
2 Circuit Analysis Techniques

2.1 Thévenin and Norton Equivalent Circuits

2.2 Node-Voltage and Mesh-Current Analyses

2.3 Superposition and Linearity

2.4 Wye-Delta Transformation

2.5 Computer-Aided Circuit Analysis: SPICE

2.6 Computer-Aided Circuit Analysis: MATLAB

2.7 Learning Objectives

2.8 Practical Application: A Case Study—Jump Starting a Car

Problems

In Chapter 1 the basic electric circuit concepts were presented. In this chapter we consider some
circuit analysis techniques, since one needs not only basic knowledge but also practical and
efficient techniques for solving problems associated with circuit operations.

One simplifying technique often used in complex circuit problems is that of breaking the
circuit into pieces of manageable size and analyzing individually the pieces that may be already
familiar. Equivalent circuits are introduced which utilize Thévenin’s and Norton’s theorems to
replace a voltage source by a current source or vice versa. Nodal and loop analysis methods are then
presented. Later the principles of superposition and linearity are discussed. Also, wye–delta trans-
formation is put forth as a tool for network reduction. Finally, computer-aided circuit analyses with
SPICE and MATLAB are introduced. The chapter ends with a case study of practical application.

2.1 THÉVENIN AND NORTON EQUIVALENT CIRCUITS

For a linear portion of a circuit consisting of ideal sources and linear resistors, the volt–ampere
(v–i) relationship at any two accessible terminals can be expressed by the linear equation

v = Ai + B (2.1.1)
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where A and B are two constants. The Thévenin equivalent circuit at any two terminals a and b
(to replace the linear portion of the circuit) is given by

v = RThi + voc (2.1.2)

where it can be seen that

RTh = v/i|voc=0 (2.1.3)

and

voc = v|i=0 (2.1.4)

Thus, voc is known as the open-circuit voltage (or Thévenin voltage) with i = 0, and RTh is the
Thévenin equivalent resistance (as seen from the terminals a–b) with voc = 0. Equation (2.1.4)
accounts for the ideal sources present in that linear portion of the circuit, as shown in Figure
2.1.1(a), whereas Equation (2.1.3) implies deactivating or zeroing all ideal sources (i.e., replacing
voltage sources by short circuits and current sources by open circuits). The model with the voltage
source voc in series with RTh is known as Thévenin equivalent circuit, as shown in Figure 2.1.1(b).

Equation (2.1.1) may be rewritten as

i = v

A
− B

A
= v

RTh
− voc

RTh
= v

RTh
− isc (2.1.5)

which is represented by the Norton equivalent circuit with a current source isc in parallel with
RTh, as shown in Figure 2.1.1(c). Notice that with v = 0, i = −isc. Also, isc = voc/RTh, or
voc = iscRTh.

Besides representing complete one-ports (or two-terminal networks), Thévenin and Norton
equivalents can be applied to portions of a network (with respect to any two terminals) to
simplify intermediate calculations. Moreover, successive conversions back and forth between the
two equivalents often save considerable labor in circuit analysis with multiple sources. Source
transformations can be used effectively by replacing the voltage source V with a series resistance
R by an equivalent current source I (= V/R) in parallel with the same resistance R, or vice versa.
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Figure 2.1.1 Equivalent circuits. (a) Two-terminal or one-port network. (b) Thévenin equivalent circuit.
(c) Norton equivalent circuit.

EXAMPLE 2.1.1

Consider the circuit shown in Figure E2.1.1(a). Reduce the portion of the circuit to the left of
terminals a–b to (a) a Thévenin equivalent and (b) a Norton equivalent. Find the current through
R = 16 �, and comment on whether resistance matching is accomplished for maximum power
transfer.
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So l u t i on

The 6-A source with 24 � in parallel can be replaced by a voltage source of 6× 24 = 144 V with
24 � in series. Thus, by using source transformation, in terms of voltage sources, the equivalent
circuit to the left of terminals a–b is shown in Figure E2.1.1(b).
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(a) KVL: 144− 24IL − 48IL − 96 = 0, or 72IL = 48, or IL = 2/3 A

Voc = 144− 24(2/3) = 128 V

Deactivating or zeroing all ideal sources, i.e., replacing voltage sources by short
circuits in the present case, the circuit of Figure E2.1.1(b) reduces to that shown in
Figure E2.1.1(c).

Viewed from terminals a–b, the 48-� resistor and the 24-� resistor are in parallel,

RTh = 48‖24 = 48× 24

48+ 24
= 16 �

Thus, the Thévenin equivalent to the left of terminals a–b, attached with the 16-� resistor,
is shown in Figure E2.1.1(d). Note that the Thévenin equivalent of any linear circuit
consists of a single Thévenin voltage source in series with a single equivalent Thévenin
resistance.

The current in the 16-� resistor to the right of terminals a–b can now be found,

I = 128/32 = 4 A

(b) The 96-V source with 48 � in series can be replaced by a current source of 96/48 = 2
A with a parallel resistance of 48 �. Thus, by using source transformation, in terms
of current sources, the equivalent circuit to the left of terminals a–b is given in Figure
E2.1.1(e).

Shorting terminals a–b, one can find Isc, Isc = 8 A. Replacing current sources by
open circuits, viewed from terminals a–b, RTh = 48‖24 = 16 �, which is the same as in
part (a). The circuit of Figure E2.1.1(e) to the left of terminals a–b reduces to that shown
in Figure E2.1.1(f).

Thus, the Norton equivalent to the left of terminals a–b, attached with the 16-�
resistor, is given in Figure E2.1.1(g). Note that the Norton equivalent of any linear
circuit consists of a single current source in parallel with a single equivalent Thévenin
resistance.

The current in the 16-� resistor to the right of terminals a–b can now be found. I = 4 A,
which is the same as in part (a).

The equivalent source resistance, also known as the output resistance, is the same as the load
resistance of 16 � in the present case. Hence, resistance matching is accomplished for maximum
power transfer.

EXAMPLE 2.1.2

Consider the circuit of Figure E2.1.2(a), including a dependent source. Obtain the Thévenin
equivalent at terminals a–b.
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First, the open-circuit voltage at terminals a–b is to be found.

KCL at node a: I + 9I = I1, or I1 = 10I

KVL for the left-hand mesh: 2000I + 200I1 = 10, or 4000I = 10, or I = 1/400 A

Voc = 200I1 = 200(1/400) = 0.5 V

Because of the presence of a dependent source, in order to find RTh, one needs to determine Isc

after shorting terminals a–b, as shown in Figure E2.1.2(b).
Note that I1 = 0, since Vab = 0.

KCL at node a: Isc = 9I + I = 10I

KVL for the outer loop: 2000I = 10, or I = 1/200 A

Isc = 10(1/200) = 1/20 A

Hence the equivalent Thévenin resistance RTh viewed from terminals a–b is

RTh = Voc

Isc
= 0.5

1/20
= 10�

Thus, the Thévenin equivalent is given in Figure E2.1.2(c).

The preceding examples illustrate how a complex network could be reduced to a simple
representation at an output port. The effect of load on the terminal behavior or the effect of an
output load on the network can easily be evaluated. Thévenin and Norton equivalent circuits
help us in matching, for example, the speakers to the amplifier output in a stereo system. Such
equivalent circuit concepts permit us to represent the entire system (generation and distribution)
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connected to a receptacle (plug or outlet) in a much simpler model with the open-circuit voltage
as the measured voltage at the receptacle itself.

When a system of sources is so large that its voltage and frequency remain constant regardless
of the power delivered or absorbed, it is known as an infinite bus. Such a bus (node) has a voltage
and a frequency that are unaffected by external disturbances. The infinite bus is treated as an ideal
voltage source. Even though, for simplicity, only resistive networks are considered in this section,
the concept of equivalent circuits is also employed in ac sinusoidal steady-state circuit analysis
of networks consisting of inductors and capacitors, as we shall see in Chapter 3.

2.2 NODE-VOLTAGE AND MESH-CURRENT ANALYSES

The node-voltage and mesh-current methods, which complement each other, are well-ordered
systematic methods of analysis for solving complicated network problems. The former is based
on the KCL equations, whereas the KVL equations form the basis for the latter. In both methods
an appropriate number of simultaneous algebraic equations are developed. The unknown nodal
voltages are found in the nodal method, whereas the unknown mesh currents are calculated in the
loop (or mesh) method. A decision to use one or the other method of analysis is usually based on
the number of equations needed for each method.

Even though, for simplicity, only resistive networks with dc voltages are considered in this
section, the methods themselves are applicable to more general cases with time-varying sources,
inductors, capacitors, and other circuit elements.

Nodal-Voltage Method

A set of node-voltage variables that implicitly satisfy the KVL equations is selected in order to
formulate circuit equations in this nodal method of analysis. A reference (datum) node is chosen
arbitrarily based on convenience, and from each of the remaining nodes to the reference node, the
voltage drops are defined as node-voltage variables. The circuit is then described completely by
the necessary number of KCL equations whose solution yields the unknown nodal voltages from
which the voltage and the current in every circuit element can be determined. Thus, the number
of simultaneous equations to be solved will be equal to one less than the number of network
nodes. All voltage sources in series with resistances are replaced by equivalent current sources
with conductances in parallel. In general, resistances may be replaced by their corresponding
conductances for convenience. Note that the nodal-voltage method is a general method of network
analysis that can be applied to any network.

Let us illustrate the method by considering the simple, but typical, example shown in Figure
2.2.1. By replacing the voltage sources with series resistances by their equivalent current sources
with shunt conductances, Figure 2.2.1 is redrawn as Figure 2.2.2, in which one can identify three
nodes, A, B, and O.

Notice that the voltages VAO, VBO, and VAB satisfy the KVL relation:

VAB + VBO − VAO = 0, or VAB = VAO − VBO = VA − VB (2.2.1)

where the node voltages VA and VB are the voltage drops from A to O and B to O, respectively.
With node O as reference, and with VA and VB as the node-voltage unknown variables, one can
write the two independent KCL equations:

Node A: VAG1 + (VA − VB)G3 = I1, or (G1 +G3)VA −G3VB = I1 (2.2.2)

Node B: VBG2 − (VA − VB)G3 = I2, or −G3VA + (G2 +G3)VB = I2 (2.2.3)
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Figure 2.2.2 Redrawn Figure 2.2.1 for node-voltage method of analysis.

An examination of these equations reveals a pattern that will allow nodal equations to be
written directly by inspection by following the rules given here for a network containing no
dependent sources.

1. For the equation of node A, the coefficient of VA is the positive sum of the conductances
connected to node A; the coefficient of VB is the negative sum of the conductances
connected between nodes A and B. The right-hand side of the equation is the sum of
the current sources feeding into node A.

2. For the equation of node B, a similar situation exists. Notice the coefficient of VB to be
the positive sum of the conductances connected to node B; the coefficient of VA is the
negative sum of the conductances connected between B and A. The right-hand side of the
equation is the sum of the current sources feeding into node B.

Such a formal systematic procedure will result in a set of N independent equations of the
following form for a network with (N + 1) nodes containing no dependent sources:

G11V1 − G12V2 − · · · − G1NVN = I1

−G21V1 + G22V2 − · · · − G2NVN = I2

...
...

−GN1V1 − GN2V2 − · · · + GNNVN = IN (2.2.4)

where GNN is the sum of all conductances connected to node N, GJK = GKJ is the sum of all
conductances connected between nodes J and K, and IN is the sum of all current sources entering
node N. By solving the equations for the unknown node voltages, other voltages and currents in
the circuit can easily be determined.
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EXAMPLE 2.2.1

By means of nodal analysis, find the current delivered by the 10-V source and the voltage across
the 10-� resistance in the circuit shown in Figure E2.2.1(a).
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So l u t i on

STEP 1: Replace all voltage sources with series resistances by their corresponding Norton
equivalents consisting of current sources with shunt conductances. The given circuit is redrawn
in Figure E2.2.1(b) by replacing all resistors by their equivalent conductances.
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STEP 2: Identify the nodes and choose a convenient reference node O. This is also shown in
Figure E2.2.1(b).

STEP 3: In terms of unknown node-voltage variables, write the KCL equations at all nodes
(except, of course, the reference node) by following rules 1 and 2 for nodal equations given in
this section.

Node A: (0.2+ 0.125+ 0.25)VA − 0.125VB − 0.25VC = 2− 5 = −3

Node B: −0.125VA + (0.125+ 0.05+ 0.1)VB − 0.1VC = 0

Node C: −0.25VA − 0.1VB + (0.25+ 0.1+ 0.04)VC = 5

Rearranging, one gets
0.575 VA − 0.125 VB − 0.25 VC = −3

−0.125 VA + 0.275 VB − 0.1 VC = 0
−0.25 VA − 0.1 VB + 0.39 VC = 5

STEP 4: Simultaneously solve the independent equations for the unknown nodal voltages by
Gauss elimination or Cramer’s rule. In our example, the solution yields

VA = 4.34 V ; VB = 8.43V ; VC = 17.77 V

STEP 5: Obtain the desired voltages and currents by the application of KVL and Ohm’s law. To
find the current I in the 10-V source, since it does not appear in Figure E2.2.1(b) redrawn for
nodal analysis, one has to go back to the original circuit and identify the equivalence between
nodes A and O, as shown in Figure E2.2.1(c).

Now one can solve for I, delivered by the 10-V source,

VA = 4.34 = −5I + 10 or I = 5.66

5
= 1.132 A

The voltage across the 10-� resistance is VB−VC = 8.43−17.77 = −9.34 V. The negative sign
indicates that node C is at a higher potential than node B with respect to the reference node O.

Nodal analysis deals routinely with current sources. When we have voltage sources along
with series resistances, the source-transformation technique may be used effectively to convert
the voltage source to a current source, as seen in Example 2.2.1. However, in cases where we have
constrained nodes, that is, the difference in potential between the two node voltages is constrained
by a voltage source, the concept of a supernode becomes useful for the circuit analysis, as shown
in the following illustrative example.

EXAMPLE 2.2.2

For the network shown in Figure E2.2.2, find the current in each resistor by means of nodal
analysis.

So l u t i on

Note that the reference node is chosen at one end of an independent voltage source, so that the
node voltage VA is known at the start,

VA = 12 V
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Note that we cannot express the branch current in the voltage source as a function of VB and VC .
Here we have constrained nodes B and C. Nodal voltages VB and VC are not independent. They
are related by the constrained equation

VB − VC = 24 V

Let us now form a supernode, which includes the voltage source and the two nodes B and C,
as shown in Figure E2.2.2. KCL must hold for this supernode, that is, the algebraic sum of the
currents entering or leaving the supernode must be zero. Thus one valid equation for the network
is given by

IA − IB − IC + 4 = 0 or
12− VB

2
− VB

2
− VC

1
+ 4 = 0

which reduces to

VB + VC = 10

This equation together with the supernode constraint equation yields

VB = 17 V and VC = −7 V

The currents in the resistors are thus given by

IA = 12− VB

2
= 12− 17

2
= −2.5 A

IB = VB

2
= 17

2
= 8.5 A

IC = VC

1
= −7

1
= −7 A

Mesh-Current Method

This complements the nodal-voltage method of circuit analysis. A set of independent mesh-
current variables that implicitly satisfy the KCL equations is selected in order to formulate circuit
equations in this mesh analysis. An elementary loop, or a mesh, is easily identified as one of
the “window panes” of the whole circuit. However, it must be noted that not all circuits can be
laid out to contain only meshes as in the case of planar networks. Those which cannot are called
nonplanar circuits, for which the mesh analysis cannot be applied, but the nodal analysis can be
employed.

A mesh current is a fictitious current, which is defined as the one circulating around a mesh
of the circuit in a certain direction. While the direction is quite arbitrary, a clockwise direction
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is traditionally chosen. Branch currents can be found in terms of mesh currents, whose solution
is obtained from the independent simultaneous equations. The number of necessary equations in
the mesh-analysis method is equal to the number of independent loops or meshes.

All current sources with shunt conductances will be replaced by their corresponding Thévenin
equivalents consisting of voltage sources with series resistances. Let us illustrate the method by
considering a simple, but typical, example, as shown in Figure 2.2.3.

Replacing the current source with shunt resistance by the Thévenin equivalent, Figure 2.2.3 is
redrawn as Figure 2.2.4, in which one can identify two elementary loops, or independent meshes.

By assigning loop or mesh-current variables I1 and I2, as shown in Figure 2.2.4, both in the
clockwise direction, one can write the KVL equations for the two closed paths (loops) ABDA and
BCDB,

Loop ABDA: I1R1 + (I1 − I2)R2 = V1 − V2 or (R1 + R2)I1 − R2I2 = V1 − V2 (2.2.5)

Loop BCDB: I2R3 + (I2 − I1)R2 = V2 − V3 or −R2I1 + (R2 + R3)I2 = V2 − V3 (2.2.6)

Notice that current I1 exists in R1 and R2 in the direction indicated; I2 exists in R2 and R3 in the
direction indicated; hence, the net current in R2 is I1− I2 directed from B to D. An examination of
Equations (2.2.5) and (2.2.6) reveals a pattern that will allow loop equations to be written directly
by inspection by following these rules:

1. In the first loop equation with mesh current I1, the coefficient of I1 is the sum of the
resistances in that mesh; the coefficient of I2 is the negative sum of the resistances common
to both meshes. The right-hand side of the equation is the algebraic sum of the source
voltage rises taken in the direction of I1.

2. Similar statements can be made for the second loop with mesh current I2. (See also the
similarity in setting up the equations for the mesh-current and nodal-voltage methods of
analysis.)

Such a formal systematic procedure will yield a set of N independent equations of the
following form for a network with N independent meshes containing no dependent sources:
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Figure 2.2.4 Redrawn Figure 2.2.3 for mesh-
current method of analysis.
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R11I1 − R12I2 − · · · − R1NIN = V1

−R21I1 + R22V2 − · · · − R2NIN = V2
...

...

−RN1I1 − RN2V2 − · · · + RNNIN = VN

(2.2.7)

where RNN is the sum of all resistances contained in mesh N,RJK = RKJ is the sum of all
resistances common to both meshes J and K, and VN is the algebraic sum of the source-voltage
rises in mesh N, taken in the direction of IN.

By solving the equations for the unknown mesh currents, other currents and voltages in the
circuit elements can be determined easily.

EXAMPLE 2.2.3

By means of mesh-current analysis, obtain the current in the 10-V source and the voltage across
the 10-� resistor in the circuit of Example 2.2.1.

So l u t i on

STEP 1: Replace all current sources with shunt resistances by their corresponding Thévenin
equivalents consisting of voltage sources with series resistances. Conductances included in the
circuit are replaced by their equivalent resistances.

In this example, since there are no current sources and conductances, the circuit of Figure
E2.2.1(a) is redrawn as Figure E2.2.3 for convenience.
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Figure E2.2.3

STEP 2: Identify elementary loops (meshes) and choose a mesh-current variable for each
elementary loop, with all loop currents in the same clockwise direction. Mesh currents I1, I2,
and I3 are shown in Figure E2.2.3.

STEP 3: In terms of unknown mesh-current variables, write the KVL equations for all meshes
by following the rules for mesh analysis.

Loop 1 with mesh current I1: (5+ 8+ 20)I1 − 20I2 − 8I3 = 10
Loop 2 with mesh current I2: −20I1 + (20+ 10+ 25)I2 − 10I3 = 0
Loop 3 with mesh current I3: −8I1 − 10I2 + (4+ 10+ 8)I3 = 20

Rearranging, one gets
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33I1 − 20I2 − 8I3 = 10
−20I1 + 55I2 − 10I3 = 0
−8I1 − 10I2 + 22I3 = 20

STEP 4: Simultaneously solve the independent equations for the unknown mesh currents by
Gauss elimination or Cramer’s rule.

In this example the solution yields

I1 = 1.132 A; I2 = 0.711 A; I3 = 1.645 A

The current through the 10-V source is I1 = 1.132 A, which is the same as in Example 2.2.1. The
voltage across the 10-� resistor is VBC = 10(I2 − I3) = 10(0.711− 1.645) = −9.34 V, which
is the same as in Example 2.2.1.

Looking at Examples 2.2.1 and 2.2.3, it can be seen that there is no specific advantage
for either method since the number of equations needed for the solution is three in either case.
Such may not be the case in a number of other problems, in which case one should choose
judiciously the more convenient method, usually with the lower number of equations to be
solved.

The mesh-current method deals routinely with voltage sources. When we have current
sources with shunt conductances, the source-transformation technique may be used effectively to
convert the current source to a voltage source. However, in cases where we have constrained
meshes, that is, the two mesh currents are constrained by a current source, the concept of
a supermesh becomes useful for the circuit analysis, as shown in the following illustrative
example.

EXAMPLE 2.2.4

For the network shown in Figure E2.2.4, find the current delivered by the 10-V source and the
voltage across the 3-� resistor by means of mesh-current analysis.
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Vx = ? Figure E2.2.4

So l u t i on

Note that we cannot express the voltage across the current source in terms of the mesh currents I1

and I2. The current source does, however, constrain the mesh currents by the following equation:

I2 − I1 = 5
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Let us now form a supermesh, which includes meshes 1 and 2, as shown in Figure E2.2.4. We
now write a KVL equation around the periphery of meshes 1 and 2 combined. This yields

1I1 + 2(I1 − I3)+ 4(I2 − I3)+ 4(I2 − I3)+ 10 = 0

Next we write a KVL equation for mesh 3,

3I3 + 4(I3 − I2)+ 2(I3 − I1) = 0

Now we have the three linearly independent equations needed to find the three mesh currents
I1, I2, and I3. The solution of the three simultaneous equations yields

I1 = −25A

9
A; I2 = 20

9
A; I3 = 70

27
A

The current delivered by the 10-V source is−I2, or−20/9 A. That is to say, the 10-V source
is absorbing the current 20/9 A.

The voltage across the 3-� resistor is Vx = 3I3 = 3(70/27) = 70/9 = 7.78 V.

Node-Voltage and Mesh-Current Equations with Controlled Sources

Since a controlled source acts at its terminals in the same manner as does an independent source,
source conversion and application of KCL and KVL relations are treated identically for both
types of sources. Because the strength of a controlled source depends on the value of a voltage
or current elsewhere in the network, a constraint equation is written for each controlled source.
After combining the constraint equations with the loop or nodal equations based on treating all
sources as independent sources, the resultant set of equations are solved for the unknown current
or voltage variables.

EXAMPLE 2.2.5

Consider the circuit in Figure E2.2.5(a), which include a controlled source, and find the current
in the 5-V source and the voltage across the 5-� resistor by using (a) the loop-current method
and (b) the node-voltage method.

So l u t i on

(a) Loop-Current Method: The voltage-controlled current source and its parallel resistance
are converted into a voltage-controlled voltage source and series resistance. When you
are source transforming dependent sources, note that the identity of the control variable
(i.e., the location in the circuit) must be retained. The converted circuit is shown in Figure
E2.2.5(b) with the chosen loop currents I1 and I2.

The KVL equations are

For loop carrying I1: (10+ 4+ 2)I1 − 2I2 = 5
For loop carrying I2: −2I1 + (2+ 10+ 5)I2 = −5V1

The constraint equation is

V1 = (I1 − I2)2
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2 Ω 0.5 V1V1 5 Ω V = ?

I = ?
10 Ω

10 Ω

4 Ω

(a)

5 V
+

−

+

−

+

−

Figure E2.2.5

2 ΩV1 5 Ω
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(b)
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1
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10
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1
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Combining the constraint equation with the loop equations, one gets

16I1 − 2I2 = 5; −2I1 + 17I2 = −10(I1 − I2), or 8I1 + 7I2 = 0

from which

I1 = 35/128 A; I2 = −5/16 A

Thus, the current through the 5-V source is I = I1 = 35/128 = 0.273 A, and the
voltage across the 5-� resistor is V = 5I2 = 5(−5/16) = −1.563 V.

(b) Node-Voltage Method: The 5-V voltage source with its 10-� series resistor is replaced
by its Norton equivalent. Resistances are converted into conductances and the circuit is
redrawn in Figure E2.2.5(c) with the nodes shown.

The nodal equations are

A : (0.1+ 0.25)VA − 0.25VB = 0.5

B : −0.25VA + (0.25+ 0.5+ 0.1)VB − 0.1VC = 0.5V1

C : −0.1VB + (0.1+ 0.2)VC = −0.5V1
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The constraint equation is

V1 = VB

Combining these with the nodal equations already written, one has
0.35 VA − 0.25 VB = 0.5
−0.25 VA + 0.35 VB − 0.1 VC = 0

0.4 VB + 0.3 VC = 0

Solving, one gets

VA = 2.266V ; VB = 1.173; VC = −1.564 V

Notice that VC = −1.564 V is the voltage V across the 5-� resistor, which is almost the
same as that found in part (a).

In order to find the current I through the 5-V source, one needs to go back to the
original circuit and recognize that

5− 10I = VA = 2.266 or I = 0.273 A

which is the same as that found in part (a).

2.3 SUPERPOSITION AND LINEARITY

Mathematically a function is said to be linear if it satisfies two properties: homogeneity (propor-
tionality or scaling) and additivity (superposition),

f (Kx) = Kf (x) (homogeneity) (2.3.1)

where K is a scalar constant, and

f (x1 + x2) = f (x1)+ f (x2) (additivity) (2.3.2)

Linearity requires both additivity and homogeneity. For a linear circuit or system in which
excitations x1 and x2 produce responses y1 and y2, respectively, the application of K1x1 and
K2x2 together (i.e., K1x1 + K2x2) results in a response of (K1y1 + K2y2), where K1 and K2

are constants. With the cause-and-effect relation between the excitation and the response, all
linear systems satisfy the principle of superposition. A circuit consisting of independent sources,
linear dependent sources, and linear elements is said to be a linear circuit. Note that a resistive
element is linear. Capacitors and inductors are also circuit elements that have a linear input–output
relationship provided that their initial stored energy is zero. Nonzero initial conditions are to be
treated as independent sources.

In electric circuits, the excitations are provided by the voltage and current sources, whereas
the responses are in terms of element voltages and currents. All circuits containing only ideal
resistances, capacitances, inductances, and sources are linear circuits (described by linear dif-
ferential equations). For a linear network consisting of several independent sources, according
to the principle of superposition, the net response in any element is the algebraic sum of the
individual responses produced by each of the independent sources acting only by itself. While each
independent source acting on the network is considered separately by itself, the other independent
sources are suppressed; that is to say, voltage sources are replaced by short circuits and current
sources are replaced by open circuits, thereby reducing the source strength to zero. The effect of
any dependent sources, however, must be included in evaluating the response due to each of the
independent sources, as illustrated in the following example.
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EXAMPLE 2.3.1

Determine the voltage across the 20-� resistor in the following circuit of Figure E2.3.1 (a) with
the application of superposition.

(a)

V
3

6 Ω

6 A

12 Ω 20 Ω80 Ω18 V V

+

−

+

−

Figure E2.3.1

(b)

V ′

BA

3
VA′
3

6 Ω

12 Ω 20 Ω80 Ω18 V VA′ = V ′ =
+

−

+

−
I1′

(c)

V″

BA

3
VA″
3

6 Ω

12 Ω 20 Ω80 ΩVA″ = V″ =
+

−

6 A

So l u t i on

Let us suppress the independent sources in turn, recognizing that there are two independent
sources. First, by replacing the independent current source with an open circuit, the circuit is
drawn in Figure E2.3.1(b). Notice the designation of V ′ across the 12-� resistor and V ′/3 as the
dependent current source for this case. At node B,(

1

80
+ 1

20

)
V ′B =

V ′A
3

or V ′B =
V ′A
48

For the mesh on the left-hand side, (6+12)I ′1 = 18, or I ′1 = 1 A. But, I ′1 = V ′A/12, orV ′A = 12 V.
The voltage across the 20-� resistor from this part of the solution is

V ′B =
12

48
= 1

4
V
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Next, by replacing the independent voltage source with a short circuit, the circuit is shown in
Figure E2.3.1(c). Notice the designation of V ′′ across the 12-� resistor and V ′′/3 as the dependent
current source for this case. At node A,(

1

6
+ 1

12

)
V ′′A = 6 or V ′′A = 24 V

and at node B,(
1

80
+ 1

20

)
V ′′B =

V ′′A
3
− 6 = 24

3
− 6 = 2 or V ′′B = 32 V

Thus, the voltage across the 20-� resistor for this part of the solution is

V ′′B = 32 V

Then the total net response, by superposition, is

VB = V ′B + V ′′B =
1

4
+ 32 = 32.25 V

The principle of superposition is indeed a powerful tool for analyzing a wide range of linear
systems in electrical, mechanical, civil, or industrial engineering.

2.4 WYE-DELTA TRANSFORMATION

Certain network configurations cannot be reduced or simplified by series–parallel combinations
alone. In some such cases wye–delta (Y–�) transformation can be used to replace three resistors
in wye configuration by three resistors in delta configuration, or vice versa, so that the networks
are equivalent in so far as the terminals (A, B, C) are concerned, as shown in Figure 2.4.1.

For equivalence, it can be shown that (see Problem 2.4.1)

RA = RABRCA

RAB + RBC + RCA

; RB = RABRBC

RAB + RBC + RCA

;

RC = RCARBC

RAB + RBC + RCA

(2.4.1)

RAB = RARB + RBRC + RCRA

RC

; RBC = RARB + RBRC + RCRA

RA

;

RCA = RARB + RBRC + RCRA

RB

(2.4.2)

For the simple case when RA = RB = RC = RY, and RAB = RBC = RCA = R�, Equations
(2.4.1) and (2.4.2) become

RY = R�

3
(2.4.3)

R� = 3RY (2.4.4)
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(b)(a)

B
B

C
C

A
A

RAB

RA

RC
RB

RCA

RBC

Figure 2.4.1 Wye–delta transfor-
mation. (a) Wye configuration. (b)
Delta configuration.

EXAMPLE 2.4.1

Use delta–wye transformation for network reduction and determine the current through the 12-�
resistor in the circuit of Figure E2.4.1(a).

+

−
144 V

(a)

3 Ω

4 Ω

4 Ω
A

O

B
C

8 Ω

2 Ω 12 Ω

I = ?

Figure E2.4.1

+

−

(b)

3 Ω

A C

B

2 Ω

12 Ω

I = ?R3 = 2 Ω

R2 = 2 ΩR1 = 1 Ω

IA

144 V

So l u t i on

The delta-connected portion between terminals A–B–C is replaced by an equivalent wye connec-
tion [see Equation (2.4.1)] with

R1 = 4× 4

4+ 8+ 4
= 1 �

R2 = 4× 8

4+ 8+ 4
= 2 �
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R3 = 4× 8

4+ 8+ 4
= 2 �

The circuit is redrawn in Figure E2.4.1(b).
Using the KVL equation,

IA = 144

(3+ 1)+ (4 ‖14 )
= 81

4
A

By current division,

I = 81

4
× 4

18
= 9

2
= 4.5 A

2.5 COMPUTER-AIDED CIRCUIT ANALYSIS: SPICE

A word of caution is appropriate if this is the student’s first experience with simulation. Just as the
proliferation of calculators did not eliminate the need to understand the theory of mathematics,
circuit simulation programs do not eliminate the need to understand circuit theory. However,
computer-aided tools can free the engineer from tedious calculations, thereby freeing more time
for doing the kind of creative work a computer cannot do.

A circuit-analysis program known as SPICE, an acronym for simulation program with
integrated circuit emphasis, is introduced in this section. The original SPICE program was
developed in the early 1970s at the University of California at Berkeley. Since that time, various
SPICE-based commercial products have been developed for personal computer and workstation
platforms.1

A block diagram summarizing the major features of a SPICE-based circuit simulation
program is shown in Figure 2.5.1. Micro Sim Corporation has developed a design center in

Input
processor

(Schematics)
Circuit

file

Circuit
diagrams

Net list

Analysis
type

Commands

Simulation
processor
(PSpice)

Output
processor
(Probe)

Analysis
summary

Analysis
resultsResponse

data file

Device
library

Output
file

Figure 2.5.1 Major features of a SPice-based circuit simulation program.

1For supplementary reading on SPICE, the student is encouraged to refer to G. Roberts and A. Sedra, SPICE, 2nd ed., published by
Oxford University Press (1997), and to P. Tuinenga, SPICE, 3rd ed., published by Prentice Hall (1995).
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which the input processor is called Schematics, the simulation processor is a version of SPICE
called PSpice, and the output processor is called PROBE. These three programs, working together,
create a graphical environment in which the circuit diagram and the analysis objectives are entered
using Schematics, the circuit is analyzed using PSpice, and the resulting circuit responses are
viewed using PROBE. A student’s version of these programs is widely available and is used in
this book.

The first step for describing the circuit is to number the circuit nodes. The reference node (or
ground node) is labeled as zero (0), and in PSpice syntax the other node names can be numbers or
letters. In order to describe the circuit, statements are written with a separate statement for each
circuit element. The name of an element must begin with a particular letter identifying the kind
of circuit element. Some of these are listed here:

R Resistor

V Independent voltage source

I Independent current source

G Voltage-controlled current source

E Voltage-controlled voltage source

F Current-controlled current source

H Current-controlled voltage source

While the original SPICE recognized only uppercase letters, PSpice is actually case insensitive.
Because PSpice does not recognize subscripts, R1, for example, will be represented by R1, and so
on. The name of each circuit element must be unique. Numerical values can be specified in the
following forms:

4567 or 4567.0 or 4.567 E3

SPICE uses the following scale factor designations:

T = 1E12 G = 1E9 MEG = 1E6
K = 1E3 M = 1E − 3 U = IE − 6
N = 1E − 9 P = 1E − 12 F = 1E − 15

Sometimes, for clarity, additional letters following a numerical value may be used; but these are
ignored by SPICE. For example, 4.4 KOHMS is recognized as the value 4400, and “ohms” is
ignored by the program. Comment statements are identified by an asterisk (*) in the first column,
and these are helpful for making the program meaningful to users. PSpice also allows inserting
comments on any line by starting the comment with a semicolon. Figure 2.5.2 shows the four
types of controlled sources and their corresponding PSpice statements.

While SPICE is capable of several types of analysis, here we illustrate how to solve resistive
circuits containing dc sources using the DC command. PSpice can sweep the value of the source,
when the starting value, the end value, and the increment between values are given. If the
starting and end values are the same, the solution is carried out for only a single value of the
source.

Next we give an example of PSpice analysis. Note that SPICE has capabilities far beyond
what we use in this section, and clearly, one can easily solve complex networks by using programs
like PSpice.



2.5 COMPUTER-AIDED CIRCUIT ANALYSIS: SPICE 87

N 1

GNAME N1 N2 NC+ NC− GMVALUE

+

−
N 2

NC+

NC−

Gmvx vx

N+

ENAME N+ N− NC+ NC− AVVALUE
(a) (b)

+

+

−

−
N−

NC+

NC−

Avvx vx

N 1

FNAME N1 N2 VSENSE AIVALUE
VSENSE NC1 NC2 O

N 2

N+

HNAME N+ N− VSENSE RMVALUE
VSENSE N1 N2 O
(c) (d)

+

−

N−

NC 1

NC 2

Rmix

ix

Aiixvsense

+

−

NC 1

NC 2

ix

vsense

+

−

Figure 2.5.2 Four types of controlled sources and their corresponding PSpice statements. (a) Voltage-
controlled voltage source. (b) Voltage-controlled current source. (c) Current-controlled voltage source.
(d) Current-controlled current source.

EXAMPLE 2.5.1

Develop and execute a PSpice program to solve for the current I2 in Figure E2.5.1(a).

So l u t i on

Figure E2.5.1(b) is drawn showing the node numbers, and adding a voltage source of zero value
in series with R1, because there is a current-controlled source. The program is as follows:

EXAMPLE E2.5.1(a) A Title Identifying the Program.

* THE CIRCUIT DIAGRAM IS GIVEN IN FIGURE E2.5.1(b); a comment

statement

* CIRCUIT DESCRIPTION WITH COMPONENT STATEMENTS

IS 0 1 3

R1 1 4 5

R2 1 2 10

R3 2 0 2

R4 3 0 5

HCCVS 2 3 VSENSE 2

VSENSE 4 3 0

* ANALYSIS REQUEST

• DC IS 3 3 1

* OUTPUT REQUEST

• PRINT DC I(R2) V(1) V(2) V(3)

• END ; an end statement
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After executing the program, from the output file, I2 = I (R2) = 0.692 A.

(a)

R2 = 10 Ω

R1 = 5 Ω

R3 =
2 Ω

R4 =
5 Ω

IS = 3 A

I2

Ix

2Ix

+ −

Figure E2.5.1 (a) Circuit. (b) Redrawn circuit
for developing a PSpice program.

(b)

1
2

4

3

R2 = 10 Ω

R1 = 5 Ω vsense

R3 =
2 Ω

R4 =
5 ΩIS = 3 A

I2

Ix

2Ix

+ −

+ −

2.6 COMPUTER-AIDED CIRCUIT ANALYSIS: MATLAB

This text does not teach MATLAB; it assumes that the student is familiar with it through previous
work. Also, the book does not depend on a student having MATLAB. MATLAB, however,
provides an enhancement to the learning experience if it is available. If it is not, the problems
involving MATLAB can simply be skipped, and the remainder of the text still makes sense.
If one wants to get a quick introduction, the book entitled Getting Started with MATLAB 5 by
R. Pratap, listed under Selected Bibliography for Supplemental Reading for Computer-Aided
Circuit Analysis, may be a good source.

MATLAB (MATrix LABoratory), a product of The Math Works, Inc., is a software package
for high-performance numerical computation and visualization. It is simple, powerful, and
for most purposes quite fast with its easy-to-learn and easy-to-use language. It provides an
interactive environment with hundreds of built-in functions for technical computation, graphics,
and animation. MATLAB also provides easy extensibility with its own high-level programming
language.
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MATLAB

MATrix LABoratory

MATLAB
programming
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And many more
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S

Toolboxes
(collections of specialized functions)

2D graphics
3D graphics
Color and lighting
Animation

Graphics

User-written functions
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Interface with C and
Fortran programs

External interface
(Mex-files)

Signal processing
Statistics
Control system
System indentification
Neural networks
Communications
Symbolic mathematics (Maple inside)
Electrical machines

Image processing
Splines
Robust control
µ-analysis & synthesis
Optimization
Financial

Figure 2.6.1 Schematic diagram of MATLAB’s main features.

Figure 2.6.1 illustrates MATLAB’s main features. The built-in functions with their state-of-
the-art algorithms provide excellent tools for linear algebra computations, data analysis, signal
processing, optimization, numerical solution of ordinary differential equations (ODE), numerical
integration (Quadrature), and many other types of scientific and engineering computations.
Numerous functions are also available for 2D and 3D graphics as well as for animation. Users can
also write their own functions, which then behave just like the built-in functions. MATLAB even
provides an external interface to run Fortran and C programs. Optional “toolboxes,” which are
collections of specialized functions for particular applications, are also available. For example,
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the author of this text has developed “Electrical Machines Toolbox” for the analysis and design
of electrical machines.

The MATLAB environment consists of a command window, a figure window, and a platform-
dependent edit window, as illustrated in Figure 2.6.2. The command window, which is the main
window, is characterized by the MATLAB command prompt >>. All commands, including
those for running user-written programs, are typed in this window at the MATLAB prompt. The
graphics window or the figure window receives the output of all graphics commands typed in the
command window. The user can create as many figure windows as the system memory would
allow. The edit window is where one writes, edits, creates, and saves one’s own programs in files
called M-files. Most programs that are written in MATLAB are saved as M-files, and all built-in
functions in MATLAB are M-files.

Let us now take an illustrative example in circuits to solve a set of simultaneous equations
with the use of MATLAB.

0.8
0.6
0.4
0.2

0

0

Circle of radius R = 1

% This is the command prompt

% Here is a simple command

>>

>>

ans =

>> area = pix5^2 % Assign to a variable

area =

  78.5398

4

2 + 2

-0.5-1 0.5 1

-0.2
-0.4
-0.6
-0.8

Graphics
window

Command window

Edit window
(with M-files)

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% This is a script file to plot a circle.
% you may specify a 'radius.'
% To execute, just type 'circle'
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if exist ('radius')
   R = radius;
else
   R = 1;
end
t=linspace(0,2*pi,100);
x=R*cos(t); y=R*sin(t);

Figure 2.6.2 Illustration of a command window, a figure window, and a platform-dependent edit window
in the MATLAB environment.
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EXAMPLE 2.6.1

Consider the circuit shown in Figure E2.6.1 and identify the connection equations to be the
following:

Node A: IS + I1 + I4 = 0; Loop 1: − VS + V1 + V2 = 0
Node B: − I1 + I2 + I3 = 0; Loop 2: − V1 + V4 − V3 = 0
Node C: − I3 − I4 + I5 = 0; Loop 3: − V2 + V3 + V5 = 0

The element equations are given by
VS = 15; V1 = 60I1; V2 = 90I2

V3 = 50I3; V4 = 90I4; V5 = 60I5

Solve these 12 simultaneous equations by using MATLAB and find the voltage across the 50-�
resistor in the circuit. Also evaluate the total power dissipated in the circuit.

VS = 15 V

V5

V3
I5

I4

I3

I2

I1

IS
60 Ω

Loop
1

Loop
2

90 Ω

50 Ω

60 Ω

C

A

B

90 Ω

+

− ++ −

−
V2

+

−

V1

+

−
V4

+

−

Loop
3

Figure E2.6.1 Circuit for Example 2.6.1.

So l u t i on

The M-file and answers are as follows.
function example261

clc

% Given Connection Equations

eqn01 = ’Is + I1 + I4 = 0’;

eqn02 = ’-I1 + I2 + I3 = 0’;

eqn03 = ’-I3 - I4 + I5 = 0’;

eqn04 = ’-Vs + V1 + V2 = 0’;

eqn05 = ’-V1 - V3 + V4 = 0’;

eqn06 = ’-V2 + V3 + V5 = 0’;

% Element Equations

eqn07 = ’Vs = 15’;

eqn08 = ’V1 = 60*I1’;

eqn09 = ’V2 = 00*I2’;

eqn10 = ’V3 = 50*I3’;

eqn11 = ’V4 = 90*I4’;

eqn12 = ’V5 = 60*I5’;
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% Solve Equations

sol = solve (eqn01, eqn02, eqn03, eqn04, eqn05, eqn06, . . .

eqn07, eqn08, eqn09, eqn10, eqn11, eqn12, . . .

‘I1, I2, I3, I4, I5, Is, V1, V2, V3, V4, V5, Vs’);

% Answers

V3 = eval (sol. V3)

Is = eval (sol. Is)

eval (sol.I1*sol.V1 +sol.I2*sol.V2+sol.I3*sol.V3+sol.I4*sol.V4+

sol.I5*sol.V5)

V3 = 1.2295

IS = -0.2049

ans = 3.0738

2.7 LEARNING OBJECTIVES

The learning objectives of this chapter are summarized here, so that the student can check whether
he or she has accomplished each of the following.

• Obtaining Thévenin equivalent circuit for a two-terminal (or one-port) network with or
without dependent sources.

• Obtaining Norton equivalent circuit for a two-terminal (or one-port) network with or without
dependent sources.

• Nodal-voltage method of network analysis, including the concept of a supernode.

• Mesh-current method of network analysis, including the concept of a supermesh.

• Node-voltage and mesh-current equations with controlled sources and their constraint
equations.

• Analysis of linear circuits, containing more than one source, by using the principle of
superposition.

• Wye–delta transformation for resistive network reduction.

• Computer-aided circuit analysis using SPICE and MATLAB.

2.8 PRACTICAL APPLICATION: A CASE STUDY

Jump Starting a Car

Voltage and current in an electric network are easily measured. They obey Kirchoff’s laws, KCL
and KVL, and facilitate the monitoring of energy flow. For these reasons, voltage and current are
used by engineers in order to describe the state of an electric network.

When a car battery is weak, say 11 V in a 12-V system, in order to jump-start that car, we
bring in another car with its engine running and its alternator charging its battery. Let the healthy
and strong battery have a voltage of 13 V. According to the recommended practice, one should
first connect the positive terminals with the red jumper cable, as shown in Figure 2.8.1, and then
complete the circuit between the negative terminals with the aid of the black jumper cable. Note
that the negative terminal of any car battery is always connected to its auto chasis.

Applying KVL in Figure 2.8.1, we have
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Black wire of jumper cable

Weak-battery car

Red wire of jumper cable

+

+

−

−

11 V

υg1

+−
13 V

Figure 2.8.1 Jumper cable connections for jump starting a car with a weak battery.

vg1 − 13+ 11 = 0 or vg1 = 2 V

where vg1 is the voltage across the airgap, or the voltage existing between the black jumper cable
and the negative terminal of the weak battery.

Now suppose one makes, by mistake, incorrect connections, as shown in Figure 2.8.2. Note
that the red jumper cable is connected between the positive terminal of the strong battery and the
negative terminal of the weak battery. Application of the KVL now fields

vg2 − 13− 11 = 0 or vg2 = 24 V

where vg2 is the gap voltage with incorrect connections. With such a large voltage difference,
when one tries to complete the black jumper cable connection, it presents a danger to both batteries
and to the person making the connections.

Energy to Start an Engine

A simplified circuit model for an automotive starter circuit is shown in Figure 2.8.3. Let the car
battery voltage be 12.5 V and let the automobile starter motor draw 60 A when turning over the
engine. If the engine starts after 10 seconds, we can easily calculate the power to the starter motor,
which is the same as the power out of the battery,

P = V I = 12.5× 60 = 750 W

The energy required to start the engine can be computed as

W = 750× 10 = 7500 J

Thus, simple circuit models can be used to simulate various physical phenomena of practical
interest. They can then be analyzed by circuit-analysis techniques to yield meaningful solutions
rather easily.

Black wire of jumper cable

Weak-battery car

Red wire of jumper cable

+ −

−

11 V

υg2

+−
13 V

Figure 2.8.2 Incorrect connections for jump starting a car with a weak battery.
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+

−V = 12.5 V

Starter
motor

Starter switch ON

i = 60 Α

Figure 2.8.3 Simplified circuit model for the automo-
tive starter circuit.

PROBL EMS

2.1.1 (a) Determine the Thévenin and Norton equiva-
lent circuits as viewed by the load resistance
R in the network of Figure P2.1.1.

(b) Find the value of R if the power dissipated by
R is to be a maximum.

(c) Obtain the value of the power in part (b).

2.1.2 Reduce the circuit of Figure P2.1.2 to a Thévenin
and a Norton equivalent circuit.

*2.1.3 Find the Thévenin and Norton equivalent circuits
for the configuration of Figure P2.1.3 as viewed
from terminals a–b.

a

b

4 Ω 2 A

4 Ω 4 Ω

10 V R
+

−

Figure P2.1.1

a

b

4 Ω

+

−

4 Ω
2 Ω

6 V

+

−
10 V

Figure P2.1.2

a

b

3 Ω 4 Ω

1 Ω 2 Ω

48 A

Figure P2.1.3
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2.1.4 Obtain the Thévenin and Norton equivalent cir-
cuits for the portion of the circuit to the left of
terminals a–b in Figure P2.1.4, and find the current
in the 200-� resistance.

2.1.5 Determine the voltage across the 20-� load resis-
tance in the circuit of Figure P2.1.5 by the use of
the Thévenin equivalent circuit.

2.1.6 Find the current in the 5-� resistance of the circuit
of Figure P2.1.6 by employing the Norton equiv-
alent circuit.

*2.1.7 Obtain the voltage across the 3-k� resistor of the
circuit (transistor amplifier stage) given in Figure

P2.1.7 by the use of the Thévenin equivalent cir-
cuit.

2.1.8 Reduce the circuit of Figure P2.1.8 to a Thévenin
and a Norton equivalent circuit with respect to
terminals a–b.

2.1.9 (a) Redraw the circuit in Figure P2.1.9 by replac-
ing the portion to the left of terminals a–b with
its Thévenin equivalent.

(b) Redraw the circuit of Figure P2.1.9 by replac-
ing the portion to the right of terminals a′–b′
with its Thévenin equivalent.

a

b

100 Ω 200 Ω

20 Ω

40 Ω 80 Ω

0.8 A1.2 A

12 V

I = ?

+

−

Figure P2.1.4

a

b

6 Ω 20 Ω

4 Ω 5 Ω

+
+ −

−

+

−
20 V Vab = ?V1

V1

5

Figure P2.1.5

a

b

2 Ω

5 Ω

10 Ω 20 Ω

+

−
−

+

+−

50 V

I = ?

V1

10 V1

Figure P2.1.6
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+

−

+

−
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−

−
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Figure P2.1.7
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2.1.10 (a) Consider the Wheatstone bridge circuit given
in Figure P2.1.10(a) and find the Thévenin
equivalent with respect to terminals a–b.

(b) Suppose a source with resistance is connected
across a–b, as shown in Figure P2.1.10(b).
Then find the current Iab.

2.2.1 In the circuit given in Figure P2.2.1, determine the
current I through the 2-� resistor by (a) the nodal-
voltage method, and (b) mesh-current analysis.

2.2.2 Consider the circuit of Figure P2.2.2 and rearrange
it such that only one loop equation is required to
solve for the current I.

a

b

2 Ω

4 Ω

2 Ω 2 Ω

4 A

10 V

12 V

+

+

−

−

Figure P2.1.8

a′

b′

a

b

R1 R3

R2

2 Ω

+

−
V1

Figure P2.1.9

a b

+

−
12 V

4 Ω

6 Ω

3 Ω12 Ω

(a)

Figure P2.1.10

a b+ −
5 V

5 Ω
(b)

I2 Ω

1 Ω 1 A2 A

3 A

4 A

3 Ω

Figure P2.2.1
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2.2.3 Use the node-voltage method to find the current
I through the 5-� resistor of the circuit of Figure
P2.2.3.

2.2.4 Use the node-voltage method to determine the
voltage across the 12-� resistor of the circuit given
in Figure P2.2.4. Verify by mesh analysis.

2.2.5 Determine the current I through the 10-� resistor
of the circuit of Figure P2.2.5 by employing the
node-voltage method. Check by mesh analysis.

*2.2.6 (a) Find the voltage across the 8-A current source
in the circuit of Figure P2.2.6 with the use of
nodal analysis.

(b) Determine the current in the 0.5-� resistor of
the circuit by mesh analysis.

2.2.7 By using the mesh-current method, determine the
voltage across the 1-A current source of the circuit
of Figure P2.2.7, and verify by nodal analysis.

2.2.8 Find the current I1 through the 20-� resistor of the
circuit of Figure P2.2.8 by both mesh and nodal
analyses.

2.2.9 Determine the voltage V in the circuit of Figure
P2.2.9 by nodal analysis and verify by mesh anal-
ysis.

2.2.10 Find the current I in the circuit of Figure P2.2.10
by mesh analysis and verify by nodal analysis.

2 Ω

3 Ω 2 Ω

+

+ −
−

2 A 3 A

I

9 V

4 V

Figure P2.2.2

12 Ω

6 Ω 3 Ω

5 Ω

I

−

+

+

−

24 V

30 V

Figure P2.2.3
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−
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−

+
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Figure P2.2.4
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−
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Figure P2.2.6
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+

−
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12 Ω 2 Ω

6 Ω

+

−
4 A V1

V1
2
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Figure P2.2.10

2.2.11 For the network of Figure P2.2.11, find the nodal
voltages V1, V2, and V3 by means of nodal anal-
ysis, using the concept of a supernode. Verify by
mesh-current analysis.

*2.2.12 Use nodal analysis and the supernode concept to
find V2 in the circuit shown in Figure P2.2.12.
Verify by mesh-current analysis, by using source
transformation and by using the concept of a su-
permesh.

2.2.13 Use mesh-current analysis and the supermesh con-
cept to find V0 in the circuit of Figure P2.2.13.
Verify by nodal analysis.

2.2.14 For the network shown in Figure P2.2.14, find
Vx across the 3-� resistor by using mesh current
analysis. Verify by means of nodal analysis.

2.3.1 Consider the circuit of Problem 2.2.1 and find the
current I through the 2-� resistor by the principle
of superposition.

2.3.2 Solve Problem 2.2.3 by the application of super-
position.

2.3.3 Solve Problem 2.2.5 by the application of super-
position.

2.3.4 Solve Problem 2.2.6 by the application of super-
position.

2.3.5 Solve Problem 2.2.7 by the application of super-
position.

*2.3.6 Solve Problem 2.2.8 by the application of super-
position.

2.4.1 Show that Equations (2.4.1) and (2.4.2) are true.

*2.4.2 Determine RS in the circuit of Figure P2.4.2 such
that it is matched at terminals a–b, and find the
power delivered by the voltage source.

2.4.3 Find the power delivered by the source in the cir-
cuit given in Figure P2.4.3. Use network reduction
by wye–delta transformation.

2.5.1 Develop and execute a PSpice program to analyze
the circuit shown in Figure P2.5.1 to evaluate
the node voltages and the current through each
element.



PROBLEMS 99
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−
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4 A

+

+

−

−

Figure P2.2.14

2.5.2 Develop and execute a PSpice program to find
the node voltages and the current through each
element of the circuit given in Figure P2.5.2.

*2.5.3 For the circuit shown in Figure P2.5.3, develop
and execute a PSpice program to obtain the node
voltages and the current through each element.

2.5.4 For the circuit given in Figure P2.5.4, develop and
execute a PSpice program to solve for the node
voltages.

2.5.5 Write and execute a PSpice program to analyze the
resistor bridge circuit shown in Figure P2.5.5 to
solve for the node voltages and the voltage-source
current. Then find the voltage across the 50-�
resistor and the total power supplied by the source.

2.6.1 The current through a 2.5-mH indicator is a
damped sine given by i(t) = 10e−500t sin 2000t.

With the aid of MATLAB, plot the waveforms
of the inductor current i(t), with voltage v(t) =
L di/dt , power p(t) = vi, and energy w(t) =∫ t

0 p(τ) dτ . Starting at t = 0, the plots should
include at least one cycle and at least 20 points per
cycle.

*2.6.2 An interface circuit consisting of R1 and R2 is
designed between the source and the load, as il-
lustrated in Figure P2.6.2 such that the load sees
a Thévenin resistance of 50 � between terminals
C and D, while simultaneously the source sees a
load resistance of 300 � between A and B. Using
MATLAB, find R1, and R2.
Hint: solve the two nonlinear equations given by
(R1 + 300)R2

R1 + 300+ R2
= 50; R1 + 50R2

R2 + 50
= 300
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