char and stores in x, y, and z.
(c) cout<<“\n Enter a string: ” – Displays message “Enter a string: ”.
(d) cin>>city – Reads string through the keyboard and stores in the array city[15].
(e) cout<<“City = ”<<city; – Displays contents of the array city.

3.8 tYpe CaStinG With the cout StateMent

Type casting refers to conversion data of one basic type to another by applying external use of
data type keywords. The description of type casting is explained in Chapter 3. Programs on type
casting are as follows.

3.10 Write a program to use different formats of type casting and display the converted
values.

#include<iostream.h>
#include<conio.h>

int main()
{
 int a=66;
 float f=2.5;
 double d=85.22;
 char c=‘K’;
 clrscr();
 cout<<“\n int in char format :”<<(char)a;
 cout<<“\n float in int format :”<<(int)f;
 cout<<“\n double in char format :”<<(char)d;
 cout<<“\n char in int format :”<<(int)c;
 return 0;
}

OUTPUT

int in char format : B
float in int format : 2
double in char format : U
char in int format : 75

Type Casting with the cout Statement 45

The first cout statement converts integer value to the corresponding character according to
the ASCII character set and the character B is displayed.

The second cout statement converts float value to integer. The value displayed is 2 and
not 2.5. When type cast format (int) is used, the decimal portion of float value is removed and
only the integer part is considered.

In the third statement, the double value is convert-
ed to character. The number 85.22 is converted to integer
and then to character. The char data type is nothing else
than int data type. The only difference is that the char
data type has range from −128 to 127, which requires
one byte in the memory.

The last statement converts character to int. The
value of ‘K’ is 75 when printed as an integer. The format
(int) converts char to int.
In Figure 3.6, 65 is an integer and it is converted to char-
acter A by using type casting format (char). Table 3.3
describes various type casting formats and their output results.

 table 3.3 Type Casting Formats

type Casting Formats Outputs Conversion

cout<<(char)65; A int to char

cout<<(int)‘A’; 65 char to int

cout<<(int)5.22; 5 float to int

cout<<(char)78.33; N float to char

cout<<(double)123445338.33; 1.234453e+08 float to double

cout<<(unsigned)-1; 65535 signed to unsigned

cout<<(char)65;

Integer value

Type casting format

Output : A

 Fig. 3.6 Typecasting integer

3.11 Write a program to display data using type casting.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x=77;
 float y=5.1252;
 char z=‘A’;
 char city[15];
 cout<<“ x = ”<<(char)x<<endl;
 cout<<“ y = ”<<(int)y <<endl;
 cout<<“ z = ”<<(int)z;

46 Input and Output in C++

Explanation: Consider the following statements.

int x=77 – Declares integer variable x and initializes it with 77.
float y=5.1252 – Declares float variable y and initializes it with 5.1252.
char z=‘A’; – Declares character variable z and initializes it with character ‘A’.

The following statements are used to display the contents on the screen.

cout<<“ x = ”<<(char) x<<endl – Variable x is an integer but value displayed
will be ‘M’ because the statement (char)
converts integer to the corresponding ASCII
character.

cout<<“ y = ”<<(int)y <<endl – Variable y is a float but before printing the
value 5.1252, it is converted to integer and the
output will be 5.

cout<<“ z = ”<<(int)z – Variable z is of character type. The character value is con-
verted to integer and the output displayed will be 65.

 return 0;
}

OUTPUT

x = M
y = 5
z = 65

3.12 Write a program to display A to Z alphabets using ASCII values.

#include<iostream.h>
#include<conio.h>
#include<stdio.h>

int main()
{
 clrscr();
 int j;
 for (j=65;j<91;j++)
 cout<<(char)j<<“ ”;
 cout<<endl;
 for (j=65;j<91;j++)
 printf (“%c ”,j);
 return 0;
}

OUTPUT

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Explanation: The cout statement displays the address of a variable in hexadecimal format.
Using type casting, syntax (unsigned) converts hexadecimal to unsigned integer (decimal). The
output shows addresses in both hexadecimal and unsigned integer (decimal) formats.

The & (ampersand) operator is used to display the address of the variable. The address
operator is preceded by the variable name. The address is always represented as an unsigned inte-
ger. The cout statement displays the address in hexadecimal format. To convert the hexadecimal
address to an unsigned integer, type casting is used.

Type Casting with the cout Statement 47

Explanation: In the above program, A to Z alphabets are displayed using cout() and printf()
statements. In cout() statement before printing, type casting is done. The integer is converted to
corresponding char type symbol and displayed. In the printf() statement, the control string
%c performs this task. The quotation mark (“ ”) inserts space between two successive characters.

3.13 Write a program to display addresses of variables in hexadecimal and unsigned
integer formats.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x=77;
 float y=5.1252;
 int z=78;
 cout<<“ Address of x = ”<<&x<<endl;
 cout<<“ Address of y = ”<<&y <<endl;
 cout<<“ Address of z = ”<<(unsigned)&z <<endl;
 return 0;
}

OUTPUT

Address of x = 0x887ffff4
Address of y = 0x887ffff0
Address of z = 65518

3.14 Write a program to display string using & and * operators with cout statements.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 char *name=“c plus plus”;
 cout<<name<<“\n”;

48 Input and Output in C++

Explanation: In the above program, the character pointer name is assigned to the string “c
plus plus”. The first cout statement displays the string using variable name. The statement
cout<<&name[0]<<“\n” displays the string. Here, & operator is used and the 0 (zero)
points to the base address of the string. In the second statement, if the base address is not speci-
fied, then it will display the address. The third statement uses the pointer notation to display
the string.

 cout<<&name[0]<<“\n”;
 cout<<*(&name);
 return 0;
}

OUTPUT

C plus plus
C plus plus
C plus plus

3.15 Write a program to display a string using different syntaxes using the operators *
and & with cout statement.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 char *name=“c plus plus”;
 cout<<*&(name)<<“\n”;
 cout<<&(*name)<<“\n”;
 cout<<*&name<<“\n”;
 return 0;
}

OUTPUT

C plus plus
C plus plus
C plus plus

Explanation: In the first statement, the operators * and & are used one after another and the
variable name is inside the parentheses. In the second statement, operator & is outside and the
operator * and variable name are inside the parentheses. In the third statement, parentheses are
not used. All the three statements display the output “c plus plus.”

Type Casting with the cout Statement 49

3.8.1 Difference of using C and C++ i/O Functions

The printf() and scanf() of C language needs format string. For example, to read and
display an integer, the scanf and printf() statement can be written as follows.

int x;
scanf (“%d”,&x)
printf (“%d”,x);

In the above statements, %d is used to tell the I/O functions to treat the data as integer.
If the integer x is changed to long integer, the programmer needs to change every occurrence

of %d in the program with %ld.
The C++ statement reads and displays the same data as follows.

int x;
cin>>x;
cout<<x;

Here, the cin and cout statements do not require any format string. If the type of x is changed
to long integer, the user need not specify the type of data or any correction in the statement. The
cin and cout statement identifies the data type. The format of cin and cout statement is the
same for all types of variables.

get() and put() functions
get() function

The single character input and output operations in C++ can be done using put() and get()
functions. The classes istream and ostream provide the two member functions put() and
get(). The get() is used to read a character and put() is used to display the character on
the screen.

The get() function has two syntaxes:

(a) get(char*);
(b) get(void);

If syntax (a) is used, the get() function assigns the read data to its argument, whereas when
the statement (b) is used, the get() function returns the data read. The data is assigned to the
variable present on the left-hand side of the assignment operator. These functions are members of
I/O stream classes and can be called using object.

put() function

The put() function is used to display the string on the screen. It is a member of ostream
class. The syntax of put() is as follows:

(a) cout.put (‘A’);
(b) cout.put (x);

The statement (a) displays the character ‘A’ on the screen and the statement (b) displays the
contents of variable x on the screen. If an integer is used as an argument, its corresponding ASCII
value is displayed. Few examples are illustrated below.

50 Input and Output in C++

Explanation: The escape sequences such as ‘\n’, ‘\t’, etc., can be used with cout.put()
statement. The escape sequences are combinations of two characters. The output of the pro-
gram displays the number 1 and 2 in two separate lines. The statement cout.put(‘\n’)
splits a line.

3.16 Write a program to display the character on the screen using put() function.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.put(‘C’);
 cout.put (‘+’);
 cout.put (‘+’);
 return 0;
}

OUTPUT

C++

Explanation: The cout.put() statement displays one character at a time on the screen. In this
program, three characters are displayed on the screen using cout.put() statement.

3.17 Write program to use escape sequence with cout.put() statement.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.put(‘1’);
 cout.put (‘\n’);
 cout.put (‘2’);
 return 0;
}

OUTPUT

1
2

Explanation: In the above program, character variable ch is declared. The first cout statement
displays message “Enter a character:” on the screen. The cin.get() function ac-
tivates input stream and character entered by the user is stored in the variable ch. The cout.
put() statement displays the character on the screen.

Type Casting with the cout Statement 51

Explanation: In the above program, the single object cout is used followed by sequence of
put() statement. The put() statements are separated by dot operators. In this way, multiple
statements can be combined.

3.18 Write a program to use multiple put() statements with single cout object and
display the characters.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.put(‘C’).put(‘+’).put(‘+’);
 return 0;
}

OUTPUT

C++

3.19 Write a program to read character using get() and display it using put().

#include<iostream.h>
#include<conio.h>

int main()
{
 char ch;
 clrscr();
 cout<<“\n Enter a character :”;
 cin.get(ch);
 cout<<“\n Entered character was :”;
 cout.put(ch);
 return 0;
}

OUTPUT

Enter a character : C
Entered character was : C

52 Input and Output in C++

Explanation: In the above program, a character array ch[3] is declared. The sequence of get()
and put() functions are used to read and display the characters. The get() function reads
characters and stores in array ch[3]. The put() function displays the same on the screen.

3.20 Write a program to read characters using a sequence of get() statements and dis-
play the characters read using a sequence of put() statements.

#include<iostream.h>
#include<conio.h>

int main()
{
 char ch[3];
 clrscr();
 cout<<“\n Enter characters :”;
 cin.get(ch[0]).get(ch[1]).get(ch[2]);
 cout<<“\n Characters Entered :”;
 cout.put(ch[0]).put(ch[1]).put(ch[2]);
 return 0;
}

OUTPUT

Enter characters : cpp
Characters entered : cpp

3.21 Write a program to read and display the string. Use get() and put() functions.

#include<iostream.h>
#include<conio.h>
#include<stdio.h>

int main()
{
 clrscr();
 char j=0;
 char x[20];
 cout<<“\n Enter a string :”;
 while (x[j++]!=‘\n’)
 cin.get(x[j]);
 j=0;
 cout<<“\n Entered string :”;
 while (x[j++]!=‘\n’)
 cout.put(x[j]);
 return 0 ;
}

Type Casting with the cout Statement 53

Explanation: In the above program, the character array x[] is declared. The first while loop
reads characters using cin.get() function through the keyboard. When a user presses the en-
ter key, the while loop terminates. The second while loop displays the characters read using
the function cout.put(). The output of the program is as shown above.

getline() and write() functions
getline() function

The getline() and write() functions are useful in string input and output. The getline()
functions read the string including white space. The cin() function does not allow to enter the
string with blank spaces. The input reading is terminated when a user presses the enter key. The
new line character is accepted but not saved and replaced with the null character. The object cin
calls the function as follows.

cin.getline (variable, size);

where the variable name may be any character array name and the size is the size of the array.
write() function

The write() function is used to display the string on the screen. Its format is similar to get-
line() function, but the function is exactly the opposite. The syntax is as follows.

cout.write (variable, size);

where the variable name may be a character type and size is the size of the character arrays. The
cout.write() statement displays only a specified number of characters given in the second
argument, though the actual string may be more in length. If the size of the array is larger than the
actual string length, then the size argument contains the actual size of the array. In this case, the
getline() displays blank spaces for the remaining unfilled elements. The following program
illustrates both the functions.

OUTPUT

Enter a string : Programming
Entered string : Programming

3.22 Write a program to display a string using cout.write() statements.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.write (“INDIA”,6);
 cout.write (“IS”,3);

54 Input and Output in C++

Explanation: In this program, the first statement displays “INDIA” followed by one blank space.
This is because the argument value is greater by one than the actual string length.

Similarly, the second statement displays “IS” followed by one blank space. The reason is same.
The last statement displays “GREAT.” Here, the argument value and the string lengths are

same. Hence, no blank spaces are displayed.
In case the argument value is less than the actual string length, the complete string will not be dis-

played. The number of characters of the string displayed depends on the value of the given argument.

 cout.write (“GREAT”,5);
 return 0;
}

OUTPUT

INDIA IS GREAT

3.23 Write a program to show the effect if less argument is given than the actual string
length in the cout.write() statement.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.write (“SUNDAY”,3);
 return 0;
}

OUTPUT

SUN

Explanation: In the above program, the cout.write() will not display the complete string.
The statement displays the characters according to the value of the second argument. The value of
the second argument is three. Hence, instead of six characters only three characters are displayed
and the remaining characters are skipped.

3.24 Write a program to read a string using getline() function and display it using
the write() statement.

#include<iostream.h>
#include<conio.h>
#include<string.h>

Explanation: In the above program, the x[] is a character array. The getline() function
reads the string through the keyboard. The getline() function accepts the string including
spaces. The cout() statement displays the string including white spaces. The first write()
statement displays the string with garbage values. This is because the string length is less than
the actual size of the array. In the second write() statement, strlen() function calculates
the length of the string and that length is used as an argument in the write() statement. This
statement displays the entered string without any garbage collection.

The cin() statement cannot accept a string including spaces. It accepts only a single word.
The cout() statement displays the string read through cin() and getline() functions,
that is, it can display the string with or without blank spaces. The write() statement displays
the string according to the specified size. It displays the string with or without blank spaces. The
write() does not support any escape sequence.

Type Casting with the cout Statement 55

int main()
{
 clrscr();
 char x[30];
 cout<<“\n Enter any string :”;
 cin.getline(x,30);
 cout<<“\n Entered string :” <<x;
 cout<<“\n Entered string :”;
 cout.write(x,30);
 cout<<“\n Entered string :”;
 cout.write(x,strlen(x));
 return 0 ;
}

OUTPUT

Enter any string : C++ is advanced C
Entered string : C++ is advanced C
Entered string : C++ is advanced C h >&)
Entered string : C++ is advanced C

3.25 Write a program to display the string using different arguments in write() state-
ment.

#include<iostream.h>
#include<conio.h>
#include<string.h>

int main()
{

56 Input and Output in C++

Explanation: In the above program, two strings are entered in character arrays x[] and a[].
The successive write() statement in one line displays the string one after another. Thus, we
can use multiple write() statements followed by a single cout object.

3.9 MeMBer FunCtiOnS OF the istream ClaSS

The istream contains the following functions that can be called using cin object.
peek(): It returns the succeeding character without extraction. For example,

cin.peek()==‘#’;

where cin is an object and ‘#’ is the symbol that is to be caught in the stream.
ignore(): The member function ignore() has two arguments, maximum number of char-

acters to avoid and the termination character. For example,

cin.ignore (1,‘#’);

The statement ignores character 1 till character ‘#’is found.

 clrscr();
 char a,x[30];
 cout<<“\n Enter any string :”;
 cin.getline(x,30);
 cout<<“\n Entered string : \n”;
 for (a=0;a<=strlen(x);a++)
 {
 cout<<“\n”;
 cout.write(x,a);
 }
 return 0 ;
}

OUTPUT

Enter any string : C Plus Plus
Entered string :
C
C
C P
C Pl
C Plu
C Plus
C Plus
C Plus P
C Plus Pl
C Plus Plu
C Plus Plus

Member Functions of the istream Class 57

Explanation: In the above program, the cin.get() function continuously reads characters
through the keyboard till the user presses F6. The cout statement inside the loop displays the
contents of variable c on the console. The cin.peek() statement checks the variable c. If the
variable c contains ‘#’, it is ignored from the stream and not displayed on the screen.

putback() : The putback() replaces the given character into the input stream. For example,

cin.putback (‘*’);

where cin is an object and ‘*’ is the symbol which is replaced in the stream.

3.26 Write a program to demonstrate the use of peek() and ignore() functions.

#include<iostream.h>
#include<conio.h>

int main()
{
 char c;
 clrscr();
 cout<<“enter text (press F6 to end :”;
 while (cin.get(c))
 {

cout<<c;
 while (cin.peek()==‘#’)
 {
 cin.ignore(1,‘#’);
 }
 }
 return 0;
}

OUTPUT

enter text (press F6 to end : ABCDEFG###HIJK
ABCDEFGHIJK

3.27 Write a program to demonstrate the use of putback() function.

#include<iostream.h>
#include<conio.h>

int main()
{
 char c;
 clrscr();

58 Input and Output in C++

Explanation: In the above program, the cin.get() function continuously reads characters
through the keyboard till the user presses F6. The cout statement inside the loop displays the
contents of the variable c on the console. The if statement checks the contents of the variable c.
If variable c contains a small letter ‘s’, the putback() statement sends capital ‘S’ in the stream.
The small ‘s’ is replaced with capital ‘S’. The contents displayed will be with capital ‘S’.

Gcount(): This function returns the number of unformatted characters extracted from the
input stream. The last statement should be get(), getline(), or read().

 cout<<“enter text (press F6 to end :”;
 while (cin.get(c))
 {
 if (c==‘s’)
 cin.putback(‘S’);
 cout.put(c);
 }
 return 0;
}

OUTPUT

enter text (press F6 to end :
c plus plus^Z
c plusS plusS

3.28 Write a program to demonstrate the use of gcount() function.

#include<iostream.h>
#include<conio.h>

int main()
{
 char text[20];
 int len;
 clrscr();
 cout<<“Enter text :”;
 cin.getline(text,20);
 len=cin.gcount();
 cout<<“The numbers of characters extracted are:”<<len;
 return 0;
}

OUTPUT

Enter text : Virtual
The numbers of characters extracted are : 8

Formatted Console I/O Operations 59

Explanation: In the above program, the cin.get() function reads data through the keyboard
using first while loop. The if condition checks for blank space in the entered text. If space
is found, the putback() statement replaces space dot (.). The putback() sends the given
character in the input stream. The peek() also checks the ‘#’ symbol in the entered text, if it is
found, the ignore() statement ignores the character and the character will not be displayed on
the screen. The program is terminated when the key F6 or ctrl+z is pressed.

3.10 FOrMatteD COnSOle i/O OperatiOnS

C++ provides various formatted console I/O functions for formatting the output. They are of
three types.

(1) Ios class function and flags
(2) Manipulators
(3) User-defined output functions

Explanation: In the above program, the getline() function reads text through the key-
board. The gcount() function returns the number of characters extracted from stream to
variable len. It also counts the null character. The cout statement displays the value of vari-
able len on the screen.

3.29 Write a program to perform the operation with peek() and putback().

#include<iostream.h>
#include<conio.h>

int main()
{
 char c;
 clrscr();
 cout<<“enter text (press F6 to end :”;
 while (cin.get(c))
 {
 if (c==‘ ’)
 cin.putback (‘.’);
 else
 cout<<c;
 while (cin.peek()==‘#’) cin.ignore(1,‘#’);
 }
 return 0;
}

OUTPUT

Enter text (press F6 to end: One! Two! Three! Four!
One..Two..Three..Four.

60 Input and Output in C++

The ios grants operations common to both input and output. The classes (istream, os-
tream, and iostream) derived from ios are special I/O with high-level formatting opera-
tions: The iostream class is automatically loaded in the program by the compiler. Figure 3.4
describes the hierarchy of stream classes.

(a) istream performs formatted input.
(b) ostream performs formatted output.
(c) iostream performs formatted input and output.

streambuf allows an abstraction for connecting to a physical device. Classes derived from it
work with files, memory, etc. The ios communicates to a streambuf. It keeps information
on the state of the streambuf (good, bad, eof, etc.) and saves flags for use by istream and
ostream.

 • The streambuf class controls the buffer and its related member functions. It allows the
ability to fill, flush, and empty the buffer.

 • The streambuf is an object of ios class. The base class of input and output stream
classes is ios class.

 • The istream and ostream classes are derived classes of ios class and control input
and output streams.

 • The iostream class is a derived class of istream and ostream. It provides input and
output functions to control console operations.

Table 3.4 describes the functions of ios class in brief.

 table 3.4 ios Class Function

Function Working

width() To set the required field width. The output will be displayed in given width.

precision() To set number of decimal point to a float value.

fill() To set a character to fill in the blank space of a field.

setf() To set various flags for formatting output.

unsetf() To remove the flag setting.

(1) ios::width (member functions)
The width() function can be declared in two ways.

(a) int width();
(b) int width (int);

int width();
If this function is declared as given above, it returns the present width setting.
int width (int);
If this function is declared as given above, it sets the width as per the given integer and re-
turns the previous width setting. The setting should be reset for each input or output value if
a width other than the default is desired.

3.30 Write a program to set column width and display the characters at specified
position.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout . width(5);
 cout<<“A”;
 cout . width(15);
 cout<<“B”;
 return 0;
}

OUTPUT

A B

Explanation: The first cout. width() statement sets the width 5. The cout statement
sets the column width position at 5 and the cout statement displays the character “A” at col-
umn 5. Similarly, the column width is set 15 and the character ‘B’ is displayed at column 15.

3.31 Write a program to use both the formats of width() function and display the
result.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.width(50);
 int x=cout.width(1);
 cout<<x;
 return 0;
}

OUTPUT

50

Explanation: In the above program, the width() function call sets the width at column
50. The second width() function call sets the width at column 1 and returns the previous

Formatted Console I/O Operations 61

62 Input and Output in C++

setting, that is 50. The integer x collects this value. The cout() statement displays the
number 50 at column 1.

(2) ios::precision
This function can be declared in two ways.
(a) int precision (int);
(b) int precision();

int precision (int);
If the function is declared as given above, it sets the floating-point precision and returns the
previous setting. The precision should be reset for every value being output if we want a
precision result other than the default.

int precision();
If the function is used as given above, it returns the current setting of floating-point precision.

3.32 Write a program to set precision to two and display the float number

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.precision(2);
 cout<<3.1452;
 return 0;
}

OUTPUT

3.14

Explanation: In the above program, the cout.precision() statement sets float point
precision to 2. The cout statement displays 3.14 instead of 3.1452.

3.33 Write a program to set number of precision points. Display the results of 22/7 in
different precision settings.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int x=0;
 float pi;

 for (x=10;x>=1;x--)
 {
 pi=(float)22/7;
 cout.precision(x);
 cout<<“\n”<<pi;
 }
 x=cout.precision(1);
 cout<<“\n\n Previous Setting :”<<x;
 return 0;
}

OUTPUT

3.1428570747
3.142857075
3.14285707
3.1428571
3.142857
3.14286
3.1429
3.143
3.14
3.1
Previous Setting : 1

Explanation: In the above program, the for loop executes from 10 to 1 in reverse order.
Each time the equation 22/7 is calculated and the result is stored in the variable pi. The
precision is set according to the value of variable x. The output of the program is as given
above.

(3) ios::fill
This function can be declared in two ways.
(a) char fill();
(b) char fill (char);

char fill();
If the function is used as given above, it returns the current setting of fill character.

char fill (char);
If the function is used as given above, it resets the fill character and returns the previous setting.

3.34 Write a program to fill empty spaces in a line with a specific symbol (*).

#include<iostream.h>
#include<conio.h>

int main()

Formatted Console I/O Operations 63

64 Input and Output in C++

{
 clrscr();
 cout.fill(‘*’);
 cout.width(10);
 cout<<“H”;
 return 0;
}

OUTPUT

*********H

Explanation: In the above program, the statement cout.fill (‘*’); fills the blank
spaces with * symbols. The cout. width() sets the width to 10 and the character ‘H’
is displayed at column 10. The column 1 to 9 remains blank. The symbol ‘*’ is displayed
instead of blank spaces. This effect is due to cout.fill() statement as shown below.

* * * * * * * * * H

3.35 Write a program to fill blank spaces with different symbols.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.fill(‘/’);
 cout.width(20);
 cout<<“WEL”<<endl;
 cout.fill(‘-’);
 cout.width(10);
 cout<<“DONE”;
 return 0;
}

OUTPUT

/////////////////WEL
------DONE

Explanation: This program is similar to the last one. Here, two different characters are used
to fill the blank spaces in the specified width. The width is specified using cout.width()
statement. The output can be observed as follows.

/ / / / / / / / / / / / / / / / / W E L

- - - - - - D O N E

 tip

The character ‘\’ (back slash) is not allowed in cout.fill() statement to fill the blanks. This is because
it is used with escape sequences.

3.36 Write a program to show the effect cout.fill().

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout<<“Begin :”;
 cout.width(15);
 cout<<“ABC”;
 cout<<“\n”;
 cout<<“Begin :”;
 cout.width(15);
 cout.fill(‘#’);
 cout<<“ABC”;
 return 0;
}

OUTPUT

Begin : ABC
Begin : ############ABC

Explanation: The first line displays ABC following blank spaces because the fill(); is not
used. In the second statement, the symbol ‘#’ is displayed because the fill character is set to ‘#’.

Begin A B C

Begin # # # # # # A B C

3.37 Write a program to fill the unused filled area with ‘*’

#include<iostream.h>
#include<conio.h>

int main()

Formatted Console I/O Operations 65

66 Input and Output in C++

{
 clrscr();
 int x=0,j=0;
 float pi;
 cout.fill(‘*’);
 for (x=10;x>=1;x--)
 {
 pi=(float)22/7;
 cout.width(j++);
 cout.precision(x);
 cout<<“\n”<<pi;
 }
 cout.width(j++);
 cout.precision(x);
 cout<<“\n”<<pi;
 x=cout.fill();
 cout<<“\n\n Fill setting :”<<(char)x;
 return 0;
}

OUTPUT

3.1428570747
3.142857075*
3.14285707**
3.1428571***
3.142857****
3.14286*****
3.1429******
3.143*******
3.14********
3.1*********
3.142857
Fill setting :*

Explanation: In the above program, the precision setting and display of floating point
number using precision is the same as in the previous example. In the for loop, each
time width() is set to the value of variable j. The value of j increases at each itera-
tion. The floating precision number decreases from top to bottom, and blank spaces
remain in the specified field area by the statement width(). The unused area is filled
with ‘*’. The setting of fill character is done before the for loop statement. The fill
character may be set to any character. The fill() statement after for loop body dis-
plays the character used for filling.

Bit Fields 67

(4) ios::setf
This function can be declared in two ways.
(a) long setf (long sb, long f);
(b) long setf (long);

long setf (long sb, long f);

The bits according to those marked in variable f are removed in the data member x_flags,
and then reset to be those marked in variable sb. Using the constants in the formatting flag
enumeration of class ios can specify the value of variable sb.

long setf (long);

If the above declaration is used in the program, it sets the flags according to those marked
in the given long. The flags are set in the data member x_flags of class ios. Using the
constants in the formatting flags can specify the long enumeration of class ios. It returns the
previous settings.

3.11 Bit FielDS

The ios class contains the setf() member function. The flag indicates the format design. The syn-
tax of the unsetf() function is used to clear the flags. The syntaxes of the function are as follows.

Syntax: cout.setf (v1, v2);
Syntax: cout.unsetf(v1);

where variable v1 and v2 are two flags. Table 3.5 describes the flag, and bit-field setting can be
used with this function. The unsetf() accepts setting of v1 and v2 arguments.

 table 3.5 Flags and Bits

Format Flag (V1) Bit Field (V2)

Left justification ios::left ios:adjustfield

Right justification ios::right ios:adjustfield

Padding after sign and base ios::internal ios:adjustfield

Scientific notation
Fixed point notation

ios:: scientific
ios:: fixed

ios::floatfield
ios::floatfield

Decimal base
Octal base
Hexadecimal base

ios:: dec
ios::oct
ios::hex

ios::basefield
ios::basefield
ios::basefield

(a) ios::adjustfield
It is a data member and used with setf() function to arrange padding to the left or right,
or for internal fill. It can be declared as follows.

static const long adjustfield;

(b) ios::floatfield
It is a data member and used with setf() function to set the float point notation to scien-
tific or fixed. It is declared as follows.

static const long floatfield;

68 Input and Output in C++

(c) ios::basefield
It is a data member and used with setf() function and used with setf() function to set
the notation to a decimal, octal, or hexadecimal base. It is declared as follows.
static const long basefield;

3.38 Write a program to display the message left and right justified.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.fill(‘=’);
 cout.setf(ios::right, ios::adjustfield);
 cout.width(20);
 cout<<“Figure” << “\n”;
 cout.setf(ios::left, ios::adjustfield);
 cout.width(20);
 cout<<“Figure” << “\n”;
 return 0;
}

OUTPUT

=============Figure
Figure =============

Explanation: In the above program, the fill character is set to sign “=”. The setf() is set to
right justified. The column width is set to 20. The message “Figure” appears at the 20th
column. Before the message the blank space is filled with the sign “=”. Again the justification
property is set to left in setf() function. The text appears left justified. The output can be
observed as follows.

= = = = = = = = = = = = = = F i g u r e

F i g u r e = = = = = = = = = = = = = =

3.39 Write a program to display the number in scientific format with sign.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.fill(‘=’);

 cout.setf(ios::internal, ios::adjustfield);
 cout.setf(ios::scientific, ios::floatfield);
 cout.width(15);
 cout<<- 3.121;
 return 0;
}

OUTPUT

- ===== 3.121e+00

Explanation: In the above program, the fill character is set to sign “=”. The setf() properties
are set to internal and scientific. The scientific properties display the number in scien-
tific (e) format. The internal properties display the sign before blank spaces. If the setting were
removed, the output would be as given below.

Effect of statement

cout.setf (ios::internal, ios::adjustfield);

- = = = = = 3 . 1 2 1 e + 0 0

The output without this statement would be as follows.

= = = = = - 3 . 1 2 1 e + 0 0

The property ios::fixed displays the float number without scientific format, though the
number is big. If the floating-point number is more than 6, then the extras are ignored. This for-
mat displays floating point up to 6 only.

3.40 Write a program to convert a decimal number to hexadecimal and octal format.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.setf(ios::hex, ios::basefield);
 cout<<“\n Hexadecimal of 184 is :”<<184;
 cout.setf(ios::oct, ios::basefield);
 cout<<“\n Octal of 15 is :”<<15;
 cout.setf(ios::dec, ios::basefield);
 cout<<“\n Decimal of 0xfe is :”<<0xfe;
 return 0;

}

Bit Fields 69

70 Input and Output in C++

OUTPUT

Hexadecimal of 184 is : b8
Octal of 15 is : 17
Decimal of 0xfe is : 254

Explanation: In the above program, the properties of setf() function are set to ios::hex,
ios:: oct, and ios::dec. After this setting, the decimal number given in cout() state-
ment will convert to its hexadecimal and octal equivalent, respectively. The hexadecimal number
0xfe is converted to its decimal equivalent.

3.12 FlaGS WithOut Bit FielDS

The flags described in Table 3.6 have no corresponding bit fields. The programs on these func-
tions are illustrated as follows.

 table 3.6 Flags without Bit Fields

Flag Working

ios :: showbase Uses base indicator on output

ios :: showpos Displays + preceding positive number

ios :: showpoint Shows trailing decimal point and zeros

ios :: uppercase Uses capital case for hex output

ios :: skipws Skips white space on input

ios :: unitbuf Flushes all streams after insertion

ios :: stdio Flushes stdout and stderr later insertion

ios :: uppercase Uses capital characters for scientific and hexadecimal values

Ios::stdio Adjusts the stream with C standard input and output

Ios::boolalpha Converts Boolean values to text (“true” or “false”)

3.41 Write a program to use the various settings given in the table.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.setf(ios::showpos);
 cout<<1254;
 cout.setf(ios::showpoint);
 cout<<“\n”<<1254.524;
 cout.setf(ios::hex,ios::basefield);
 cout<<“\n”<<184;
 cout.setf(ios::uppercase);
 cout<<“\n”<<184;

Manipulators 71

 return 0;
}

OUTPUT

+1254
+1254.524000
0xb8
0XB8

Explanation: In the above program, the setting ios::showpos displays the + sign before
the number 1254. The setting ios::showpoint displays the trailing zeros after the number
1254.524. The setting ios::hex converts the decimal number to hexadecimal. It uses small
letters. The setting ios::uppercase displays the hexadecimal number in uppercase.

3.13 ManipulatOrS

The output formats can be controlled using manipulators. The header file iomanip.h has a set
of functions. The effect of these manipulators is similar to ios class member functions. Every
ios member function has two formats. The first format is used for setting and the second format
is used to understand the previous setting. But the manipulator does not return the previous set-
ting. The manipulator can be used with cout() statement as follows.

cout<<m1 <<m2 <<v1;

Here, m1 and m2 are two manipulators and v1 is any valid C++ variable.
Table 3.7 describes the most useful manipulators. The manipulators hex, dec, oct, ws, endl,

and flush are defined in iostream.h. The manipulators setbase, width(), fill(), etc., that
require an argument are defined in iomanip.h.

 table 3.7 Pre-defined Manipulators

Manipulator Function

setw (int n) The field width is fixed to n

setbase Sets the base of the number system

setprecision(int p) The precision point is fixed to p

setfill (char f) The fill character is set to the character stored in variable f

setiosglags(long l) Format flag is set to l

resetiosflags(long l) Removes the flags indicated by l

endl Splits a new line

skipws Omits white space on input

noskipws Does not omit white space on input

ends Adds null character to close an output string

flush Flushes the buffer stream

lock Locks the file associated with the file handle

ws Omits the leading white spaces present before the first field

hex, oct ,dec Displays the number in hexadecimal, octal, and decimal format

72 Input and Output in C++

3.42 Write a program to display formatted output using manipulators.

#include<iostream.h>
#include<iomanip.h>
#include<conio.h>

int main()
{
 clrscr();
 cout<<setw(10) <<“Hello”<<endl;
 cout<<setw(15) <<setprecision(2) <<2.5555;
 cout<<setiosflags(ios::hex);
 cout<<endl<<“Hexadecimal of 84 is :”<<84;
 return 0;
}

OUTPUT

Hello
 2.56
Hexadecimal of 84 is : 54

Explanation: In the above program, the manipulator setw (10) sets the field width to 10.
The message “hello” is displayed at 10th column. The endl inserts a new line. In the sec-
ond cout() statement, the setprecision (2) manipulator sets the decimal point to 2. The
number 2.5555 will be displayed as 2.56 at column 15. The manipulator setiosflag sets the
hexadecimal setting for the display of number. The last cout() statement displays the equivalent
hexadecimal of 84, that is, 54.

3.43 Write a program to display the given decimal number in hexadecimal and octal for-
mat.
#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

int main()
{
 clrscr();
 int x=84;
 cout<<“\n Hexadecimal Number :”<<hex<<x;
 cout<<“\n Octal Number :”<<oct<<x;
 return 0;
}

OUTPUT

Hexadecimal Number : 54
Octal Number : 124

Manipulators 73

Explanation: In the above program, the integer variable x is declared and initialized with 84.
The first cout statement displays the decimal number to its equivalent hexadecimal number. The
manipulator hex converts a decimal number to its hexadecimal equivalent. The second cout
statement converts a decimal number to its equivalent octal number.

3.44 Write a program to read a number in hexadecimal format using cin statement.
Display the number in decimal format.
#include<iostream.h>
#include<conio.h>

int main()

{
 clrscr();
 int x;
 cout<<“\n Enter Hexadecimal Number :”;
 cin>>hex>>x;
 cout<<“\n Decimal Number :”<<dec<<x;
 return 0;
}

OUTPUT

Enter Hexadecimal Number : 31
Decimal Number : 25

Explanation: In the above program, the cin statement reads a number in hex format. The cout
statement displays its equivalent decimal number with the use of dec manipulator.

3.45 Write a program to demonstrate the use of endl manipulator.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout<<“ Demo of endl”;
 endl(cout);
 cout<<“ It splits a line” ;
 return 0;
}

OUTPUT

Demo of endl
It splits a line

74 Input and Output in C++

Explanation: In the above program, endl manipulator is used to split the line. The two strings
are displayed on two separate lines.

Explanation: In the above program, the statement flush (cout) flushes the buffer. This statement
can be used as cout<<flush. For more information on buffer, read Section 3.4.

3.14 uSer-DeFineD ManipulatOrS

The programmer can also define his or her own manipulator according to the requirement of the
program. The syntax for defining manipulator is as follows.

ostream & m_name (ostream & o)
{
 statement1;
 statement2;
 return o;
}

The m_name is the name of the manipulator.

3.46 Write a program to demonstrate the use of flush() statement.
#include<iostream.h>
#include<conio.h>

int main()
{
 char text[20];
 clrscr();
 cout<<“Enter text :”;
 cin.getline(text,20);
 cout<<“Text entered :”<<text;
 flush(cout);
 return 0;
}

OUTPUT

Enter text : Buffer
Text entered : Buffer

3.47 Write a program to create manipulator equivalent to ‘\t’. Use it in the program and
format the output.
#include<iostream.h>
#include<iomanip.h>
#include<conio.h>

User-defined Manipulators 75

ostream & tab (ostream & o)
{
 o <<“\t”;
 return o;
}
void main()
{
 clrscr();
 cout<<1<<tab<<2 <<tab<<3;
}

OUTPUT

1 2 3

Explanation: Figure 3.7 illustrates the working of the program.

ostream & tab (ostream & o)
{
o<<"\t";
return o;
}

void main()
{
 cout<<1<<tab<<2<<tab<<3;
}

Manipulator name

Code for manipulator

Call to
manipulator

 Fig. 3.7 Working of tab manipulator

In the above program, tab named manipulator is defined. The definition of tab manipula-
tor contains the escape sequence ‘\t’. Whenever we call the tab manipulator, the ‘\t’ is
executed and we get the effect of tab.

3.48 Write a program to display a message using manipulator.

#include<iostream.h>
#include<iomanip.h>
#include<conio.h>

ostream & N (ostream & o)
{
 o <<“Negative Number”;
 return o;
}
ostream & P (ostream & o)
{

76 Input and Output in C++

Explanation: In the above program, two manipulators N and P are created. When called, N dis-
plays the message “Negative number” and P displays the message “Positive number”.

3.15 ManipulatOr With One paraMeter

The prototype declared in the iomanip.h as described earlier allows us to define individual set
of macros. The manipulator can be created without the use of int or long argument.

 o <<“Positive Number”;
 return o;
}
void main()
{
 int x;
 clrscr();
 cout<<“\n Enter a Number :”;
 cin>>x;
 if (x<0)
 cout<<x <<“ is” <<N;
 else
 cout<<x <<“ is” <<P;
}

OUTPUT

Enter a Number : -15
-15 is Negative Number

3.49 Write a program with one parameter to display the string in the middle of the line.

#include<iostream.h>
#include<iomanip.h>
#include<string.h>
#include<conio.h>
ostream& fc (ostream& ost, int iw)
{
 for (int k=0;k<((75-iw)/2);k++)
 ost <<“ ”;
 return (ost);
}
OMANIP (int) middle (int iw)
{
 return OMANIP (int) (fc,iw);
}

Manipulators with Multiple Parameters 77

Explanation: In the above program, middle is a user-defined parameterized manipulator. It re-
ceives a value strlen (m), that is, string length. The header file IOMANIO.H defines a macro,
OMANIO (int). It is expanded to class_OMANIP_int. Due to this, the definition consists
of a constructor and an overloaded ostream insertion operator. When middle() function is
added into the stream, it invokes the constructor which generates and returns an OMANIP_int
object. The fc() function is called by the object constructor.

3.16 ManipulatOrS With Multiple paraMeterS

In this type of manipulators, multiple arguments are passed to the manipulator. The following
program explains it.

int main()
{
 clrscr();
 char *m=“ * Well come *”;
 cout<<middle (strlen(m)) <<m;
 return 0;
}

OUTPUT

** WEL COME **

3.50 Write a program to create a manipulator with two arguments.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
#include<math.h>

struct w_p
{
 int w;
 int p;
};
IOMANIPdeclare (w_p);
static ostream& ff(ostream& os, w_p w_p)
{
 os.width (w_p.w);
 os.precision(w_p.p);
 os.setf(ios::fixed);
 return os;
}
OMANIP (w_p) column (int w, int p)
{

78 Input and Output in C++

 w_p w_p;
 w_p.w=w;
 w_p.p=p;
 return OMANIP (w_p) (ff,w_p);
}
int main()
{
 clrscr();
 double n,sq,sqr;
 cout<<“number\t” <<“square\t” <<“\tsquare root\n”;
 cout<<“===================================\n”;
 n=1.0;
 for (int j=1;j<16;j++)
 {
 sq=n*n;
 sqr=sqrt(n);
 cout.fill(‘0’);
 cout<<column(3,0)<<n <<“\t”;
 cout<<column(7,1) <<sq <<“\t\t”;
 cout<<column(7,6) <<sqr <<endl;
 n=n+1.0;
 }
 return 0;
}

OUTPUT

number square square root
===========================
001 0000001 0000001
002 0000004 1.414214
003 0000009 1.732051
004 0000016 0000002
005 0000025 2.236068
006 0000036 2.44949
007 0000049 2.645751
008 0000064 2.828427
009 0000081 0000003
010 0000100 3.162278
011 0000121 3.316625
012 0000144 3.464102
013 0000169 3.605551
014 0000196 3.741657
015 0000225 3.872983

More Programs 79

Explanation: The above program is similar to the previous one. The only difference is that here
two parameters are used. The user-defined manipulator is assigned two integer values. The first
argument decides the number of spaces and the second argument decides the number of decimal
places. After initializing the w_p structure, the constructor is called. The constructor creates and
returns a _OMANIP object. The output of the program is shown above.

3.17 MOre prOGraMS

3.51 Write a program to calculate the simple interest and total amount, input principal
amount, period, and rate of interest.

#include<iostream.h>
#include<conio.h>
int main()

{
 clrscr();
 int p_amount; // principle amount
 int period; // period in years
 int i_rate; // interest rate
 int interest; // interest
 int t_amount; // total amount
 cout<<endl<<“Enter Principle amount :”;
 cin>>p_amount;
 cout<<“Enter period (years) :”;
 cin>>period;
 cout<<“Enter interest rate :”;
 cin>>i_rate;
 interest=(p_amount*period*i_rate) / 100;
 cout<<“Interest :”<<interest;
 t_amount=p_amount+interest;
 cout<<endl<<“Total Amount :” <<t_amount;
 return 0;
}

OUTPUT

Enter Principle amount : 10000
Enter period (years) : 3
Enter interest rate : 5
Interest : 189
Total Amount : 10189

Explanation: In the above program, integer variables p_amount, period, i_rate, inter-
est, and t_amount are declared. The principal amount, period in years, and rate
of interest are read through the keyboard using respective variable with cin statement.

80 Input and Output in C++

The interest is calculated by the statement interest=(p_amount*period*i_rate)/100
and the interest calculated is assigned to variable interest. The total amount is calculated by add-
ing interest in the principle amount.

3.52 Write a program to set width and display the integer number.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.width(7);
 cout<<20123<<endl;
 cout.width(10);
 cout<<12541;
 return 0;
}

Explanation: In the above program, the cout.width(7) statement sets width to 7. The cout
statement displays the five digits. The total number of digits are less than the total width. Hence,
two blank spaces are displayed at the beginning as shown below.

2 0 2 1 3

2 0 2 1 3

3.53 Write a program to demonstrate use of showpos and showpoint flags.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
int main()

{

 clrscr();
 cout.setf(ios::showpos);
 cout.setf(ios::showpoint);
 cout.setf(ios::internal,ios::adjustfield);
 cout.precision(2);
 cout.width(9);
 cout<<587.4;
 return 0;
}

Explanation: The output of the program can be understood from the following table.

More Programs 81

+ 5 8 7 . 4 0

The showpos flag displays the positive sign at the beginning. The showpoint option
displays decimal point and trailing zeros. The internal and adjustfield flags add blank
spaces between the sign and the number.

3.54 Write a program to display results in right justification.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

int main()
{
 clrscr();
 int k=0;
 long double n=1.00,f=1.00;
 cout.precision(0);
 cout.setf(ios::fixed);
 while (k<15)
 {
 f*=n++;
 cout.width(15);
 cout<<f<<“\n”;
 k++;
 }
 return 0;
}

OUTPUT

1
2
6

24
120
720

5040
40320

362880
3628800

39916800
479001600

6227020800
87178291200

1307674368000

82 Input and Output in C++

Explanation: In the above program, the integer variable k is initialized to 0 and long double
variables n and f are initialized to 1.00. The precision is set to 0. The setf() function sets the
precision to fixed position. The statement cout.width (15) fixes the field width. Thus, using
while loop repetitive operations are performed. The output of the program is given above.

3.55 Write a program to display square and cube of numbers from 1.5 to 16.5 in table
format.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
#include<math.h>

int main()
{
 clrscr();
 int k=0;
 float num=1.5,sq,cb;
 cout<< “Number\t\t” <<“Square\t\t” <<“Cube\n”;
 cout<<“ =======================================\n”;
 cout.setf(ios::fixed);
 while (k<16)
 {
 sq=pow(num,2);
 cb=pow(num,3);
 cout.fill(‘*’);
 cout.width(4);
 cout.precision(0);
 cout<<num <<“\t\t”;
 cout.width(6);
 cout.precision(2);
 cout<<sq<<“\t\t”;
 cout.width(8);
 cout.precision(2);
 cout<<cb<<endl;
 num+=1;
 k++;
 }
 return 0;
}

OUTPUT

Number Square Cube
======== ======== =========
*1.5 **2.25 ****3.38

*2.5 **6.25 ***15.63
*3.5 *12.25 ***42.87
*4.5 *20.25 ***91.12
*5.5 *30.25 **166.38
*6.5 *42.25 **274.62
*7.5 *56.25 **421.88
*8.5 *72.25 **614.13
*9.5 *90.25 **857.37
10.5 110.25 *1157.63
11.5 132.25 *1520.88
12.5 156.25 *1953.12
13.5 182.25 *2460.37
14.5 210.25 *3048.63
15.5 240.25 *3723.88
16.5 272.25 *4492.12

Explanation: In the above program the variable num is initialized to 1.5. The while loop is
executed repetitively and square and cube of the number are calculated using the pow() func-
tion. The functions cout.width() and cout.precision() set the field width and the
number of floating points. The output of the program is shown above.

3.56 Write a program to display octal and hexadecimal equivalents of decimal numbers
100 to 200 with a difference of 10.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
#include<math.h>

int main()
{
 clrscr();
 int k=100;
 cout<< “Number\t” <<“Octal\t” <<“Hexadecimal\n”;
 cout<<“===========================\n”;
 while (k<201)
 {
 cout.setf(ios::dec, ios::basefield);
 cout<<k <<“\t”;
 cout.setf(ios::oct, ios::basefield);
 cout<<k<<“\t”;
 cout.setf(ios::hex, ios::basefield);
 cout<<k<<endl;
 k+=10;

More Programs 83

84 Input and Output in C++

 }
 return 0;
}

OUTPUT

Number Octal Hexadecimal
======= ======= ========

100 144 64
110 156 6e
120 170 78
130 202 82
140 214 8c
150 226 96
160 240 a0
170 252 aa
180 264 b4
190 276 be
200 310 c8

Explanation: In the above program, ios base fields such as oct, hex, and dec are set using
setf() function. After this setting the decimal number given in cout() before printing is
converted to the above formats. The while loop repetitively performs this task and the result
is displayed as above.

3.57 Write a program to create manipulator. Use setf() function.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>
ostream & rs (ostream & o)
{
 o <<“Rs.”;
 return o;
}
ostream & arg (ostream & o)
{
 o.setf(ios::showpos);
 o.setf(ios::showpoint);
 o.fill(‘ ’);
 o.precision(2);
 o<<setiosflags (ios::fixed) <<setw(7);
 return o;
}

int main()
{
 clrscr();
 cout<<rs<<arg<<132.58;
 return 0;
}

OUTPUT

Rs.+132.58

Explanation: In the above program, rs and arg are two user-defined manipulators. The arg
manipulator contains various member functions of ios class that are used to manage the screen.

3.58 Write a program to define macro for %d and <<. Use them in cout and printf
statements.

#include<iostream.h>
#include<conio.h>
#include<stdio.h>
#define d <<j
#define i “\n%d”

int main()
{
 clrscr();
 int j=1;
 cout d ;
 printf (i,j);
 return 0;
}

OUTPUT

1
1

Explanation: The operator << and variable j together are assigned to macro d and the format
string %d is assigned to macro i. Both are used in cout and printf statements, respectively.

3.59 Write a program to display trailing decimal zeros using formatted functions.

#include<iostream.h>
#include<conio.h>
int main()
{

More Programs 85

86 Input and Output in C++

Explanation: By default, the cout statement omits the trailing decimal zeros. The trailing zeros
can be displayed using a setting as shown in the above program. The result of the above program
is shown as follows in tabular format for the sake of understanding.

4 4 . 7 4

2 3 . 3 0

2 0 . 0 0

 clrscr();
 cout.setf(ios::showpoint);
 cout.precision(2);
 cout<<44.74<<endl;
 cout<<23.30<<endl;
 cout<<20.00;
 return 0;
}

3.60 Write a program to display contents of an array using width() function. Fill the
blank space with ‘*’.

#include<iostream.h>
#include<conio.h>
int main()
{
 clrscr();
 int i,j;
 float amount;
 float item[3][3]= {111,45,75.25,112,50,100.15,113,45,101.75};
 cout.precision(2);
 cout<<“ Code No.”<<“ Qty” <<“\t Rate”<<endl;
 cout.fill(‘*’);
 for (i=0;i<3;i++)
 {
 cout<<endl;
 for (j=0;j<3;j++)
 {
 cout.width(8);
 cout<<item[i][j];
 }
 }
 return 0;
}

Explanation: In the above program, an array item[3][3] is declared and initialized with float
numbers. The following formatting statements are used.

cout.precision(2) – Sets decimal point limit to two digits.
cout.fill(‘*’) – Fills ‘*’ in blank space of field.
cout.width(8) – Sets field width to 8.

The first and second for loops are used to read and display the contents of the array on the
screen. The output of the program is as follows.

CODe nO. QtY rate

* * * * * 1 1 1 * * * * * * 4 5 * * * 7 5 . 2 5

* * * * * 1 1 2 * * * * * * 5 0 * * 1 0 0 . 1 5

* * * * * 1 1 3 * * * * * * 4 5 * * 1 0 1 . 7 5

Here, each field has width 8. The numbers are displayed with right justification. The blank
spaces are filled with ‘*’ symbol.

SuMMarY

Summary 87

(1) The input/output function of C++ works
with different physical devices. It also
acts as an interface between the user and
the device.

(2) A stream is a series of bytes and acts
as source and destination for data.
The source stream is called as input
stream and the destination stream is
called as output stream.

(3) The cin, cout, cerr, and clog are
pre-defined streams.

(4) The header file iostream.h files must
be #include when we use cin and
cout functions.

(5) The istream and ostream are de-
rived class from ios base class. Figure
3.4 displays all the derived classes.

(6) The formatting of output can be effec-
tively done with member function of ios

class. The member function width(),
precision(), fill(), and setf()
allows the user to design and display the
output in formatted form.

(7) Table 3.6 describes the list of functions
without bit fields. These functions are
also used for formatting the output

(8) The putback() replaces the given
character into the input stream. The mem-
ber function ignore ignores the number
of given character till it finds the termina-
tion character.

(9) Manipulators also help the user in for-
matting the output. The programmer can
also create his or her manipulators.

(10) The header file iomanip.h contains
pre-defined manipulators. Table 3.7 de-
scribes these manipulators.

88 Input and Output in C++

eXerCiSeS

(A) Answer the following questions

(1) List the names of pre-defined
streams with their ‘C’ equivalents?

(2) What are formatted and unformatted I/O
functions?

(3) Distinguish between

(a) cin() and scanf()
(b) cout() and printf()
(c) ios::fixed and cout.preci-

sion()

(4) What are the uses of put() and get()
functions?

(5) What is the use of getline() func-
tion? Which two arguments does it re-
quire?

(6) Describe the bit fields required in
setf() function.

(7) List the flags without bit fields with their
working.

(8) What is the role of iostream.h and
iomanip.h header files?

(9) Write the statement for concatenation of
two strings using cout.write() state-
ment.

(10) Describe the procedure for designing ma-
nipulator.

(11) What is the function of peek() and ig-
nore() functions?

(12) What are single and multiple parameter
manipulators?

(13) In which format does the out statement
display the address of a variable? How
can it be converted to unsigned?

(14) In which situation is the putback()
function useful?

(15) What is the use of ignore() function?
(16) What do you mean by formatted and un-

formatted data?

(B) Answer the following by selecting the appropriate option

(1) The cin and cout functions require the
header file to include
(a) iostream.h
(b) stdio.h
(c) iomanop.h
(d) none of the above

(2) The set.precision() is used to set
(a) number of digits
(b) decimal places
(b) field width
(d) none of the above

(3) To fill unused sections of the field, the
character is set by the function
(a) fill()
(b) width()
(c) precision()
(d) none of the above

(4) The manipulator <<endl is equivalent to
(a) ‘\n’
(b) ‘\t’

(c) ‘\b’
(d) none of the above

(5) This function accepts the string with
blank spaces
(a) cin
(b) scanf()
(c) getline();
(d) none of the above

(6) The streams is a
(a) flow of integers
(b) flow of data
(c) flow of statements
(d) none of the above

(7) The statement cout<<hex<<15; gives
the data in
(a) hexadecimal format
(b) octal format
(c) binary format
(d) decimal format

(8) The gcount() function counts the
(a) inserted character

(C) Attempt the following programs

Exercises 89

(b) unformatted extracted character
(c) both (a) and (b)
(d) none of the above

(9) The buffer is used to move data between
(a) input and output devices
(b) i/O devices and computer

(c) input devices to storage devices
(d) none of the above

(10) The buffer is a
(a) block of memory
(b) part of ram
(c) part of hard disk
(d) none of the above

(1) Write a program to read five float num-
bers with six decimal places.

(2) Write a program to display the hexadeci-
mal and octal equivalent of 85, 25, 152,
251, and 458 numbers.

(3) Write a program to display decimal
equivalent of hexadecimal numbers
0x52, 0x98, 0x101, 0x524, and 0x421.

(4) Write a program to read ten records of a
student with the information Name, Age,
and Date of Birth. Arrange the informa-
tion (output) in the following format. Fill

the unused field with dots.

Sr. no. Name Age Date of Birth
==== ======== =========
01 Ajay 20 01/01/1991

(5) Write a program to accept string using
get()function. Display the string using
write()and put()function. Mention
the difference between write()and
put()functions.

(6) Write a program to design the following
manipulators.

Manipulator name Function (escape sequence)

<<bkp (backspace) ‘\b’ or ‘\r’

<<newl ‘\n’

<<bell ‘\a’

<<plus ‘+’ (displays + sign)

<<dollar $ (displays $ sign)

(7) Write a program to read item code, quantity, and price and calculate the amount. Display the data
in the following format.
Note: (a) Sr.no. and Item code are left justified.
 (b) The price and amount are right justified.
 (c) Three-digit precision for amount field.

 Sr.no. Item code Quantity Price Amount
 === ====== ===== ==== =====
 01 0101 10 55.15 551.501

(8) Write a program to enter text up to 100
characters through the keyboard. Ignore?
 symbol and replace it with *. Display dot
between two words.

(9) Given x = 5, y = 8, and z = 12, what will
be the value of the variables on the left
side of the following equations?
(a) a = x/y * z
(b) b = y/z * x

(c) c = z * y/z
(d) d = x * z/y
(e) d = (x/y) * z

(10) If p = 0.5, q = −2.0, r = 7.3, s = 10.4,
m = 2, n = −3, what will be the value of
the variables on the left side of the follow-
ing equations.
(a) x = 5.0 * p + q – (r + s*3.0)
(b) y = 3.0 * p + q + s*2

90 Input and Output in C++

(c) z = p * s + q*r – s * q/5.0
(d) a = sqrt(4.0 – r + 9.0 * q)

(11) Solve the following algebraic equations.
(a) k = 4.5 log

10
 x + 2xy + x5

(b) j = (bx + x)/ (bx – b)
(c) z = (x)2 + (x + 1)2 + (x + 2)2
(d) u = a * b/(c + d * g + k) + e

(12) Write a program to generate the following outputs.

- # # # 7 8 4 . 5 0

* 4 5 . 4 8 $ $ $ 2 8 . 3 4 * * 5

7 8 . 4 9 7 9 . 4 9

- % % 5 8 9 . 4 8 0

(13) Write a program to generate the following output.
C

C L
C L A

C L A S
C L A S S

C P L U S P L U S
C P L U S P L

C P L U S
C P L

C

(D) What will be the output of the following programs?

(1) c o u t . s e t f (i o s : : l e f t ,
ios::adjustfield);
cout.fill(‘*’);
cout.precision(2);
cout.width(7);
cout<<345.54;
cout.width(8);
cout<<78;

(2) cout.setf(ios::internal,
ios::adjustfield);
cout.fill(‘$’);
cout.precision(4);
cout.width(11);
cout<<-543.453;

(3) cout.setf(ios::showpos);
cout.setf(ios::showpoint);
cout.setf(ios::internal,
ios::adjustfield);
cout.precision(4);
cout.width(12);
cout<<2342.34;

(4) cout.precision(2);
cout<<4.57<<endl;
cout<<7.1453<<endl;
cout<<4.5132<<endl;
cout<<8.004<<endl;

(5) cout.fill(‘$’);
cout.precision(4);
cout.setf(ios::internal,
ios:: adjustfield);
cout.setf(ios::scientific,
ios:: floatfield);
cout.width(13);
cout<<-78.47854;

(6) cout.fill(‘=’);
cout.setf(ios::internal,
ios::adjustfield);
cout.setf(ios::scientific,
ios::floatfield);
cout.unsetf
(ios::scientific);
cout.width(15);

cout<<- 3.121;
(7) cout.width (7);

cout<<123<56;

(E) Additional programs

(1) Program to read integer, character, float,
and double integer and display them.
#include<iostream.h>
#include<conio.h>
int main()
{
clrscr();
int a=10;
float b=10.4;
char c=‘b’;
double d=12345.4567;
cout<<“\nValue of a is
:”<<a;
cout<<“\nValue of b is
:”<<b;
cout<<“\nCharacter assigned
to c is :”<<c;
cout<<“\n The double value d
is: :”<<d;
return(0);
}

OUTPUT

Value of a is :10
Value of b is :10.4
Character assigned to c is :b
The double value d is: :12345.4567

(2) Program to use different formats of
typecasting and display the converted
values.
#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int a=97;
 float b=100.4;
 char c=‘z’;
 double d=12345.4567;
 cout<<“\n Integer
in character format is
:”<<char(a);

 cout<<“\n Float in
integer format is
:”<<int(b);

 cout<<“\n Character
in integer format is
:”<<int(c);

 cout<<“\n Double in
integer format is
:”<<int(d);

 return(0);
}

OUTPUT

Integer in character format is :a
Float in integer format is :100
Character in integer format is :122
Double in integer format is :12345

(3) Program to display HAI! using,
C++ using the put() statement.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 c o u t . p u t (‘ H ’) .

put(‘A’).put(‘I’).
put(‘!’);

 cout<<endl;
 c o u t . p u t (‘ C ’) .

put(‘+’).put(‘+’);
 return (0);
}

OUTPUT

HAI!
C++

(4) Program to display lower- and uppercase
characters from a to z.
#include<iostream.h>
#include<conio.h>
#include<stdio.h>

int main()
{
clrscr();
int j;

Exercises 91

92 Input and Output in C++

cout<<“Lowercase charac-
ters:”;
for(j=122;j>96;j--)
cout<<(char)j<<“ ”;
cout<<endl;
cout<<“Uppercase charac-
ters:”;
for(j=90;j>64;j--)
printf(“% c”,j);
return (0);
}

OUTPUT

Lowercase characters: z y x w v u t s r
q p o n m l k j i h g f e d c b a
Uppercase characters: Z Y X W V U T
S R Q P O N M L K J I H G F E D C
B A

(5) Program to read characters using a se-
quence of get() statements and display
the characters read using a sequence of
put() statements.
#include<iostream.h>
#include<conio.h>

int main()
{
clrscr();
int age;
float num;
char sex;
char*msg=“ C++ is an object

oriented lan-
guage”;

sex=‘F’;
age=25;
num=1004.5;
cout<<“Sex:”<<sex<<endl;
cout<<“Age:”<<age<<endl;
cout<<“ Entered float number

is:”<<num<<endl;
cout<<“Message entered
is:”<<msg<<endl;
cout<<10<<“ ”<<20<<“
”<<30<<endl;
cout<<“Modified float number
is:”;

cout<<num+5;
return(0);
}

OUTPUT

Sex:F
Age:25
Entered float number is:1004.5
Message entered is: C++ is an object
oriented language
10 20 30
Modified float number is:1009.5

(6) Program to display the addresses of vari-
ables in hex and unsigned integer format.
#include<iostream.h>
#include<conio.h>

int main()
{
clrscr();
int a=77,c=78;
float b=5.1252;
cout<<“Address of
a=”<<&a<<endl;
cout<<“Address of
b=”<<&b<<endl;
cout<<“Address of
c=”<<(unsigned)&c<<endl;
return(0);
}

OUTPUT

Address of a=0x8f69fff4
Address of b=0x8f69ffee
Address of c=65522

(7) Program to read characters using read()
and display it by write() function.
#include<iostream.h>
#include<conio.h>

int main()
{
clrscr();
char name[6];
cout<<“\n Enter a string:”;
cin.read(name,5);

cout<<endl;
cout<<“Entered string is:”;
cout.write(name,5);
return(0);
}

OUTPUT

Enter a string:Amit
Entered string is:Amit

(8) Program to read a string using getline()
function and display it using write() state-
ment.
#include<iostream.h>
#include<conio.h>
#include<string.h>

int main()
{
 char a[7];
 clrscr();
 cout<<“\n Enter any

string:”;
 cin.getline(a,7);
 cout<<“\n Entered

string:”<<a;
 cout<<“\n Entered

string:”;
 cout.write(a,7);
 cout<<“\n Entered

string;”;
 cout.

write(a,strlen(a));
 return(0);
}

OUTPUT

Enter any string:Mumbai
Entered string: Mumbai
Entered string: Mumbai
Entered string: Mumbai

(9) Program to generate the following output.
C
C+
C++
C++e
C++ea
C++eas

C++easy
C++easy
C++easy

#include<iostream.h>
#include<conio.h>
#include<string.h>

int main()
{
 clrscr();
 char p,b[8];
 cout<<“\n Enter any

string:”;
 cin.getline(b,8);
 cout<<“\n Entered

string:”;

for(p=0;p<=strlen(b);p++)
 {
 cout.write(b,p);
 cout<<“\n”;
 }

for(p=8;p>=strlen(b);p--)
 {
 cout.write(b,p);
 cout<<“\n”;
}
 return(0);
}

OUTPUT

Enter any string:C++easy
Entered string:
C
C+
C++
C++e
C++ea
C++eas
C++easy
C++easy
C++easy

(10) Program to generate the following output.
Decimal.................64
Hexadecimal..........40
Octal......................100

Exercises 93

94 Input and Output in C++

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

int main()
{
 clrscr();
 int a=64;
 cout<<setfill(‘.’);
 cout<<setiosflags(ios:

:left);
 cout<<setw(16)

<<“Decimal”;
 cout<<resetiosflags

(ios::left);
 cout<<setw(6)

<<dec<<a<< endl;
 cout<<setiosflags

(ios::left);
 cout<<setw(15)

<<“Hexadecimal”;
 cout<<resetiosflags

(ios::left);
 cout<<setw(6)

<<hex<<a<<endl;
 cout<<setiosflags

(ios::left);
 cout<<setw (15)<<“Oc-

tal”;
 cout<<resetiosflags

(ios::left);
 cout<<setw(6)

<<oct<<a<<endl;
 return(0);
}

OUTPUT

Decimal..................64
Hexadecimal..........40
Octal.......................100

(11) Program to generate the following output.
c
c+
c++
c++e
c++ea
c++eas
c++easy

c++easy
c++eas
c++ea
c++e
c++
c+
c
#include<iostream.h>
#include<conio.h>
#include<string.h>

int main()
{
clrscr();
 char p,b[9];
 cout<<“\n Enter any

string”;
 cin.getline(b,9);
 cout<<“\n Entered

string:”;

for(p=0;p<=strlen(b);p++)
 {
 cout.write(b,p);
 cout<<“\n”;
 }

for(p=strlen(b);p>=0;p--)
 {
 cout.write(b,p);
 cout<<“\n”;
 }
 return(0);
}

OUTPUT

Enter any stringc++easy
Entered string:
c
c+
c++
c++e
c++ea
c++eas
c++easy
c++easy
c++eas
c++ea
c++e

c++
c+
c

(12) Program to generate output using flag bits
such as showpos, showpoint, hex, and up-
percase of given number.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.setf

(ios::showpos);
 cout<<1254;
 cout.setf

(ios::showpoint);
 cout<<“\n”<<1254.524;
 cout.setf(ios::hex,

ios::basefield);
 cout<<“\n”<<184;
 cout.setf

(ios::uppercase);
 cout<<“\n”<<184;
 return(0);
}
}

OUTPUT

+1254
+1234.524000
b8
B8

(13) Program to fill the trailing digits of num-
ber by ‘$’ symbol.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 int s=0,j=0;
 float pi;
 cout.fill(‘$’);
 for(s=4;s>=1;s--)
 {
 pi=(float)22/7;
 cout.width(j++);

 cout.precision(s);
 cout<<“\n”<<pi;
 }
 cout.width(j++);
 cout.precision(s);
 cout<<“\n”<<pi;
 s=cout.fill();
 cout<<“\n previous

setting :”<<(char)s;
 return(0);
}

OUTPUT

3.1429
3.143$
3.14$$
3.1$$$
3.142857
previous setting :

(14) Program to print “*******ABC*******”.

#include<iostream.h>
#include<conio.h>

int main()
{
clrscr();
cout.fill(‘*’);
cout.width(10);
cout<<“ABC”;
cout.fill(‘*’);
cout.width(7);
cout<<“*”;
return(0);
}

OUTPUT

*******ABC*******

(15) Program to use different formats of
width() and display the results.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 cout.width(20);
 int x=cout.width(20);

Exercises 95

96 Input and Output in C++

 cout<<x;
 return(0);
}

OUTPUT

20

(16) Program to use skipws and stdio flags.

#include<iostream.h>
#include<conio.h>

int main()
{
 clrscr();
 char x[5];
 cout<<“Enter array of

characters:”;
 cin>>x;
 cout.setf

(ios::skipws);
 cout<<“Entered array

of characters:”<<x;
 cin>>x;
 cout.

setf(ios::skipws);
 cout<<“\nEn-

tered array of
characters:”<<x;

 cin>>x;
 cout.setf

(ios::stdio);
 cout<<“\nEn-

tered array of
characters:”<<x;

 return(0);
}

OUTPUT

Enter array of characters: as h ok
Entered array of characters: as
Entered array of characters: h
Entered array of characters: ok

(17) Program to convert decimal to hexadeci-
mal and octal number.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

int main()

{
 clrscr();
 int a;
 cout<<“Enter the

number :”;
 cin>>a;
 cout<<“\n Hexadecimal

number :”<<hex<<a;
 cout<<“\n Octal number

:”<<oct<<a;
 return(0);
}

OUTPUT

Enter the number : 156
Hexadecimal number : 9c
Octal number : 234

(18) Program for converting hexadecimal
number to decimal number.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

int main()
{
 clrscr();
 int a;
 cout<<“\n Enter hexa-

decimal number:”;
 cin>>hex>>a;
 cout<<“\n Equiva-

lent decimal number
is:”<<dec<<a;

 return(0);
}

OUTPUT

Enter hexadecimal number is : f
Equivalent decimal number is : 15

(19) Program to convert octal number to hexa-
decimal and decimal number.

#include<iostream.h>
#include<conio.h>
#include<iomanip.h>

int main()
{
 clrscr();

 int a;
 cout<<“\n Enter octal

number :”;
 cin>>oct>>a;
 cout<<“\n Equivalent

hexadecimal number is
:”<<hex<<a;

 cout<<“\n Equivalent
decimal number is
:”<<dec<<a;

 return(0);
}

OUTPUT

Enter octal number : 124
Equivalent hexadecimal number is : 54
Equivalent decimal number is : 84

(20) Program to generate the following output.

****1000.2
*100.45

#include<iostream.h>
#include<conio.h>
int main()
{
 clrscr();
 cout.fill(‘*’);
 cout.precision(3);
 cout.width(10);
 cout<<1000.2<<endl;
 cout.fill(‘*’);
 cout.precision(2);
 cout.width(7);
 cout<<100.4532;
 return(0);
}

OUTPUT

****1000.2
*100.45

Exercises 97

 This page is intentionally left blank.

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology
	1.5 Disadvantage of Conventional Programming
	1.6 Programming Paradigms
	(1) Monolithic Programming
	(2) Procedural/Structured Programming

	1.7 Preface to Object Oriented Programming
	1.8 Key Concepts of Object Oriented Programming
	(1) Objects
	(2) Classes
	(3) Method
	(4) Data Abstraction
	(5) Encapsulation
	(6) Inheritance
	(7) Polymorphism
	(8) Dynamic Binding
	(9) Message passing
	(10) Reusability
	(11) Delegation
	(12) Genericity

	1.9 Advantages of OOP
	1.10 Object Oriented Languages
	SMALTALK
	CHARM++
	JAVA

	1.11 Usage of OOP
	1.12 Usage of C++
	Summary
	Exercises

	Chapter 2 : Basics of C++
	2.1 Introduction
	2.2 Steps to Create and Execute a C++ Program
	2.3 Flowchart for Creating a Source File, Compiling, Linkingand Executing in C++
	2.4 C++ Environments
	2.5 Typical C++ Environment (Borland C++)
	Step 1: Open any Text Editor
	Step 2: Write the Code for the Program
	Step 3: Save the File with .CPP AS an Extension
	Step 4: Compile the Program
	Step 5: Run the Program

	2.6 Structure of a C++ Program
	2.7 Illustrative Simple Program in C++ without Class
	2.8 Header Files and Libraries
	Summary
	Exercises

	Chapter 3 : Input and Output in C++
	3.1 Introduction
	3.2 Streams in C++ and Stream Classes
	3.3 Pre-defined Streams
	3.4 Buffering
	3.5 Stream Classes
	3.6 Formatted and Unformatted Data
	3.7 Unformatted Console I/O Operations
	Input and Output Streams

	3.8 Type Casting with the cout Statement

