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Sir Francis Galton (1822–1911) had earned a Cambridge mathematics degree and
completed two years of medical school when his father died, leaving him with a
substantial inheritance. Free to travel, he became an explorer of some note, but when
The Origin of Species was published in 1859, his interests began to shift from
geography to statistics and anthropology (Charles Darwin was his cousin). It was
Galton’s work on fingerprints that made possible their use in human identification.
He was knighted in 1909.

11.1 INTRODUCTION
High on the list of problems that experimenters most frequently need to deal with
is the determination of the relationships that exist among the various components
of a complex system. If those relationships are sufficiently understood, there is a
good possibility that the system’s output can be effectively modeled, maybe even
controlled.

Consider, for example, the formidable problem of relating the incidence of can-
cer to its many contributing causes—diet, genetic makeup, pollution, and cigarette
smoking, to name only a few. Or think of the Wall Street financier trying to anticipate
trends in stock prices by tracking market indices and corporate performances, as well
as the overall economic climate. In those situations, a host of variables are involved,
and the analysis becomes very intricate. Fortunately, many of the fundamental ideas
associated with the study of relationships can be nicely illustrated when only two
variables are involved. This two-variable model will be the focus of Chapter 11.

Section 11.2 gives a computational technique for determining the “best” equa-
tion describing a set of points (x1, y1), (x2, y2), . . . , and (xn, yn), where best is defined
geometrically. Section 11.3 adds a probability distribution to the y-variable, which
allows for a variety of inference procedures to be developed. The consequences
of both measurements being random variables is the topic of Section 11.4. Then
Section 11.5 takes up a special case of Section 11.4, where the variability in X and Y
is described by the bivariate normal pdf.

11.2 The Method of Least Squares
We begin our study of the relationship between two variables by asking a simple
geometry question. Given a set of n points—(x1, y1), (x2, y2), . . . , (xn, yn)—and a
positive integer m, which polynomial of degree m is “closest” to the given points?
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Suppose that the desired polynomial, p(x), is written

p(x) = a +
m∑

i=1

bixi

where a, b1, . . . , bm are to be determined. The method of least squares answers the
question by finding the coefficient values that minimize the sum of the squares of
the vertical distances from the data points to the presumed polynomial. That is, the
polynomial p(x) that we will call “best” is the one whose coefficients minimize the
function L, where

L =
n∑

i=1

[yi − p(xi)]2

Theorem 11.2.1 summarizes the method of least squares as it applies to the important
special case where p(x) is a linear polynomial. (Note: To simplify notation, the linear
polynomial y = a + b1x1 will be written y = a + bx.)

Theorem
11.2.1

Given n points (x1, y1), (x2, y2), . . . , (xn, yn), the straight line y = a+bx minimizing

L =
n∑

i=1

[yi − (a + bxi)]2

has slope

b =
n

n∑
i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)

n
(

n∑
i=1

x2
i

)
−
(

n∑
i=1

xi

)2

and y-intercept

a =

n∑
i=1

yi − b
n∑

i=1
xi

n
= ȳ − bx̄

Proof The proof is accomplished by the familiar calculus technique of taking the
partial derivatives of L with respect to a and b, setting the resulting expressions
equal to 0, and solving. By the first step we get

∂L
∂b

=
n∑

i=1

(−2)xi[yi − (a + bxi)]

and

∂L
∂a

=
n∑

i=1

(−2)[yi − (a + bxi)]

Setting the right-hand sides of ∂L/∂a and ∂L/∂b equal to 0 and simplifying
yields the two equations

na +
(

n∑
i=1

xi

)
b =

n∑
i=1

yi

(Continued on next page)
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(Theorem 11.2.1 continued)

and (
n∑

i=1

xi

)
a +
(

n∑
i=1

x2
i

)
b =

n∑
i=1

xiyi

An application of Cramer’s rule gives the solution for b stated in the theorem. The
expression for a follows immediately.

CASE STUDY 11.2.1

A manufacturer of air conditioning units is having assembly problems due to
the failure of a connecting rod to meet finished-weight specifications. Too many
rods are being completely tooled, then rejected as overweight. To reduce that
cost, the company’s quality-control department wants to quantify the relation-
ship between the weight of the finished rod, y, and that of the rough casting, x
(149). Castings likely to produce rods that are too heavy can then be discarded
before undergoing the final (and costly) tooling process.

As a first step in examining the xy-relationship, twenty-five (xi, yi) pairs are
measured (see Table 11.2.1). Graphed, the points suggest that the weight (in
ounces) of the finished rod is linearly related to the weight of the rough casting
(see Figure 11.2.1). Use Theorem 11.2.1 to find the best straight line approximat-
ing the xy-relationship.

Table 11.2.1

Rod
Number

Rough
Weight, x

Finished
Weight, y

Rod
Number

Rough
Weight, x

Finished
Weight, y

1 2.745 2.080 14 2.635 1.990
2 2.700 2.045 15 2.630 1.990
3 2.690 2.050 16 2.625 1.995
4 2.680 2.005 17 2.625 1.985
5 2.675 2.035 18 2.620 1.970
6 2.670 2.035 19 2.615 1.985
7 2.665 2.020 20 2.615 1.990
8 2.660 2.005 21 2.615 1.995
9 2.655 2.010 22 2.610 1.990

10 2.655 2.000 23 2.590 1.975
11 2.650 2.000 24 2.590 1.995
12 2.650 2.005 25 2.565 1.955
13 2.645 2.015

From Table 11.2.1, we find that

25∑
i=1

xi = 66.075
25∑

i=1
x2

i = 174.672925

25∑
i=1

yi = 50.12
25∑

i=1
y2

i = 100.49865

25∑
i=1

xiyi = 132.490725
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Figure 11.2.1

Therefore,

b = 25(132.490725) − (66.075)(50.12)
25(174.672925) − (66.075)2

= 0.642

and

a = 50.12 − 0.642(66.075)
25

= 0.308

making the least squares line

y = 0.308 + 0.642x

The manufacturer is now in a position to make some informed policy de-
cisions. If the weight of a rough casting is, say, 2.71 oz., the least squares line
predicts that its finished weight will be 2.05 oz.:

estimated weight = a + b(2.71) = 0.308 + 0.642(2.71) = 2.05

In the event that finished weights of 2.05 oz. are considered to be too heavy,
rough castings weighing 2.71 oz. (or more) should be discarded.

RESIDUALS

The difference between an observed yi and the value of the least squares line when
x = xi is called the ith residual. Its magnitude reflects the failure of the least squares
line to “model” that particular point.

Definition 11.2.1
Let a and b be the least squares coefficients associated with the sample (x1, y1),
(x2, y2), . . . , (xn, yn). For any value of x, the quantity ŷ = a + bx is known as
the predicted value of y. For any given i, i = 1, 2, . . . , n, the difference yi − ŷi =
yi − (a + bxi) is called the ith residual. A graph of yi − ŷi versus xi, for all i, is
called a residual plot.



524 Chapter 11 Regression

INTERPRETING RESIDUAL PLOTS

Applied statisticians find residual plots to be very helpful in assessing the
appropriateness of fitting a straight line through a given set of n points. If the
relationship between x and y is linear, the corresponding residual plot typi-
cally shows no patterns, cycles, trends, or outliers. For nonlinear relationships,
though, residual plots often take on dramatically nonrandom appearances that
can very effectively highlight and illuminate the underlying association between
x and y.

Example
11.2.1

Make the residual plot for the data in Case Study 11.2.1. What does its appearance
imply about the suitability of fitting those points with a straight line?

We begin by calculating the residuals for each of the twenty-five data points.
The first observation recorded, for example, was (x1, y1) = (2.745, 2.080). The cor-
responding predicted value, ŷ1, is 2.070:

ŷ1 = 0.308 + 0.642(2.745)

= 2.070

The first residual, then, is y1 − ŷ1 = 2.080 − 2.070, or 0.010. The complete set of
residuals appears in the last column of Table 11.2.2.

Table 11.2.2

xi yi ŷi yi − ŷi

2.745 2.080 2.070 0.010
2.700 2.045 2.041 0.004
2.690 2.050 2.035 0.015
2.680 2.005 2.029 −0.024
2.675 2.035 2.025 0.010
2.670 2.035 2.022 0.013
2.665 2.020 2.019 0.001
2.660 2.005 2.016 −0.011
2.655 2.010 2.013 −0.003
2.655 2.000 2.013 −0.013
2.650 2.000 2.009 −0.009
2.650 2.005 2.009 −0.004
2.645 2.015 2.006 0.009
2.635 1.990 2.000 −0.010
2.630 1.990 1.996 −0.006
2.625 1.995 1.993 0.002
2.625 1.985 1.993 −0.008
2.620 1.970 1.990 −0.020
2.615 1.985 1.987 −0.002
2.615 1.990 1.987 0.003
2.615 1.995 1.987 0.008
2.610 1.990 1.984 0.006
2.590 1.975 1.971 0.004
2.590 1.995 1.971 0.024
2.565 1.955 1.955 0.000
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Figure 11.2.2

Figure 11.2.2 shows the residual plot generated by fitting the least squares straight
line, y = 0.308 + 0.642x, to the twenty-five (xi, yi)’s. To an applied statistician, there
is nothing here that would raise any serious doubts about using a straight line to
describe the xy-relationship—the points appear to be randomly scattered and exhibit
no obvious anomalies or patterns.

CASE STUDY 11.2.2

Table 11.2.3 lists Social Security expenditures for five-year intervals from 1965
to 2005. During that period, payouts rose from $19.2 billion to $529.9 billion.
Substituting these nine (xi, yi)’s into the formulas in Theorem 11.2.1 gives

y = −38.0 + 12.9x

as the least squares straight line describing the xy-relationship. Based on the data
from 1965 to 2005, was it reasonable to predict that Social Security costs in the
year 2010 (when x = 45) would be $543 billion [= −38.0 + 12.9(45)]?

Table 11.2.3

Year Years after 1965, x
Social Security Expenditures

($ billions), y

1965 0 19.2
1970 5 33.1
1975 10 69.2
1980 15 123.6
1985 20 190.6
1990 25 253.1
1995 30 339.8
2000 35 415.1
2005 40 529.9

Data from: www.socialsecurity.gov/history/trustfunds.html.

(Continued on next page)
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(Case Study 11.2.2 continued)

Not at all. At first glance, the least squares line does appear to fit the data
quite well (see Figure 11.2.3). A closer look, though, suggests that the under-
lying xy-relationship may be curvilinear rather than linear. The residual plot
(Figure 11.2.4) confirms that suspicion—there we see a distinctly nonrandom
pattern.
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Clearly, extrapolating these data would be foolish. The figure for the next
fifth year period, 2010, of $713 billion already exceeded the linear projection of
$543 billion, leading economists to predict rapidly accelerating expenditures in
the future.

Comment For the data in Table 11.2.3, the suggestion that the xy-relationship
may be curvilinear is certainly present in Figure 11.2.3, but the residual plot
makes the case much more emphatically. In point of fact, that will often be
the case, which is why residual plots are such a valuable diagnostic tool—
departures from randomness that may be only hinted at in an xy-plot will be
illustrated more clearly in the corresponding residual plot.
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CASE STUDY 11.2.3

A new, presumably simpler laboratory procedure has been proposed for recover-
ing calcium oxide (CaO) from solutions that contain magnesium. Critics of the
method argue that the results are too dependent on the person who performs
the analysis. To demonstrate their concern, they arrange for the procedure to be
run on ten samples, each containing a known amount of CaO. Nine of the ten
tests are done by Chemist A; the other is run by Chemist B. Based on the results
summarized in Table 11.2.4, does their criticism seem justified?

Table 11.2.4

Chemist CaO Present (in mg), x CaO Recovered (in mg), y

A 4.0 3.7
A 8.0 7.8
A 12.5 12.1
A 16.0 15.6
A 20.0 19.8
A 25.0 24.5
B 31.0 31.1
A 36.0 35.5
A 40.0 39.4
A 40.0 39.5

Figure 11.2.5 shows the scatterplot of y versus x. The linear function appears
to fit all ten points exceptionally well, which would suggest that the critics’
concerns are unwarranted. But look at the residual plot (Figure 11.2.6). The
latter shows one point located noticeably farther away from zero than any of
the others, and that point corresponds to the one measurement attributed to
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(Case Study 11.2.3 continued)
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Figure 11.2.6

Chemist B. So, while the scatterplot has failed to identify anything unusual about
the data, the residual plot has focused on precisely the question the data set out
to answer.

Does the appearance of the residual plot—specifically, the separation be-
tween the Chemist B data point and the nine Chemist A data points—“prove”
that the output from the new procedure is dependent on the analyst? No, but it
does speak to the magnitude of the disparity and, in so doing, provides the critics
with at least a partial answer to their original question.

Questions

11.2.1. Crickets make their chirping sound by sliding one
wing cover very rapidly back and forth over the other.
Biologists have long been aware that there is a linear re-
lationship between temperature and the frequency with
which a cricket chirps, although the slope and y-intercept
of the relationship vary from species to species. The
following table lists fifteen frequency-temperature obser-
vations recorded for the striped ground cricket, Nemobius
fasciatus fasciatus (145). Plot these data and find the equa-
tion of the least squares line, y = a+bx. Suppose a cricket
of this species is observed to chirp eighteen times per
second. What would be the estimated temperature?

For the data in the table, the sums needed are:
15∑

i=1

xi = 249.8
15∑

i=1

x2
i = 4,200.56

15∑
i=1

yi = 1,200.6
15∑

i=1

xiyi = 20,127.47

Observation Chirps per Second, Temperature,
Number x y (◦F)

1 20.0 88.6
2 16.0 71.6
3 19.8 93.3
4 18.4 84.3
5 17.1 80.6
6 15.5 75.2
7 14.7 69.7
8 17.1 82.0
9 15.4 69.4

10 16.2 83.3
11 15.0 79.6
12 17.2 82.6
13 16.0 80.6
14 17.0 83.5
15 14.4 76.3
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11.2.2. The aging of whisky in charred oak barrels brings
about a number of chemical changes that enhance its taste
and darken its color. The following table shows the change
in a whisky’s proof as a function of the number of years it
is stored (168).

Age, x (years) Proof, y

0 104.6
0.5 104.1
1 104.4
2 105.0
3 106.0
4 106.8
5 107.7
6 108.7
7 110.6
8 112.1

(Note: The proof initially decreases because of dilution
from moisture in the staves of the barrels.) Graph these
data and draw in the least squares line.

11.2.3. As water temperature increases, sodium nitrate
(NaNO3) becomes more soluble. The following table
(110) gives the number of parts of sodium nitrate that dis-
solve in one hundred parts of water.

Temperature
(degrees Celsius), x Parts Dissolved, y

0 66.7
4 71.0

10 76.3
15 80.6
21 85.7
29 92.9
36 99.4
51 113.6
68 125.1

Calculate the residuals, y1–ŷ1, . . . , y9–ŷ9, and draw the
residual plot. Does it suggest that fitting a straight line
through these data would be appropriate? Use the follow-
ing sums:

9∑
i=1

xi = 234
9∑

i=1

yi = 811.3

9∑
i=1

x2
i = 10,144

9∑
i=1

xiyi = 24,628.6

11.2.4. What, if anything, is unusual about the following
residual plots?
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11.2.5. The following is the residual plot that results from
fitting the equation y = 6.0+2.0x to a set of n = 10 points.
What, if anything, would be wrong with predicting that y
will equal 30.0 when x = 12?
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11.2.6. Would the following residual plot produced by fit-
ting a least squares straight line to a set of n = 13 points
cause you to doubt that the underlying xy-relationship is
linear? Explain.
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11.2.7. The relationship between school funding and stu-
dent performance continues to be a hotly debated polit-
ical and philosophical issue. Typical of the data available
are the following figures, showing the per-pupil expendi-
tures and graduation rate for twenty-six randomly chosen
districts in Massachusetts.

Graph the data and superimpose the least squares
line, y = a + bx. What would you conclude about the xy-
relationship? Use the following sums:

26∑
i=1

xi = 360
26∑

i=1

yi = 2,256.6

26∑
i=1

x2
i = 5,365.08

26∑
i=1

xiyi = 31,402
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District

Spending
per Pupil

(in 1000s), x Graduation Rate, y

Dighton-Rehoboth $10.0 88.7
Duxbury $10.2 93.2
Tyngsborough $10.2 95.1
Lynnfield $10.3 94.0
Southwick-Tolland $10.3 88.3
Clinton $10.8 89.9
Athol-Royalston $11.0 67.7
Tantasqua $11.0 90.2
Ayer $11.2 95.5
Adams-Cheshire $11.6 75.2
Danvers $12.1 84.6
Lee $12.3 85.0
Needham $12.6 94.8
New Bedford $12.7 56.1
Springfield $12.9 54.4
Manchester Essex $13.0 97.9
Dedham $13.9 83.0
Lexington $14.5 94.0
Chatham $14.7 91.4
Newton $15.5 94.2
Blackstone Valley $16.4 97.2
Concord Carlisle $17.5 94.4
Pathfinder $18.1 78.6
Nantucket $20.8 87.6
Essex $22.4 93.3
Provincetown $24.0 92.3

Data from: profiles.doe.mass.edu/state–report/ppx.aspx.

11.2.8. (a) Find the equation of the least squares straight
line for the plant cover diversity/bird species diversity
data given in Question 8.2.11.
(b) Make the residual plot associated with the least
squares fit asked for in part (a). Based on the appear-
ance of the residual plot, would you conclude that fitting
a straight line to these data is appropriate? Explain.

11.2.9. An Atomic Energy Commission nuclear facility
was established in Hanford, Washington, in 1943. Over
the years, a significant amount of strontium 90 and cesium
137 leaked into the Columbia River. In a study to deter-
mine how much this radioactivity caused serious medical
problems for those who lived along the river, public health
officials created an index of radioactive exposure for nine
Oregon counties in the vicinity of the river. As a covariate,
cancer mortality was determined for each of the counties
(45). The results are given in the table in the next column.
For the nine (xi, yi)’s in the table,

9∑
i=1

xi = 41.56
9∑

i=1
x2

i = 289.4222

9∑
i=1

yi = 1,416.1
9∑

i=1
xiyi = 7,439.37

County Index of Exposure, x
Cancer Mortality per

100,000, y

Umatilla 2.49 147.1
Morrow 2.57 130.1
Gilliam 3.41 129.9
Sherman 1.25 113.5
Wasco 1.62 137.5
Hood River 3.83 162.3
Portland 11.64 207.5
Columbia 6.41 177.9
Clatsop 8.34 210.3

Find the least squares straight line for these points. Also,
construct the corresponding residual plot. Does it seem
reasonable to conclude that x and y are linearly related?

11.2.10. Would you have any reservations about fitting the
following data with a straight line? Explain.

x y

3 20
7 37
5 29
1 10

10 59
12 69
6 39

11 58
8 47
9 48
2 18
4 29

11.2.11. When two closely related species are crossed, the
progeny will tend to have physical traits that lie some-
where between those of the two parents. Whether a sim-
ilar mixing occurs with behavioral traits was the focus of
an experiment where the subjects were mallard and pintail
ducks (173). A total of eleven males were studied; all were
second-generation crosses. A rating scale was devised that
measured the extent to which the plumage of each of the
ducks resembled the plumage of the first generation’s par-
ents. A score of 0 indicated that the hybrid had the same
appearance (phenotype) as a pure mallard; a score of 20
meant that the hybrid looked like a pintail. Similarly, cer-
tain behavioral traits were quantified and a second scale
was constructed that ranged from 0 (completely mallard-
like) to 15 (completely pintail-like). Use Theorem 11.2.1
and the following data to summarize the relationship be-
tween the plumage and behavioral indices. Does a linear
model seem adequate?
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Male Plumage Index, x Behavioral Index, y

R 7 3
S 13 10
D 14 11
F 6 5

W 14 15
K 15 15
U 4 7
O 8 10
V 7 4
J 9 9
L 14 11

11.2.12. Verify that the coefficients a and b of the
least squares straight line are solutions of the matrix
equation ⎛

⎜⎜⎜⎜⎝
n

n∑
i=1

xi

n∑
i=1

xi

n∑
i=1

x2
i

⎞
⎟⎟⎟⎟⎠
(

a
b

)
=

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

yi

n∑
i=1

xiyi

⎞
⎟⎟⎟⎟⎟⎠

11.2.13. Prove that a least squares straight line must nec-
essarily pass through the point (x̄, ȳ).

11.2.14. In some regression situations, there are a priori
reasons for assuming that the xy-relationship being ap-
proximated passes through the origin. If so, the equation
to be fit to the (xi, yi)’s has the form y = bx. Use the least
squares criterion to show that the “best” slope in that case
is given by

b =

n∑
i=1

xiyi

n∑
i=1

x2
i

11.2.15. Case Study 8.2.6 discusses the expansion of
the universe, as astronomer Edwin Hubble announced
in 1929. Hubble’s law states that v = Hd, where v

is a galaxy’s recession velocity relative to that of any
other galaxy and d is its distance from that same galaxy.
Table 8.2.6 gives distance and velocity measurements
made on eleven galactic clusters (26). Use the formula
cited in Question 11.2.14 and these data to estimate H,
Hubble’s constant.

11.2.16. Given a set of n linearly related points,
(x1, y1), (x2, y2), . . . , and (xn, yn), use the least squares
criterion to find formulas for

(a) a if the slope of the xy-relationship is known to
be b∗.
(b) b if the y-intercept of the xy-relationship is known to
be a∗.

11.2.17. Among the problems faced by job seekers want-
ing to reenter the workforce, eroded skills and outdated
backgrounds are two of the most difficult to overcome.
Knowing that, employers are often wary of hiring in-
dividuals who have spent lengthy periods of time away
from the job. The following table shows the percentages
of hospitals willing to rehire medical technicians who
have been away from that career for x years (154). It
can be argued that the fitted line should necessarily have
a y-intercept of 100 because no employer would refuse
to hire someone (due to outdated skills) whose career
had not been interrupted at all—that is, applicants for
whom x = 0. Under that assumption, use the result
from Question 11.2.16 to fit these data with the model
y = 100 + bx.

Percent of Hospitals
Years of Willing to

Inactivity, x Hire, y

0.5 100
1.5 94
4 75
8 44

13 28
18 17

11.2.18. A graph of the luxury suite data in Question 8.2.5
suggests that the xy-relationship is linear. Moreover, it
makes sense to constrain the fitted line to go through the
origin, since x = 0 suites will necessarily produce y = 0
revenue.
(a) Find the equation of the least squares line, y = bx.
(Hint: Recall Question 11.2.14.)
(b) How much revenue would 120 suites be expected to
generate?

11.2.19. Set up (but do not solve) the equations necessary
to determine the least squares estimates for the trigono-
metric model,

y = a + bx + c sin x

Assume that the data consist of the random sample (x1,
y1), (x2, y2), . . . , and (xn, yn).

NONLINEAR MODELS

In Chapter 3 it was acknowledged that an infinite number of functions qualify as be-
ing either discrete or continuous random variables, but at the end of the day only a
handful or so are important in the sense that they accurately model the probabilistic
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behavior of real-world measurements. A similar disclaimer holds for regression func-
tions. Graphed, a set of regression data (x1, y1), (x2, y2), . . . , (xn, yn) could be config-
ured in any of an infinite number of fundamentally different patterns, but the reality
is just the opposite—only a small number of functions are needed to describe a large
proportion of the regression data likely to be encountered.

Concluding this section is a discussion of three of the most widely-used nonlin-
ear regression models—exponential regression, logarithmic regression, and logistic
regression. Each differs from the others in having its own unique “growth rate” for y
as a function of x. And those different growth rates are the starting points for deriving
the model equations themselves. The simplest example of that linkage can be seen
in the linear regression described earlier. In that case, the change in y as a function
of x is equal to some fixed number, b. That is,

dy/dx = b or, equivalently,

∫
dy =
∫

bdx

which implies that

y = a + bx, where a is the constant of integration.

What these nonlinear models have in common is that each can be “linearized”
by applying an appropriate transformation to either y and/or x. Doing so means that
Theorem 11.2.1—which ostensibly dealt with straight lines—can be used to fit each
of these nonlinear models as well.

Exponential Regression Suppose y depends on x, where changes in y are propor-
tional to y, that is, dy

dx = by, where b is a constant. Then
∫ dy

y = ∫ b dx or ln y = bx+ c

where c is a constant of integration. Exponentiation of both sides gives y = ebx·ec.
Since ec is an arbitrary positive constant, for simplicity call it a. Thus, the growth
relationship between the two variables implies that their relationship is of the form

y = aebx (11.2.1)

Depending on the value of b, Equation 11.2.1 will look like one of the graphs
pictured in Figure 11.2.7. Those curvilinear shapes notwithstanding, though, there is
a linear model also related to Equation 11.2.1.

x

y

x

y

y = aebx

(b < 0)

y = aebx

(b > 0)

Figure 11.2.7

If y = aebx, it is necessarily true that

ln y = ln a + bx (11.2.2)
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which implies that ln y and x have a linear relationship. That being the case, the for-
mulas of Theorem 11.2.1 applied to x and ln y should yield the slope and y-intercept
of Equation 11.2.2.

Specifically,

b =
n

n∑
i=1

xi ln yi −
(

n∑
i=1

xi

)(
n∑

i=1
ln yi

)

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2

and

ln a =

n∑
i=1

ln yi − b
n∑

i=1
xi

n

Comment Transformations that induce linearity often require that the slope
and/or y-intercept of the transformed model be transformed “back” to the origi-
nal model. Here, for example, Theorem 11.2.1 leads to a formula for ln a, which
means that the constant a appearing in the original exponential model is evaluated by
calculating eln a.

CASE STUDY 11.2.4

Beginning in the 1970s, computers have steadily decreased in size as they have
grown in power. The ability to have more computing potential in a four-pound
laptop than in a mainframe of the 1970s is a result of engineers squeezing more
and more transistors onto silicon chips. The rate at which this miniaturization
occurs is known as Moore’s law, after Gordon Moore, one of the founders of
Intel Corporation. His prediction, first articulated in 1965, was that the number
of transistors per chip would double every eighteen months.

Table 11.2.5 lists some of the growth benchmarks—namely, the number
of transistors per chip—associated with the Intel chips marketed over the
twenty-year period from 1975 through 1995. Based on these figures, is it be-
lievable that chip capacity is, in fact, doubling at a fixed rate (meaning that
Equation 11.2.1 applies)? And if so, how close is the actual doubling time to
Moore’s prediction of eighteen months?

A plot of y versus x shows that their relationship is certainly not linear (see
Figure 11.2.8). The scatterplot more closely resembles the graph of y = aebx

when b > 0, as shown in Figure 11.2.7.

Table 11.2.5

Chip Year Years after 1975, x Transistors per Chip, y

8080 1975 0 4,500
8086 1978 3 29,000
80286 1982 7 90,000
80386 1985 10 229,000
80486 1989 14 1,200,000
Pentium 1993 18 3,100,000
Pentium Pro 1995 20 5,500,000

(Continued on next page)
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(Case Study 11.2.4 continued)
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Figure 11.2.8

Table 11.2.6

Years after 1975, xi x2
i Transistors per Chip, yi ln yi xi · ln yi

0 0 4,500 8.41183 0
3 9 29,000 10.27505 30.82515
7 49 90,000 11.40756 79.85292

10 100 229,000 12.34148 123.41480
14 196 1,200,000 13.99783 195.96962
18 324 3,100,000 14.94691 269.04438
20 400 5,500,000 15.52026 310.40520

72 1078 86.90093 1009.51207

Table 11.2.6 shows the calculation of the sums required to evaluate
the formulas for b and ln a. Here the slope and the y-intercept of the linearized
model (Equation 11.2.2) are 0.342810 and 8.888369, respectively:

b = 7(1009.51207) − 72(86.90093)
7(1078) − (72)2

= 0.342810

and

ln a = 86.9093 − (0.342810)(72)
7

= 8.888369

Therefore,

a = eln a = e8.888369 = 7247.189
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which implies that the best-fitting exponential model describing Intel’s techno-
logical advances in chip design has the equation

y = 7247.189e0.343x

(see Figure 11.2.8).
To compare Equation 11.2.1 to Moore’s “eighteen-month doubling time”

prediction requires that we write y = 7247.189e0.343x in the form y =
7247.189(2)x. But

e0.343 = 20.495

so another way to express the fitted curve would be

y = 7247.189(20.495x) (11.2.3)

In Equation 11.2.3, though, y doubles when 20.495x = 2, or, equivalently, when
0.495x = 1, which implies that 2.0 years is the empirically determined technology
doubling time, a pace not too much slower than Moore’s prediction of eighteen
months.

About the Data In April of 2005, Gordon Moore pronounced his law dead.
He said, “It can’t continue forever. The nature of exponentials is that you push
them out and eventually disaster happens.” If by “disaster” he meant that tech-
nology often makes a quantum leap, moving well beyond what an extrapolated
law could predict, he was quite correct. Indeed, he could have made this decla-
ration in 2003. By that year, the Itanium 2 featured 220,000,000 transistors on a
chip, whereas the model of the case study predicts the number to be only

y = 7247.189e0.343(28) = 107, 432, 032

(In the equation, x = 2003 − 1975 = 28.)

Logarithmic Regression Another curvilinear model that can be linearized stems
from the assumption that changes in y are proportional to the ratio of y to x, that
is, dy

dx = by
x , where b is a constant. Then

∫ dy
y = ∫ b

x dx or log y = b log x + log a,
where log x is the logarithm base 10 and log a is a constant of integration. Therefore,
y = axb and logy is linear with logx. Therefore,

b =
n

n∑
i=1

log xi · log yi −
(

n∑
i=1

log xi

)(
n∑

i=1
log yi

)

n
n∑

i=1
(log xi)2 −

(
n∑

i=1
log xi

)2

and

log a =

n∑
i=1

log yi − b
n∑

i=1
log xi

n

Regressions of this type have slower growth rates than exponential models and are
particularly useful in describing biological and engineering phenomena.
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CASE STUDY 11.2.5

Entomologists who study the behavior of ants know that a certain number are
assigned foraging duties, which require them to come and go from their colonies
on a regular basis. Moreover, studies have shown that if y is the total number of
ants in a colony and x is the number that forage, the relationship between x and
y can be effectively modeled by a logarithmic regression,

y = axb (11.2.4)

where a and b vary from species to species.
Finding good estimates for a and b is a worthwhile endeavor because know-

ing those values allows investigators to avoid the difficult problem of counting
the very large number of ants in a colony; instead, they need simply count the
much smaller number of foraging ants (x) and then use axb as an estimate for
the colony size (y).

To that end, Table 11.2.7 shows the results of a “calibration” study done on
the red wood ant (Formica polyctena). Listed are the colony sizes, y, and the
foraging sizes, x, observed for fifteen of their colonies (102).

Table 11.2.7

Foraging Size, x Colony Size, y y/x

45 280 6.2
70 601 8.6
74 222 3.0

118 288 2.4
220 1205 5.5
338 7551 22.3
446 3229 7.2
611 8834 14.4
647 2828 4.4
765 3762 4.9
823 2769 3.4
850 12,605 14.8

4119 12,584 3.1
11,600 34,661 3.0
64,512 139,043 2.2

The first step in any regression analysis is to graph the data. Do the (xi, yi)’s
show a pattern similar to what is expected? Data consistent with the model
y = axb, for example, will necessarily have one of the two basic configurations
pictured in Figure 11.2.9.

x

y

y = axb, b < 1

0
(a)

0 x

y

y = axb, b > 1

0
(b)

0

Figure 11.2.9
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Here, plotting y versus x for the data in Table 11.2.7 is problematic because
of the huge ranges for both variables (x goes from 45 to 64,512; y goes from 222
to 139,043). But, if the model y = axb is appropriate, then graphing log y versus
log x should produce a pattern that looks entirely consistent with data having a
linear relationship. Based on Figure 11.2.10, it does.
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log x

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

log y = 1.08028 + 0.876 log x

lo
g 

y

Figure 11.2.10

Suppose a sixteenth Formica polyctena colony is found and twenty-five
hundred of its ants appear to be foraging. What would be a reasonable estimate
for the size of that colony?

First we need to find a and b using the foraging size/colony size database
summarized in Table 11.2.7. The necessary sums and sums of squares are

15∑
i=1

log xi = 41.77441
15∑

i=1

log yi = 52.79857

15∑
i=1

(log xi)2 = 126.60450
15∑

i=1

log xi · log yi = 156.03811

According to the formulas given in Example 11.2.1,

b = 15(156.03811) − (41.77441)(52.79857)
15(126.60450) − (41.77441)2

= 0.876

log a = 52.79857 − 0.876(41.77441)
15

= 1.08028

a = 101.08028 = 12.03

Therefore, y = 12.03x0.876 and the predicted colony size based on x = 2500
foraging ants would be

y = 12.03(2500)0.876 = 11, 400

Comment The fact that y = axb models these data so nicely should not have
come as a complete surprise. The growth rate that defines logarithmic regression,

dy/dx = b · (y/x)
(Continued on next page)
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(Case Study 11.2.5 continued)

mimics the way many animal populations evolve, where dy refers to the popu-
lation’s future growth and x is some measure of its present size. For the Formica
polyctena data described in Case Study 11.2.5, the number of ants foraging (x)
is a proxy variable representing the current size of the colony.

Having calculated that b < 1 for the entries in Table 11.2.7, the general con-
figuration of these data if y is plotted against x will look like Figure 11.2.9(a).
That is, there will be an initial growth spurt as the colony gets established and
quickly multiplies (and values of y/x will often be quite large because x is still
small). But as time passes, increases in the denominator x make it more and more
difficult for dy to increase enough to make the ratio y/x return to its earlier lev-
els, and the colony’s growth begins to level off. That particular scenario—with a
few exceptions—is clearly playing out in the entries listed in the third column of
Table 11.2.7. Four of the lowest six values of y/x, for example, occur among the
five largest colonies.

Logistic Regression Growth is a fundamental characteristic of organisms, institu-
tions, and ideas. In biology, it might refer to the change in size of a Drosophila
population; in economics, to the proliferation of global markets; in political science,
to the gradual acceptance of tax reform. Prominent among the many growth mod-
els capable of describing situations of this sort is one where changes in y are pro-
portional to their present magnitudes and to their distance from an upper limit L.
In that case, dy

dx = k y
L−y , where k and L are constants. Then

∫ dy
y(L−y) = ∫ k dx or

1
L · ln
(

y
L−y

)
= kx + c, where c is a constant of integration. Exponentiating and solv-

ing for y yields the logistic equation

y = L
1 + ea+bx

(11.2.5)

where a, b, and L are constants. For different values of a and b, Equation 11.2.5 gen-
erates a variety of S-shaped curves.

To linearize Equation 11.2.5, we start with its reciprocal:

1
y

= 1 + ea+bx

L

Therefore,

L
y

= 1 + ea+bx

and
L − y

y
= ea+bx

Equivalently,

ln
(

L − y
y

)
= a + bx

which implies that ln
(

L − y
y

)
is linear with x.

Comment The parameter L is interpreted as the limit to which y is converging as
x increases. In practice, L is often estimated simply by plotting the data and “eye-
balling” the y-asymptote.
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CASE STUDY 11.2.6

The scene is familiar; hundreds of birds are perched wing-to-wing along a stretch
of power lines next to a busy highway (Are they hoping to see a five car pile-up?)
when they suddenly fly away all at the same time. How do they do that? The short
answer is they don’t. Using high-speed photography, a team of researchers (86)
documented the way birds take flight. Their pictures revealed that flocks get
airborne in a very precise way, but the pattern plays out much too quickly for
the naked eye ever to see.

The targets of their investigation were flocks of redshanks. These are mid-
sized, migratory shorebirds that like to winter in the salt marshes of Scotland.
A major predator of red shanks are sparrow hawks, and thirty-eight of their
attacks were photographed, every 4/100-ths of a second, after the first redshank
took flight. Table 11.2.8 shows the average proportions of the flock that were
airborne as a function of time.

Table 11.2.8

Time (seconds) Proportion

0.04 0.08
0.08 0.14
0.12 0.21
0.16 0.30
0.20 0.38
0.24 0.61
0.28 0.70
0.32 0.78
0.36 0.86
0.40 0.90
0.44 0.94
0.48 0.95
0.52 0.96
0.56 0.97
0.60 0.98

The scatterplot for these fifteen data points has a definite S-shaped appear-
ance (see Figure 11.2.11), which makes Equation 11.2.5 a good candidate for
modeling the xy-relationship. The limit to which the population is converging is
the full proportion, that is, 1. Quantify the population/time relationship by fitting
a logistic equation to these data. Let L = 1.

The form of the linearized version of Equation 11.2.5 requires that we find
the following sums:

51∑
i=1

xi = 4.80,

15∑
i=1

ln
(

1 − yi

yi

)
= −15.91,

15∑
i=1

x2
i = 1.984,

15∑
i=1

xi · ln
(

1 − yi

yi

)
= −10.2096

Substituting ln
(

1−yi

yi

)
for yi into the formulas for a and b in Theorem 11.2.1 gives

b = 15(−10.2096) − (4.80)(−15.91)
15(1.984) − (4.80)2

= −11.425

and a = −15.910 − (−11.425)(4.80)
15

= 2.595

so the best-fitting logistic curve has equation 1
1+e2.595−11.425x .

(Continued on next page)
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(Case Study 11.2.6 continued)
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About the Data For many curve-fitting problems—maybe most—the particular
differential equation that defines dy/dx is not known in advance. In its absence,
the regression model chosen to describe the data is simply the one that fits the
(xi, yi)’s the best. This is not one of those situations. Without seeing any data, it
would have been reasonable to hypothesize that a graph showing “% of flock
airborne” versus “time after first warning” would have the S-shape pictured in
Figure 11.2.12.
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Why? Because the key factors in the differential equation that gives rise to
the logistic curve—namely, y(L − y)—describe a growth pattern entirely consis-
tent with the way flocks of birds might be expected to take flight. When the first
bird that spots the approach of a predator begins to take off, only a few of the
nearby birds would immediately become aware of the threat, so the values of
dy/dx would be small for values of x close to 0. As additional birds take flight,
though, more birds on the ground would respond to the imminent danger and
dy/dx would increase sharply.
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As soon as the number of birds remaining on the ground is smaller than the
number of birds in the air, dy/dx would begin to decrease, and the values would
get very small when virtually the entire flock was airborne. The changes that we
would expect to see in dy/dx, then, are precisely what we do see in Figure 11.2.12.

Other Curvilinear Models While the exponential, logarithmic, and logistic equations
are three of the most common curvilinear models, there are several others that deserve
mention as well. Table 11.2.9 lists a total of six nonlinear equations, including the three
already described. Along with each is the particular transformation that reduces the
equation to a linear form. Proofs for parts (d), (e), and (f) will be left as exercises.

Table 11.2.9

a. If y = aebx, then ln y is linear with x.
b. If y = axb, then log y is linear with log x.

c. If y = L/(1 + ea+bx), then ln
(

L − y
y

)
is linear with x.

d. If y = 1
a + bx

, then
1
y

is linear with x.

e. If y = x
a + bx

, then
1
y

is linear with
1
x

.

f. If y = 1 − e−xb/a, then ln ln
(

1
1 − y

)
is linear with ln x.

Questions

11.2.20. Radioactive gold (195Au-aurothiomalate) has an
affinity for inflamed tissues and is sometimes used as a
tracer to diagnose arthritis. The data in the following table
(67) come from an experiment investigating the length of
time and the concentrations that 195Au-aurothiomalate is
retained in a person’s blood. Listed are the serum gold
concentrations found in ten blood samples taken from pa-
tients given an initial dose of 50 mg. Follow-up readings
were made at various times, ranging from one to seven
days after injection. In each case, the retention is ex-
pressed as a percentage of the patient’s day-zero serum
gold concentration.

Days after Injection, x
Serum Gold %

Concentration, y

1 94.5
1 86.4
2 71.0
2 80.5
2 81.4
3 67.4
5 49.3
6 46.8
6 42.3
7 36.6

(a) Fit an exponential curve to these data.
(b) Estimate the half-life of 195Au-aurothiomalate; that is,
how long does it take for half the gold to disappear from
a person’s blood?

If x denotes days after injection and y denotes serum gold

% concentration, then
10∑

i=1
xi = 35,

10∑
i=1

x2
i = 169,

10∑
i=1

ln yi =
41.35720, and

10∑
i=1

xi ln yi = 137.97415.

11.2.21. The growth of federal expenditures is one of the
characteristic features of the U.S. economy. The rapidity
of the increases from 2000 to 2015, as shown in the table
below, suggests an exponential model.

Gross Federal Debt
Year Years after 2000, x (in $ trillions), y

2000 0 5.629
2001 1 5.770
2002 2 6.198
2003 3 6.760
2004 4 7.355
2005 5 7.905
2006 6 8.451
2007 7 8.951
2008 8 9.986
2009 9 11.876
2010 10 13.529
2011 11 14.764
2012 12 16.051
2013 13 16.719
2014 14 17.794
2015 15 18.120

Source: https://www.whitehouse.gov/omb/budget/Historicals

(a) Find the best-fitting exponential curve, using the
method of least squares together with an appropriate
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linearizing transformation. Use the sums:
15∑

i=0
xi = 120,

15∑
i=0

ln yi = 37.04571, and
15∑

i=0
xi · ln yi = 307.6275

(b) Calculate the residuals for the years 2009 through
2015. What does this say about the exponential model?

11.2.22. Used cars are often sold wholesale at auctions,
and from these sales, retail sales prices are recommended.
The following table gives the recommended prices in 2009
for a four-door manual transmission Toyota Corolla based
on the age of the car.

Age (in years), x Suggested Retail Price, y

1 $14,680
2 12,150
3 11,215
4 10,180
5 9,230
6 8,455
7 7,730
8 6,825
9 6,135

10 5,620

Data from: www.bb.com.

(a) Fit these data with a model of the form y = aebx.
Graph the (xi, yi)’s and superimpose the least squares ex-
ponential curve.

(b) What would you predict the retail price of an eleven-
year-old Toyota Corolla to be?

(c) The price of a new Corolla in 2009 was $16,200. Is that
figure consistent with the widely held belief that a new
car depreciates substantially the moment it is purchased?
Explain.

11.2.23. The Super Bowl showed steady and significant
growth in popularity from its beginning in 1967. This
growth was reflected in ticket prices. The table gives
the ticket prices in four-year intervals from 1967 to 2011.

Years after 1967, x Ticket Cost ($), y

0 10
4 15
8 20

12 30
16 40
20 75
24 150
28 200
32 325
36 500
40 600
44 900

Data from: http://www.jsonline.com/sports/rank–file-7p40vnb-138455269.html

Use the fact that
12∑

i=1
ln yi = 54.92066 and

12∑
i=1

xi · ln yi =
1453.58352 to fit the data with an exponential model.

11.2.24. Suppose a set of n (xi, yi)’s are measured on a
phenomenon whose theoretical xy-relationship is of the
form y = aebx.

(a) Show that
dy
dx

= by implies that y = aebx.

(b) On what kind of graph paper would the (xi, yi)’s show
a linear relationship?

11.2.25. In 1959, the Ise Bay typhoon devastated parts of
Japan. For seven metropolitan areas in the storm’s path,
the following table gives the number of homes damaged
as a function of peak wind gust (126). Show that a function
of the form y = axb provides a good model for the data.

Peak Wind Gust Numbers of Damaged
City (hundred mph), x Homes (in thousands), y

A 0.98 25.000
B 0.74 0.950
C 1.12 200.000
D 1.34 150.000
E 0.87 0.940
F 0.65 0.090
G 1.39 260.000

Use the following sums:
7∑

i=1
log xi = −0.067772

7∑
i=1

log yi = 7.1951

7∑
i=1

(log xi)2 = 0.0948679
7∑

i=1
(log xi)(log yi) = 0.92314

11.2.26. Among mammals, the relationship between
the age at which an animal develops locomotion and the
age at which it first begins to play has been widely studied.
The table below lists “onset” times for locomotion and for
play in eleven different species (46). Fit the data to the
y = axb model.

Locomotion Play Begins,
Species Begins, x (days) y (days)

Homo sapiens 360 90
Gorilla gorilla 165 105
Felis catus 21 21
Canis familiaris 23 26
Rattus norvegicus 11 14
Turdus merula 18 28
Macaca mulatta 18 21
Pan troglodytes 150 105
Saimiri sciurens 45 68
Cercocebus alb. 45 75
Tamiasciureus hud. 18 46

11.2.27. Over the years, many efforts have been made to
demonstrate that the human brain is appreciably different
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in structure from the brains of lower-order primates. In
point of fact, such differences in gross anatomy are discon-
certingly difficult to discern. The following are the average
areas of the striate cortex (x) and the prestriate cortex (y)
found for humans and for three species of chimpanzees
(137).

Area

Primate
Striate Cortex,

x (mm2)
Prestriate Cortex,

y (mm2)

Homo 2613 7838
Pongo 1876 2864
Cercopithecus 933 1334
Galago 78.9 40.8

Plot the data and superimpose the least squares curve,
y = axb.

11.2.28. Years of experience buying and selling commer-
cial real estate have convinced many investors that the
value of land zoned for business (y) is inversely related
to its distance (x) from the center of town—that is, y =
a + b · 1

x
. If that suspicion is correct, what should be the

appraised value of a piece of property located 1
4 mile from

the town square, based on the sales listed below?

Distance from
Land Center of City (in Value
Parcel thousand feet), x (in thousands), y

H1 1.00 $20.5
B6 0.50 42.7
Q4 0.25 80.4
L4 2.00 10.5
T7 4.00 6.1
D9 6.00 6.0
E4 10.00 3.5

11.2.29. Verify the claims made in parts (d), (e), and (f) of
Table 11.2.9—that is, prove that the transformations cited
will linearize the original models.

11.2.30. Biological organisms, such as yeast, often exhibit
exponential growth. However, in some cases, that rapid

rate of growth cannot be sustained. Such factors as lack
of nutrition to support a large population or the buildup
of toxins limit the rate of growth. In such cases the curve
begins concave up, inflects at some point, and becomes
concave down and asymptotic to a limit. A now-classical
experiment by Carlson (23) measured the amount of
biomass of brewer’s yeast (Saccharomyces Cerevisiae) at
one-hour intervals. The table shows the results.

Hour Yeast Count Hour Yeast Count

0 9.6 9 441.00
1 18.3 10 513.3
2 29.0 11 559.7
3 47.2 12 594.8
4 71.1 13 629.4
5 119.1 14 640.8
6 174.6 15 651.1
7 257.3 16 655.9
8 350.7 17 659.6

Quantify the population/time relationship by fitting a lo-
gistic equation to these data. Let L = 700.

11.2.31. The following table shows a portion of the re-
sults from a clinical trial investigating the effectiveness of
a monoamine oxidase inhibitor as a treatment for depres-
sion (219). The relationship between y, the percentage of
subjects showing improvement, and x, the patient’s age,
appears to be S-shaped. Graph the data and superimpose

a graph of the least squares curve y = L
1 + ea+bx

. Take L

to be 60.

Age Group Age Mid-Point, x % Improved, y ln
(

60−y
y

)
[28, 32) 30 11 1.49393
[32, 36) 34 14 1.18958
[36, 40) 38 19 0.76913
[40, 44) 42 32 −0.13353
[44, 48) 46 42 −0.84730
[48, 52) 50 48 −1.38629
[52, 56) 54 50 −1.60944
[56, 60) 58 52 −1.87180

11.3 The Linear Model
Section 11.2 views the problem of “curve fitting” from a purely geometrical perspec-
tive. The observed (xi, yi)’s are assumed to be nothing more than points in the xy-
plane, devoid of any statistical properties. It is more realistic, though, to think of
each y as the value recorded for a random variable Y , meaning that a distribution of
possible y-values is associated with every value of x.

Consider, for example, the connecting rod weights analyzed in Case Study 11.2.1.
The first rod listed in Table 11.2.1 had an initial weight of x = 2.745 oz. and, after the
tooling process was completed, a finished weight of y = 2.080 oz. It does not follow
from that one observation, of course, that an initial weight of 2.745 oz. necessarily
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leads to a finished weight of 2.080 oz. Common sense tells us that the tooling process
will not always have exactly the same effect, even on rods having the same initial
weight. Associated with each x, then, there will be a range of possible y-values. The
symbol fY |x(y) is used to denote the pdfs of these “conditional” distributions.

Definition 11.3.1
Let fY |x(y) denote the pdf of the random variable Y for a given value x, and let
E(Y | x) denote the expected value associated with fY |x(y). The function

y = E(Y | x)

is called the regression curve of Y on x.

Example
11.3.1

Suppose that corresponding to each value of x in the interval 0 ≤ x ≤ 1 is a distribu-
tion of y-values having the pdf

fY |x(y) = x + y

x + 1
2

, 0 ≤ y ≤ 1; 0 ≤ x ≤ 1

Find and graph the regression curve of Y on x.
Notice, first of all, that for any x between 0 and 1, fY |x(y) does qualify as a pdf:

1. fY |x(y) ≥ 0, for 0 ≤ y ≤ 1 and any 0 ≤ x ≤ 1

2.
∫ 1

0
fY |x(y) dy =

∫ 1

0

x + y
x + 1/2

dy =
∫ 1

0

x
x + 1/2

dy+
∫ 1

0

y
x + 1/2

dy = x + 1/2
x + 1/2

= 1

Moreover,

E(Y | x) =
∫ 1

0
y · fY |x(y) dy =

∫ 1

0
y · x + y

x + 1
2

dy

=
[

xy2

2
(
x + 1

2

) + y3

3
(
x + 1

2

)
]∣∣∣∣∣

1

0

= 3x + 2
6x + 3

, 0 ≤ x ≤ 1

Figure 11.3.1 shows the regression curve, y = E(Y |x) = 3x + 2
6x + 3

, together

with three of the conditional distributions— fY |0(y) = 2y, fY | 1
2
(y) = y + 1

2 , and

0

1

1

2y + 2
3f      (y) = 2yY | 0 f      (y) = y +Y |  

2
3

E(Y | 0) = 3x + 2
6x + 3y = E(Y | x) =

Regression curve:

f      (y) =Y | 1

E(Y | 1) =

1
2

1
2

1
2

E(Y |   ) =1
2

7
12

5
9

1
2

x

y

Figure 11.3.1
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fy|1(y) = 2y + 2
3

. The fY |x(y)’s, of course, should be visualized as coming out of the

plane of the paper.

A SPECIAL CASE

Definition 11.3.1 introduces the notion of a regression curve in the most general of
contexts. In practice, there is one special case of the function y = E(Y |x) that is
particularly important. Known as the simple linear model, it makes four assumptions:

1. fY |x(y) is a normal pdf for all x.

2. The standard deviation, σ, associated with fY |x(y) is the same for all x.

3. The means of all the conditional Y distributions are collinear—that is,

y = E(Y |x) = β0 + β1x

4. All of the conditional distributions represent independent random variables.
(See Figure 11.3.2.)

xi xj xk

f       (y)Y | xi

E(Y | x )i

E(Y | x )j

E(Y | x  )k

x

f       (y)Y | xj

f       (y)Y | xk

y = E (Y  | x) = β0 + β1 x 

yFigure 11.3.2

ESTIMATING THE LINEAR MODEL PARAMETERS

Implicit in the simple linear model are three parameters—β0, β1, and σ2. Typically,
all three will be unknown and need to be estimated. Since the model assumes a prob-
ability structure for the Y -variable, estimates can be obtained using the method of
maximum likelihood, as opposed to the method of least squares that we saw in Sec-
tion 11.2. (Maximum likelihood estimates are preferable to least squares estimates
because the former have probability distributions that can be used to set up hypoth-
esis tests and confidence intervals.)

Comment It would be entirely consistent with the notation used previously to de-
note the sample in Theorem 11.3.1 as (x1, y1), (x2, y2), . . . , and (xn, yn). To emphasize
the important distinction, though, between the (lack of) assumptions on the yi’s made
in Section 11.2 and the conditional pdfs fY |x(y) introduced in Definition 11.3.1, we
will use random variable notation to write linear model data as (x1,Y1), (x2,Y2), . . . ,
and (xn,Yn).
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Theorem
11.3.1

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of points satisfying the simple linear
model, E(Y |x) = β0 + β1x. The maximum likelihood estimators for β0, β1, and σ2

are given by

β̂1 =
n

n∑
i=1

xiYi −
(

n∑
i=1

xi

)(
n∑

i=1
Yi

)

n
(

n∑
i=1

x2
i

)
−
(

n∑
i=1

xi

)2

β̂0 = Ȳ − β̂1x̄

and

σ̂2 = 1
n

n∑
i=1

(Yi − Ŷi)2

where Ŷi = β̂0 + β̂1xi, i = 1, . . . , n.

Proof Since each Yi is assumed to be normally distributed with mean equal to
β0 + β1xi and variance equal to σ2, the sample’s likelihood function, L, is the product

L =
n∏

i=1

fYi|xi (yi) =
n∏

i=1

1√
2πσ

e− 1
2

(
yi−β0−β1xi

σ

)2
= (2πσ2)−n/2e

− 1
2

n∑
i=1

(
yi−β0−β1xi

σ

)2

The maximum of L for this case occurs when the partial derivatives with re-
spect to β0, β1, and σ2 all vanish. It will be easier, computationally, to differentiate
−2 ln L, and the latter will be minimized for the same parameter values that max-
imize L. Here,

ln L = −n
2

ln(2πσ2) − 1
2

n∑
i=1

(
yi − β0 − β1xi

σ

)2

and

−2 ln L = n ln 2π + n ln σ2 + 1
σ2

n∑
i=1

(yi − β0 − β1xi)
2

Setting the three partial derivatives equal to 0 gives

∂(−2 ln L)
∂β0

= 2
σ2

n∑
i=1

(yi − β0 − β1xi)(−1) = 0

∂(−2 ln L)
∂β1

= 2
σ2

n∑
i=1

(yi − β0 − β1xi)(−xi) = 0

∂(−2 ln L)
∂σ2

= n
σ2

− 1
(σ2)2

n∑
i=1

(yi − β0 − β1xi)2 = 0

The first two equations depend only on β0 and β1, and the resulting solutions for β̂0

and β̂1 have the same forms that are given in the statement of the theorem. Substi-
tuting the solutions from the first two equations into the third gives the expression
for σ̂2.

Comment Note the similarity in the formulas for the maximum likelihood estima-
tors and the least squares estimates for β̂0 and β̂1. The least squares estimates, of
course, are numbers, while the maximum likelihood estimators are random variables.

Up to this point, random variables have been denoted with uppercase letters and
their values with lowercase letters. In this section, boldface β̂0 and β̂1 will represent
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the maximum likelihood random variables, and plain-text β̂0 and β̂1 will refer to spe-
cific values taken on by those random variables.

PROPERTIES OF LINEAR MODEL ESTIMATORS

By virtue of the assumptions that define the simple linear model, we know that the
estimators β̂0, β̂1, and σ̂

2 are random variables. Before those estimators can be used
to set up inference procedures, though, we need to establish their basic statistical
properties—specifically, their means, variances, and pdfs.

Theorem
11.3.2

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of points satisfying the simple lin-
ear model, E(Y |x) = β0 + β1x. Let β̂0, β̂1, and σ̂

2 be the maximum likelihood
estimators for β0, β1, and σ2, respectively. Then

a. β̂0 and β̂1 are both normally distributed.

b. β̂0 and β̂1 are both unbiased: E(β̂0) = β0 and E(β̂1) = β1.

c. Var(β̂1) = σ2

n∑
i=1

(xi−x̄)2

d. Var(β̂0) =
σ2

n∑
i=1

x2
i

n
n∑

i=1
(xi−x̄)2

= σ2

⎡
⎣ 1

n + x̄2

n∑
i=1

(xi−x̄)2

⎤
⎦

Proof We will prove the statements for β̂1; the results for β̂0 follow similarly.

The equation for the estimator β̂1 given in Theorem 11.3.1 is the simplest form
that solves the likelihood equations (and the least squares equations as well). It is
also convenient for computation. However, two other expressions for β̂1 are useful
for theoretical results.

To begin, take the version of β̂1 from Theorem 11.3.1:

β̂1 =
n

n∑
i=1

xiYi −
(

n∑
i=1

xi

)(
n∑

i=1
Yi

)

n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2

Dividing numerator and denominator by n gives

β̂1 =

n∑
i=1

xiYi − 1
n

(
n∑

i=1
xi

)(
n∑

i=1
Yi

)
n∑

i=1
x2

i − 1
n

(
n∑

i=1
xi

)2

=

n∑
i=1

xiYi − x̄
(

n∑
i=1

Yi

)
n∑

i=1
x2

i − nx̄2

=

n∑
i=1

(xi − x̄)Yi

n∑
i=1

x2
i − nx̄2

(11.3.1)

(Continued on next page)
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(Theorem 11.3.2 continued)

Equation 11.3.1 expresses β̂1 as a linear combination of independent normal vari-
ables, so by the second corollary to Theorem 4.3.3, it is itself normal, proving
part (a).

To see that β̂1 is unbiased, note that

E(β̂1) =

n∑
i=1

(xi − x̄)E(Yi)

n∑
i=1

x2
i − nx̄2

=

n∑
i=1

(xi − x̄)(β0 + β1xi)

n∑
i=1

x2
i − nx̄2

=
β0

n∑
i=1

(xi − x̄) + β1

n∑
i=1

(xi − x̄)xi

n∑
i=1

x2
i − nx̄2

=
0 + β1

n∑
i=1

(xi − x̄)xi

n∑
i=1

x2
i − nx̄2

=
β1

(
n∑

i=1
x2

i − nx̄2

)
n∑

i=1
x2

i − nx̄2
= β1

To find Var(β̂1), rewrite the denominator of Equation 11.3.1 in the form
n∑

i=1

x2
i − nx̄2 =

n∑
i=1

(x2
i − 2xix̄ + x̄2) =

n∑
i=1

(xi − x̄)2

which makes

β1 =

n∑
i=1

(xi − x̄)Yi

n∑
i=1

(xi − x̄)2
(11.3.2)

Using Equation 11.3.2, Theorem 3.6.2, and the second corollary to Theorem 3.9.5
gives

Var(β̂1) = Var

⎡
⎢⎢⎣ 1

n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − x̄)Yi

⎤
⎥⎥⎦

= 1[
n∑

i=1
(xi − x̄)2

]2
n∑

i=1

(xi − x̄)2σ2

= σ2

n∑
i=1

(xi − x̄)2

Theorem
11.3.3

Let (x1,Y1), (x2,Y2), . . . , (xn,Yn) satisfy the assumptions of the simple linear model.
Then

a. β̂1, Ȳ , and σ̂
2 are mutually independent.

b.
nσ̂

2

σ2
has a chi square distribution with n − 2 degrees of freedom.

Proof See Appendix 11.A.1.
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Corollary
11.3.1

Let σ̂
2 be the maximum likelihood estimator for σ2 in a simple linear model. Then

n
n − 2

· σ̂
2 is an unbiased estimator for σ2.

Proof Recall that the expected value of a χ2
k distribution is k (see Theorems 4.6.3

and 7.3.1). Therefore,

E
(

n
n − 2

· σ̂
2
)

= σ2

n − 2
E

(
nσ̂

2

σ2

)

= σ2

n − 2
· (n − 2) [by part (b) of Theorem 11.3.3]

= σ2

Corollary
11.3.2

The random variables Ŷ and σ̂
2 are independent.

ESTIMATING σ2

We know that the (biased) maximum likelihood estimator for σ2 in a simple linear
model is

σ̂
2 = 1

n

n∑
i=1

(Yi − β̂0 − β̂1xi)2

The unbiased estimator for σ2 based on σ̂
2 is denoted S2, where

S2 = n
n − 2

σ̂
2 = 1

n − 2

n∑
i=1

(Yi − β̂0 − β̂1xi)2

Statistical software packages—including Minitab—typically print out s, rather than
σ̂, in summarizing the calculations associated with linear model data. To accommo-
date that convention, we will use s2 rather than σ̂2 in writing the formulas for the
test statistics and confidence intervals that arise in connection with the simple linear
model.

Comment Calculating
n∑

i=1
(yi − β̂0 − β̂1xi)2 =

n∑
i=1

(yi − ŷi)2 can be cumbersome.

Three (algebraically equivalent) computing formulas are available that may be easier
to use, depending on the data:

n∑
i=1

(yi − ŷi)2 =
n∑

i=1

(yi − ȳ)2 − β̂2
1

n∑
i=1

(xi − x̄)2 (11.3.3)

n∑
i=1

(yi − ŷi)2 =
n∑

i=1

y2
i − 1

n

n∑
i=1

yi −

[
n∑

i=1
xiyi − 1

n

(
n∑

i=1
xi

)(
n∑

i=1
yi

)]2
n∑

i=1
x2

i − 1
n

n∑
i=1

xi

(11.3.4)

n∑
i=1

(yi − ŷi)2 =
n∑

i=1

y2
i − β̂0

n∑
i=1

yi − β̂1

n∑
i=1

xiyi (11.3.5)
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DRAWING INFERENCES ABOUT β1

Hypothesis tests and confidence intervals for β1 can be carried out by defining a t
statistic based on the properties that appear in Theorems 11.3.2 and 11.3.3.

Theorem
11.3.4

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of points that satisfy the assumptions

of the simple linear model, and let S2 = 1
n−2

n∑
i=1

(Yi − β̂0 − β̂1xi)2. Then

Tn−2 = β̂1 − β1

S

/√
n∑

i=1
(xi − x̄)2

has a Student t distribution with n − 2 degrees of freedom.

Proof We know from Theorem 11.3.2 that

Z = β̂1 − β1

σ

/√
n∑

i=1
(xi − x̄)2

has a standard normal pdf. Furthermore, nσ̂
2

σ2 = (n−2)S2

σ2 has a χ2 pdf with n − 2

degrees of freedom, and, by Theorem 11.3.3, Z and (n−2)S2

σ2 are independent. From
Definition 7.3.3, then, it follows that

Z

/√
(n − 2)S2

σ2

/
(n − 2) = β̂1 − β1

S

/√
n∑

i=1
(xi − x̄)2

has a Student t distribution with n − 2 degrees of freedom.

Theorem
11.3.5

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of points that satisfy the assumptions
of the simple linear model. Let

t = β̂1 − β′
1

s

/√
n∑

i=1
(xi − x̄)2

a. To test H0: β1 = β′
1 versus H1: β1 > β′

1 at the α level of significance, reject H0 if
t ≥ tα,n−2.

b. To test H0: β1 = β′
1 versus H1: β1 < β′

1 at the α level of significance, reject H0 if
t ≤ −tα,n−2.

c. To test H0: β1 = β′
1 versus H1: β1 �= β′

1 at the α level of significance, reject H0 if t
is either (1) ≤ −tα/2,n−2 or (2) ≥ tα/2,n−2.

Proof The decision rule given here is, in fact, a GLRT. A formal proof proceeds
along the lines followed in Appendix 7.A.4. We will omit the details.

Comment A particularly common application of Theorem 11.3.5 is to test
H0: β1 = 0. If the null hypothesis that the slope is zero is rejected, it can be con-
cluded (at the α level of significance) that E(Y) changes with x. Conversely, if H0:
β1 = 0 is not rejected, the data have not ruled out the possibility that variation in Y
is unaffected by x.
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CASE STUDY 11.3.1

By late 1971, all cigarette packs had to be labeled with the words, “Warning:
The Surgeon General Has Determined That Smoking Is Dangerous To Your
Health.” The case against smoking rested heavily on statistical, rather than
laboratory, evidence. Extensive surveys of smokers and nonsmokers had re-
vealed the former to have much higher risks of dying from a variety of causes,
including heart disease.

Typical of that research are the data in Table 11.3.1, showing the an-
nual cigarette consumption, x, and the corresponding mortality rate, Y, due
to coronary heart disease (CHD) for twenty-one countries (124). Do these
data support the suspicion that smoking contributes to CHD mortality?
Test H0: β1 = 0 versus H1: β1 > 0 at the α = 0.05 level of significance.

Table 11.3.1

Cigarette CHD Mortality
Consumption per per 100,000

Country Adult per Year, x (ages 35–64), y

United States 3900 256.9
Canada 3350 211.6
Australia 3220 238.1
New Zealand 3220 211.8
United Kingdom 2790 194.1
Switzerland 2780 124.5
Ireland 2770 187.3
Iceland 2290 110.5
Finland 2160 233.1
West Germany 1890 150.3
Netherlands 1810 124.7
Greece 1800 41.2
Austria 1770 182.1
Belgium 1700 118.1
Mexico 1680 31.9
Italy 1510 114.3
Denmark 1500 144.9
France 1410 59.7
Sweden 1270 126.9
Spain 1200 43.9
Norway 1090 136.3

From Table 11.3.1,
21∑

i=1
xi = 45,110

21∑
i=1

yi = 3,042.2

21∑
i=1

x2
i = 109,957,100

21∑
i=1

y2
i = 529,321.58

21∑
i=1

xiyi = 7,319,602

(Continued on next page)
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(Case Study 11.3.1 continued)

and it follows that

β̂1 =
n

n∑
i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)

n
(

n∑
i=1

x2
i

)
−
(

n∑
i=1

xi

)2

= 21(7,319,602) − (45,110)(3,042.2)
21(109,957,100) − (45,110)2

= 0.0601

and

β̂0 =

n∑
i=1

yi − β̂1

n∑
i=1

xi

n

= 3,042.2 − 0.0601(45,110)
21

= 15.771

The two other quantities needed for the test statistic are

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2
i −
(

1
n

)( n∑
i=1

xi

)2

= 109,957,100 −
(

1
21

)
(45,100)2 = 13,056,523.81

so

√
n∑

i=1
(xi − x̄)2 = √

13,056,523.81 = 3,613.38.

From Equation 11.3.5,

s2 = 1
21 − 2

(
21∑

i=1

y2
i − β̂0

21∑
i=1

yi − β̂1

21∑
i=1

xiyi

)

= 1
19

[529,321.58 − (15.766)(3,042.2) − (0.0601)(7,319,602)] = 2,181.588

and s = √
2,181.588 = 46.707

To test

H0: β1 = 0
versus

H0: β1 > 0

at the α = 0.05 level of significance, we should reject the null hypothesis if t ≥
t.05,19 = 1.7291. But

t = β̂1 − β′
1

s

/√
n∑

i=1
(xi − x̄)2

= 0.0601 − 0
46.707/3,613.38

= 4.65

so our conclusion is clear-cut—reject H0. It would appear that the level of CHD
mortality in a country is affected by its citizens’ smoking habits. More specifically,
as the number of people who smoke increases, so will the number who die of
coronary heart disease.
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Theorem
11.3.6

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of points that satisfy the assumptions

of the simple linear model, and let s2 = 1
n−2

n∑
i=1

(yi − β̂0 − β̂1xi)2. Then

⎡
⎢⎢⎢⎢⎣β̂1 − tα/2,n−2 · s√

n∑
i=1

(xi − x̄)2

, β̂1 + tα/2,n−2 · s√
n∑

i=1
(xi − x̄)2

⎤
⎥⎥⎥⎥⎦

is a 100(1 − α)% confidence interval for β1.

Proof Let Tn−2 denote a Student t random variable with n−2 degrees of freedom,
in which case

P(−tα/2,n−2 ≤ Tn−2 ≤ tα/2,n−2) = 1 − α

Substitute the expression for Tn−2 given in Theorem 11.3.4 and isolate β1 in the cen-
ter of the inequalities. The resulting endpoints will be the expressions appearing
in the statement of the theorem.

CASE STUDY 11.3.2

Not surprisingly, the older a car is, the less its value as a used car. But, in some
cases the price of a car can show a predictable increase by year. This can occur
even though a model of a given year may be “improved” over the previous year.
Table 11.3.2 gives the suggested retail price in 2016 of each year’s model of a
four-door Toyota Camry sedan. Graphed, the xy-relationship is described very
well by the line y = 8188.67 + 748.41x, where 8188.67 and 748.41 are the values
of β̂0 and β̂1 calculated from the formulas of Theorem 11.3.1 (see Figure 11.3.3).
To simplify the calculations, x is the number of years after 2005, as in the second
column of Table 11.3.2.

Table 11.3.2

Year after Suggested

Year 2005 Retail Price ($)

2005 0 7,935
2006 1 8,495
2007 2 10,160
2008 3 10,817
2009 4 11,078
2010 5 11,967
2011 6 12,658
2012 7 13,844
2013 8 13,982
2014 9 14,629

Data from: kbb.com

(Continued on next page)
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(Case Study 11.3.2 continued)

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

2004 2006 2008
Year, x

2010 2012 2014
0

P
ri

ce
 (

$)
 o

f u
se

d 
To

yo
ta

 C
am

ry
, y

y = 8188.67 + 748.41x

Figure 11.3.3

The slope of the line, β̂1, represents the amount of increase year-by-year
in the cost of an older model. Often a range of values is better than a single
estimate, so a good way to provide this is using a confidence interval for the true
value β1.

Here,

√√√√ 9∑
i=0

(xi − x̄)2 =
√

82.5 = 9.083

and from Equation 11.3.5, s2 = 1
10−2

(
9∑

i=0
y2

i − β̂0

9∑
i=0

yi − β̂1

9∑
i=0

xiyi

)
1
8

[1,382,678, 777 − (8188.67)(115,565) − (748.41)(581,786)] = 117,727.98

so s = √
117,727.98 = 343.11.

Using t.025,8 = 2.3060, the expression given in Theorem 11.3.6 reduces to(
748.41 − 2.3060 343.11

9.083 , 748.41 + 2.3060 343.11
9.083

) = ($661.30, $835.52)

About the Data The suggested retail value of a used car may not be the actual
sales price, which depends in part on the consumer’s value of such a car. The
predictive value of the regression equation in Case Study 11.3.2 depends on a
continuing buyers’ sense of value. Perhaps for a variety of reasons, the value of
a one-year-old car does not fit the model. The regression equation, even using
the upper value in the confidence interval for β̂1, 835.52, gives a predicted value
of ŷ = 8188.67 + 835.52(10) = 16, 543.87. This value is well below the suggested
retail value for the 2015 model of $20,879.

DRAWING INFERENCES ABOUT β0

In practice, the value of β0 is not likely to be as important as the value of β1. Slopes
often quantify particularly important aspects of xy-relationships, which was true, for
example, in Case Study 11.3.2. Nevertheless, hypothesis tests and confidence inter-
vals for β0 can be easily derived from the results given in Theorems 11.3.2 and 11.3.3.



Section 11.3 The Linear Model 555

The GLRT procedure for assessing the credibility of H0 : β0 = β′
0 is based on a

Student t random variable with n − 2 degrees of freedom:

Tn−2 =

(
β̂0 − β′

0

)√
n

√
n∑

i=i
(xi − x̄)2

S

√
n∑

i=1
x2

i

= β̂0 − β′
0√

V̂ar(β̂0)
(11.3.6)

“Inverting” Equation 11.3.6 (recall the proof of Theorem 11.3.6) yields⎡
⎢⎢⎢⎢⎣β̂0 − tα/2,n−2 ·

s

√
n∑

i=1
x2

i

√
n

√
n∑

i=1
(xi − x̄)2

, β̂0 + tα/2,n−2 ·
s

√
n∑

i=1
x2

i

√
n

√
n∑

i=1
(xi − x̄)2

⎤
⎥⎥⎥⎥⎦

as the formula for a 100(1 − α)% confidence interval for β0.

DRAWING INFERENCES ABOUT σ2

Since (n − 2)S2/σ2 has a χ2 pdf with n − 2 df (if the n observations satisfy the stipu-
lations implicit in the simple linear model), it follows that

P
[
χ2

α/2,n−2 ≤ (n − 2)S2

σ2
≤ χ2

1−α/2,n−2

]
= 1 − α

Equivalently,

P

[
(n − 2)S2

χ2
1−a/2,n−2

≤ σ2 ≤ (n − 2)S2

χ2
α/2,n−2

]
= 1 − α

in which case [
(n − 2)s2

χ2
1−α/2,n−2

,
(n − 2)s2

χ2
α/2,n−2

]

becomes the 100(1 − α)% confidence interval for σ2 (recall Theorem 7.5.1). Testing
H0 : σ2 = σ2

0 is done by calculating the ratio

χ2 = (n − 2)s2

σ2
0

which has a χ2 distribution with n − 2 df when the null hypothesis is true. Except for
the degrees of freedom (n − 2 rather than n − 1), the appropriate decision rules for
one-sided and two-sided H1’s are similar to those given in Theorem 7.5.2.

Questions

11.3.1. Insect flight ability can be measured in a labora-
tory by attaching the insect to a nearly frictionless rotat-
ing arm with a thin wire. The “tethered” insect then flies
in circles until exhausted. The nonstop distance flown can
easily be calculated from the number of revolutions made
by the arm. The following are measurements of this sort
made on Culex tarsalis mosquitos of four different ages.
The response variable is the average distance flown until
exhaustion for forty females of the species (159).

Distance Flown, y
Age, x (weeks) (thousand meters)

1 12.6
2 11.6
3 6.8
4 9.2
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Fit a straight line to these data and test that the slope
is zero. Use a two-sided alternative and the 0.05 level of
significance.

11.3.2. The best straight line through the Massachusetts
funding/graduation rate data described in Question 11.2.7
has the equation y = 81.088+0.412x, where s = 11.78848.
(a) Construct a 95% confidence interval for β1.
(b) What does your answer to part (a) imply about the
outcome of testing H0: β1 = 0 versus H1: β1 �= 0 at the
α = 0.05 level of significance?
(c) Graph the data and superimpose the regression line.
How would you summarize these data, and their implica-
tions, to a meeting of the state School Board?

11.3.3. Based on the data in Question 11.2.1, the relation-
ship between y, the ambient temperature, and x, the fre-
quency of a cricket’s chirping, is given by y = 25.2+3.29x,
where s = 3.83. At the α = 0.01 level of significance, can
the hypothesis that chirping frequency is not related to
temperature be rejected?

11.3.4. Suppose an experimenter intends to do a regres-
sion analysis by taking a total of 2n data points, where
the xi’s are restricted to the interval [0, 5]. If the xy-
relationship is assumed to be linear and if the objective is
to estimate the slope with the greatest possible precision,
what values should be assigned to the xi’s?

11.3.5. Suppose a total of n = 9 measurements are to be
taken on a simple linear model, where the xi’s will be set
equal to 1, 2, . . . , and 9. If the variance associated with the
xy-relationship is known to be 45.0, what is the probabil-
ity that the estimated slope will be within 1.5 units of the
true slope?

11.3.6. Prove the useful computing formula (Equa-
tion 11.3.5) that

n∑
i=1

(yi − β̂0 − β̂1xi)2 =
n∑

i=1

y2
i − β̂0

n∑
i=1

yi − β̂1

n∑
i=1

xiyi

11.3.7. The sodium nitrate (NaNO3) solubility data in
Question 11.2.3 is described nicely by the regression line
y = 67.508 + 0.871x, where s = 0.959. Construct a 90%
confidence interval for the y-intercept, β0.

11.3.8. Set up and carry out an appropriate hypothesis test
for the Hanford radioactive contamination data given in
Question 11.2.9. Let α = 0.05. Justify your choice of H0
and H1. What do you conclude?

11.3.9. Test H0: β1 = 0 versus H1: β1 �= 0 for the plumage
index/behavioral index data given in Question 11.2.11. Let
α = 0.05. Use the fact that y = 0.61 + 0.84x is the best
straight line describing the xy-relationship.

11.3.10. Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set
of points satisfying the assumptions of the simple linear
model. Prove that

E(Ȳ) = β0 + β1x̄

11.3.11. Derive a formula for a 95% confidence interval
for β0 if n (xi,Yi)’s are taken on a simple linear model
where σ is known.

11.3.12. Which, if any, of the assumptions of the simple
linear model appear to be violated in the following scat-
terplot? Which, if any, appear to be satisfied? Which, if
any, cannot be assessed by looking at the scatterplot?

x

y

^ ^y = β0 + β1 x

11.3.13. State the decision rule and the conclusion if
H0: σ2 = 12.6 is to be tested against H1: σ2 �= 12.6 where
n = 24, s2 = 18.2, and α = 0.05.

11.3.14. Construct a 90% confidence interval for σ2 in the
cigarette-consumption/CHD mortality data given in Case
Study 11.3.1.

11.3.15. Recall Kepler’s Third Law data given in Ques-
tion 8.2.1. The estimated regression line describing the xy-
relationship has the equation y = 1.795 + 0.181x, where
s = 1.8. Construct a 90% confidence interval for σ2.

DRAWING INFERENCES ABOUT E(Y | x)

In Case Study 11.3.1, the random variable Y represents the CHD mortality resulting
from cigarette consumption, x. A public health official might want to have some idea
of the range of mortality likely to be encountered in a country where x is, say, 4200.

Intuition tells us that a reasonable point estimator for E(Y | x) is the height of
the regression line at x, that is, Ŷ = β̂0+β̂1x. By Theorem 11.3.2, the latter is unbiased:

E(Ŷ) = E(β̂0 + β̂1x) = E(β̂0) + xE(β̂1) = β0 + β1x
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Of course, to use Ŷ in any inference procedure requires that we know its
variance. But

Var(Ŷ) = Var(β̂0 + β̂1x) = Var(Ȳ − β̂1x̄ + β̂1x)

= Var[Ȳ + β̂1(x − x̄)]

= Var(Ȳ) + (x − x̄)2Var(β̂1) (why?)

= 1
n

σ2 + (x − x̄)2

n∑
i=1

(xi − x̄)2
σ2

= σ2

⎡
⎢⎢⎣1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

⎤
⎥⎥⎦

An application of Definition 7.3.3, then, allows us to construct a Student t random
variable based on Ŷ . Specifically,

Tn−2 = Ŷ − (β0 + β1x)

σ

√
1
n + (x−x̄)2

n∑
i=1

(xi−x̄)2

/√
(n − 2)S2

σ2(n − 2)
= Ŷ − (β0 + β1x)

S
√

1
n + (x−x̄)2

n∑
i=1

(xi−x̄)2

has a Student t distribution with n−2 degrees of freedom. Isolating β0 +β1x = E(Y |
x) in the center of the inequalities P(−tα/2,n−2 ≤ Tn−2 ≤ tα/2,n−2) = 1 − α produces a
100(1 − α)% confidence interval for E(Y | x).

Theorem
11.3.7

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of points that satisfy the assumptions
of the simple linear model. A 100(1 − α)% confidence interval for E(Y | x) =
β0 + β1x is given by (ŷ − w, ŷ + w), where

w = tα/2,n−2 · s

√√√√√1
n

+ (x − x̄)2

n∑
i=1

(xi − x̄)2

and ŷ = β̂0 + β̂1x.

Example
11.3.2

Look again at Case Study 11.3.1. Suppose a country’s public health officials estimate
cigarette consumption to be 4200 per adult per year. If that were the case, what CHD
mortality would they expect? Answer the question by constructing a 95% confidence
interval for E(Y |4200).

Here, n = 21, t.025,19 = 2.0930,
21∑

i=1
(xi − x̄)2 = 13,056,523.81, s = 46.707, β̂0 =

15.7661, β̂1 = 0.0601, and x̄ = 2148.095. From Theorem 11.3.7, then,

ŷ = 15.7661 + 0.0601(4200) = 268.1861

w = 2.0930(46.707)

√
1

21
+ (4200 − 2148.095)2

13,056,523.81
= 59.4714
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and the 95% confidence interval for E(Y|4200) is

(268.1861 − 59.4714, 268.1861 + 59.4714)

which rounded to two decimal places is

(208.71, 327.66)

Comment Notice from the formula in Theorem 11.3.7 that the width of a confidence
interval for E(Y | x) increases as the value of x becomes more extreme. That is, we
are better able to predict the location of the regression line for an x-value close to x̄
than we are for x-values that are either very small or very large.

Figure 11.3.4 shows the dependence of w on x for the data from Case Study 11.3.1.
The lower and upper limits for the 95% confidence interval for E(Y | x) have been
calculated for all x. Pictured is the dotted curve (or 95% confidence band) connecting
those endpoints. The width of the band is smallest when x = 2148.1 (= x̄).
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DRAWING INFERENCES ABOUT FUTURE OBSERVATIONS

A variation on Theorem 11.3.7 is the determination of a range of numbers that would
have a high probability of including the value Y of a single future observation to
be recorded at some given level of x. In Case Study 11.3.1, public health officials
might want to predict the actual (not the average) CHD mortality that would occur
if cigarette consumption is x.

Let (x1,Y1), (x2,Y2), . . . , (xn,Yn) be a set of n points that satisfy the assump-
tions of the simple linear model, and let (x,Y) be a hypothetical future observation,
where Y is independent of the n Yi’s. A prediction interval is a range of numbers that
contains Y with a specified probability.

Consider the difference Ŷ − Y. Clearly,

E(Ŷ − Y) = E(Ŷ) − E(Y) = (β0 + β1x) − (β0 + β1x) = 0
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and

Var(Ŷ − Y) = Var(Ŷ) + Var(Y)

= σ2

⎡
⎢⎢⎣1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

⎤
⎥⎥⎦+ σ2

= σ2

⎡
⎢⎢⎣1 + 1

n
+ (x − x̄)2

n∑
i=1

(xi − x̄)2

⎤
⎥⎥⎦

Following exactly the same steps that were taken in the derivation of Theorem 11.3.7,
a Student t random variable with n − 2 degrees of freedom can be constructed from
Ŷ−Y (using Definition 7.3.3). Inverting the equation P(−tα/2,n−2 ≤ Tn−2 ≤ tα/2,n−2) =
1 − α will then yield the prediction interval (ŷ − w, ŷ + w) given in Theorem 11.3.8.

Theorem
11.3.8

Let (x1,Y1), (x2,Y2), . . . , and (xn,Yn) be a set of n points that satisfy the assumptions
of the simple linear model. A 100(1−α)% prediction interval for Y at the fixed value
x is given by (ŷ − w, ŷ + w), where

w = tα/2,n−2 · s

√√√√√1 + 1
n

+ (x − x̄)2

n∑
i=1

(xi − x̄)2

and ŷ = β̂0 + β̂1x.

Example
11.3.3

Based on the data in Case Study 11.3.1, we calculated in Example 11.3.2 that a 95%
confidence interval for E(Y |4200) is (208.71, 327.66). How does that compare to the
corresponding 95% prediction interval for Y?

When x = 4200, ŷ = 268.1861 for both intervals. From Theorem 11.3.8, the width
of the 95% prediction interval for Y is:

w = 2.0930(46.707)

√
1 + 1

21
+ (4200 − 2148.095)2

13,056,523.81
= 114.4725

The 95% prediction interval, then, is

(268.1861 − 114.4725, 268.1861 + 114.4725)

which rounded to two decimal places is

(153.76, 382.61)

which makes it 92% wider than the 95% confidence interval for E(Y |4200).
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TESTING THE EQUALITY OF TWO SLOPES

We saw in Chapter 9 that the comparison of two treatments or two conditions often
leads to a hypothesis test that the mean of one is equal to the mean of the other.
Similarly, the comparison of two linear xy-relationships often requires that we test
H0: β1 = β∗

1, where β1 and β∗
1 are the true slopes associated with the two regressions.

If the data points taken on the two regressions are all independent, a two-sample
t test can be set up based on the properties in Theorems 11.3.2 and 11.3.3. Theo-
rem 11.3.9 identifies the appropriate test statistic and summarizes the GLRT decision
rule. Details of the proof will be omitted.

Theorem
11.3.9

Let (x1,Y1), (x2,Y2), . . . , (xn,Yn) and (x∗
1,Y ∗

1 ), (x∗
2,Y ∗

2 ), . . . , (x∗
m,Y ∗

m) be two inde-
pendent sets of points, each satisfying the assumptions of the simple linear model,
that is, E(Y | x) = β0 + β1x and E(Y ∗ | x∗) = β∗

0 + β∗
1x∗.

a. Let

T = β̂1 − β̂∗
1 − (β1 − β∗

1)

S
√

1
n∑

i=1
(xi−x̄)2

+ 1
m∑

i=1
(x∗

i −x̄∗)2

where

S =

√√√√√ n∑
i=1

[Yi − (β̂0 + β̂1xi)]2 +
m∑

i=1
[Y ∗

i − (β̂∗
0 + β̂∗

1x∗
i )]2

n + m − 4

Then T has a Student t distribution with n + m − 4 degrees of freedom.

b. To test H0 : β1 = β∗
1 versus H1 : β1 �= β∗

1 at the α level of significance, reject H0

if t is either (1) ≤ −tα/2,n+m−4 or (2) ≥ tα/2,n+m−4, where

t = β̂1 − β̂∗
1

s
√

1
n∑

i=1
(xi − x̄)2

+ 1
m∑

i=1
(x∗

i − x̄∗)2

(One-sided tests are defined in the usual way by replacing ±tα/2,n+m−4 with either
tα,n+m−4 or −tα,n+m−4.)

Example
11.3.4

Genetic variability is thought to be a key factor in the survival of a species, the idea
being that “diverse” populations should have a better chance of coping with changing
environments. Table 11.3.3 summarizes the results of a study designed to test that
hypothesis experimentally [data slightly modified from (4)]. Two populations of fruit

Table 11.3.3

Date Day no., x(= x∗) Strain A popn, y Strain B popn, y∗

Feb 2 0 100 100
May 13 100 250 203
Aug 21 200 304 214
Nov 29 300 403 295
Mar 8 400 446 330
Jun 16 500 482 324
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flies (Drosophila serrata)—one that was cross-bred (Strain A) and the other, in-bred
(Strain B)—were put into sealed containers where food and space were kept to a
minimum. Recorded every hundred days were the numbers of Drosophila alive in
each population.

Figure 11.3.5 shows a graph of the two sets of population figures. For both strains,
growth was approximately linear over the period covered. Strain A, though, with
an estimated slope of 0.74, increased at a faster rate than did Strain B, where the
estimated slope was 0.45. The question is, do we have enough evidence here to reject
the null hypothesis that the two true slopes are equal? Is the difference between 0.74
and 0.45, in other words, statistically significant?
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Let α = 0.05 and let (xi, yi), i = 1, 2, . . . , 6, and (x∗
i , y∗

i ), i = 1, 2, . . . , 6, denote
the times and population sizes for Strain A and Strain B, respectively. Our objective
is to test H0 : β1 = β∗

1 versus H1 : β1 > β∗
1. Rejecting H0, of course, would support

the contention that genetic variability benefits a species’ chances of survival.
From Table 11.3.3, x̄ = x̄∗ = 250 and

6∑
i=1

(xi − x̄)2 =
6∑

i=1

(x∗
i − x̄∗)2 = 175,000

Also,

6∑
i=1

[yi − (145.3 + 0.742xi)]2 = 5512.14

and

6∑
i=1

[y∗
i − (131.3 + 0.452x∗

i )]2 = 3960.14

so

s =
√

5512.14 + 3960.14
6 + 6 − 4

= 34.41
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Since H1 is one-sided to the right, we should reject H0 if t ≥ t.05,8 = 1.8595. But

t = 0.742 − 0.452

34.41

√
1

175,000
+ 1

175,000

= 2.50

These data, then, do support the theory that genetically mixed populations have a
better chance of survival in hostile environments.

Questions

11.3.16. Regression techniques can be very useful in situ-
ations where one variable—say, y—is difficult to measure
but x is not. Once such an xy-relationship has been “cali-
brated,” based on a set of (xi, yi)’s, future values of Y can
be easily estimated using β̂0 + β̂1x. Determining the vol-
ume of an irregularly shaped object, for example, is of-
ten difficult, but weighing that object is likely to be easy.
The following table shows the weights (in kilograms) and
the volumes (in cubic decimeters) of eighteen children be-
tween the ages of five and eight (15). The estimated re-
gression line has the equation y = −0.104+0.988x, where
s = 0.202.
(a) Construct a 95% confidence interval for E(Y |14.0).
(b) Construct a 95% prediction interval for the volume of

a child weighing 14.0 kilograms.

Weight, x Volume, y Weight, x Volume, y

17.1 16.7 15.8 15.2
10.5 10.4 15.1 14.8
13.8 13.5 12.1 11.9
15.7 15.7 18.4 18.3
11.9 11.6 17.1 16.7
10.4 10.2 16.7 16.6
15.0 14.5 16.5 15.9
16.0 15.8 15.1 15.1
17.8 17.6 15.1 14.5

11.3.17. Construct a 95% confidence interval for
E(Y | 2.750) using the connecting rod data given in Case
Study 11.2.1.

11.3.18. For the CHD mortality data of Case Study 11.3.1,
construct a 99% confidence interval for the expected
death rate in a country where the cigarette consumption
is 2500 per adult per year. Is a public health official more
likely to be interested in a 99% confidence interval for
E(Y | 2500) or a 99% prediction interval for Y when x =
2500?

11.3.19. The fuel economy (in miles per gallon) of an
automobile can depend on a number of factors, but the
table below suggests that the weight of vehicle is a very
good predictor.

Model Weight, x (lbs) Fuel usage, y, (mpg)

Toyota Yaris Liftback (manual) 2370 34
Toyota Yaris Sedan 2430 33
Scion xB (manual) 2450 32
Honda Fit Sport (manual) 2495 34
Honda Fit 2535 32
Chevrolet Malibu (4-cyl.) 3135 24
Honda Accord (4-cyl.) 3195 24
Nissan Altima 2.5 S 3215 25
Toyota Camry LE (4-cyl.) 3280 24
BMW 325i 3460 24
Volkswagen Passat 2.0T 3465 24
Lexus IS250 3510 24

Find the 95% confidence interval for E(Y |2890), where
2890 is the weight of the Honda Civic Hybrid. Does the
interval include 37, the miles per gallon of the Civic?

11.3.20. In the radioactive exposure example in Ques-
tion 11.2.9, find the 95% confidence interval for E(Y |9.00)
and the prediction interval for the value 9.00.

11.3.21. Attorneys representing a group of male buyers
employed by Flirty Fashions are filing a reverse discrimi-
nation suit against the female-owned company. Central to
their case are the following data, showing the relationship
between years of service and annual salary for the firm’s
fourteen buyers, six of whom are men. The plaintiffs claim
that the difference in slopes (0.606 for men versus 1.07
for women) is prima facie evidence that the company’s
salary policies discriminate against men. As the lawyer for
Flirty Fashions, how would you respond? Use the follow-
ing sums:

6∑
i=1

(yi − 21.3 − 0.606xi)2 = 5.983

and

8∑
i=1

(y∗
i
− 23.2 − 1.07x∗

i
)2 = 13.804

Also,
6∑

i=1
(xi − x̄)2 = 31.33 and

8∑
i=1

(x∗
i − x̄∗)2 = 46.
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11.3.22. Polls taken during a city’s last two administra-
tions (one Democratic, one Republican) suggested that
public support of the two mayors fell off linearly with
years in office. Can it be concluded from the following
data that the rates at which the two administrations lost
favor were significantly different? Let α = 0.05. (Note:
y = 69.3077 − 3.4615x with an estimated standard devia-
tion of 0.9058 and y∗ = 59.9407 − 2.7373x∗ with an esti-
mated standard deviation of 1.2368.)

Democratic Mayor Republican Mayor
Years after Percent in Years after Percent in

Taking Office, x Support, y Taking Office, x∗ Support, y∗

2 63 1 58
3 58 2 55
5 52 4 47
7 46 6 43
8 41 7 41

8 39

11.3.23. Prove that the variance of Ŷ can also be written

Var(Ŷ) =
σ2

n∑
i=1

(xi − x)2

n
n∑

i=1
(xi − x̄)2

11.3.24. Show that
n∑

i=1

(Yi − Ȳ)2 =
n∑

i=1

(Yi − Ŷi)2 +
n∑

i=1

(Ŷi − Ȳ)2

for any set of points (xi,Yi), i = 1, 2, . . . , n.

11.4 Covariance and Correlation
Our discussion of xy-relationships in Chapter 11 began with the simplest possible
setup from a statistical standpoint—the case where the (xi, yi)’s are just numbers and
have no probabilistic structure whatsoever. Then we examined the more complicated
(and more “inference-friendly”) scenario where xi is a constant but Yi is a random
variable. Introduced in this section is the next level of complexity—problems where
both Xi and Yi are assumed to be random variables. (Measurements of the form
(xi, yi) or (xi,Yi) are typically referred to as regression data; observations satisfying
the assumptions made in this section—that is, measurements of the form (Xi,Yi)—
are more commonly referred to as correlation data.)

MEASURING THE DEPENDENCE BETWEEN
TWO RANDOM VARIABLES

Given a pair of random variables, it makes sense to inquire how one varies with re-
spect to the other. If X increases, for example, does Y also tend to increase? And if
so, how strong is the dependence between the two?

The first step in addressing such questions was taken in Section 3.9 with the def-
inition of covariance. In that section, its role was primarily as a tool for finding the
variance of a sum of random variables. Here, it will serve as the basis for measuring
the relationship between X and Y .

THE CORRELATION COEFFICIENT

The covariance of X and Y necessarily reflects the units of both random vari-
ables, which can make it difficult to interpret. In applied settings, it helps to have a
dimensionless measure of dependency so that one xy-relationship can be compared
to another. Dividing Cov(X,Y) by σX σY accomplishes not only that objective but
also scales the quotient to be a number between −1 and +1.
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Definition 11.4.1
Let X and Y be any two random variables. The correlation coefficient of X and
Y, denoted ρ(X,Y), is given by

ρ(X,Y) = Cov(X,Y)
σxσY

= Cov(X ∗,Y ∗)

where X ∗ = (X − μX )/σX and Y ∗ = (Y − μY )/σY .

Theorem
11.4.1

For any two random variables X and Y,

a. |ρ(X,Y)| ≤ 1.

b. |ρ(X,Y)| = 1 if and only if Y = aX + b for some constants a and b (except
possibly on a set of probability zero).

Proof Following the notation of Definition 11.4.1, let X ∗ and Y ∗ denote the stan-
dardized transformations of X and Y . Then

0 ≤ Var(X ∗ ± Y ∗) = Var(X ∗) ± 2 Cov(X ∗,Y ∗) + Var(Y ∗)

= 1 ± 2ρ(X,Y) + 1

= 2 [1 ± ρ(X,Y)]

But 1 ± ρ(X,Y) ≥ 0 implies that |ρ(X,Y)| ≤ 1, and part (a) of the theorem is
proved.

Next, suppose that ρ(X,Y) = 1. Then Var(X ∗ − Y ∗) = 0; however, a random
variable with zero variance is constant, except possibly on a set of probability zero.
From the constancy of X ∗ − Y ∗, it readily follows that Y is a linear function of X .
The case for ρ(X,Y) = −1 is similar.

The converse of part (b) is left as an exercise.

Questions

11.4.1. Let X and Y have the joint pdf

fX,Y (x, y) =
{ x+2y

22 , for (x, y) = (1, 1), (1, 3), (2, 1), (2, 3)

0, elsewhere

Find Cov(X,Y) and ρ(X,Y).

11.4.2. Suppose that X and Y have the joint pdf

fX,Y (x, y) = x + y, 0 < x < 1, 0 < y < 1

Find ρ(X,Y).

11.4.3. If the random variables X and Y have the joint pdf

fX,Y (x, y) =
{

8xy, 0 ≤ y ≤ x ≤ 1

0, otherwise

show that Cov(X,Y) = 8
450 . Calculate ρ(X,Y).

11.4.4. Suppose that X and Y are discrete random vari-
ables with the joint pdf

(x, y) fX,Y (x, y)

(1, 2) 1
2

(1, 3) 1
4

(2, 1) 1
8

(2, 4) 1
8

Find the correlation coefficient between X and Y .
11.4.5. Prove that ρ(a + bX, c + dY) = ρ(X,Y) for con-
stants a, b, c, and d where b and d are positive. Note that
this result allows for a change of scale to one convenient
for computation.
11.4.6. Let the random variable X take on the values
1, 2, . . . , n, each with probability 1/n. Define Y to be X 2.
Find ρ(X,Y) and lim

n→∞ρ(X,Y).

11.4.7. (a) For random variables X and Y , show that
Cov(X + Y, X − Y) = Var(X ) − Var(Y)

(b) Suppose that Cov(X,Y) = 0. Prove that

ρ(X + Y, X − Y) = Var(X ) − Var(Y)
Var(X ) + Var(Y)
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ESTIMATING ρ(X, Y): THE SAMPLE CORRELATION COEFFICIENT

We conclude this section with an estimation problem. Suppose the correlation coef-
ficient between X and Y is unknown, but we have some relevant information about
its value in the form of n measurements (X1,Y1), (X2,Y2), . . . , and (Xn,Yn). How
can we use those data to estimate ρ(X,Y)?

Since the correlation coefficient can be written in terms of various theoretical
moments,

ρ(X,Y) = E(XY) − E(X )E(Y)√
Var(X )

√
Var(Y)

it would seem reasonable to estimate each component of ρ(X,Y) with its corre-
sponding sample moment. That is, let X̄ and Ȳ approximate E(X ) and E(Y), replace
E(XY) with

1
n

n∑
i=1

XiYi

and substitute
1
n

n∑
i=1

(Xi − X̄ )2 and
1
n

n∑
i=1

(Yi − Ȳ)2

for Var(X ) and Var(Y), respectively.
We define the sample correlation coefficient, then, to be the ratio

R =
1
n

n∑
i=1

XiYi − X̄ Ȳ√
1
n

n∑
i=1

(Xi − X̄ )2

√
1
n

n∑
i=1

(Yi − Ȳ)2

(11.4.1)

or, equivalently,

R =
n

n∑
i=1

XiYi−
(

n∑
i=1

Xi

)(
n∑

i=1
Yi

)
√

n
n∑

i=1
X 2

i −
(

n∑
i=1

Xi

)2
√

n
n∑

i=1
Y 2

i −
(

n∑
i=1

Yi

)2
(11.4.2)

(Sometimes R is referred to as the Pearson product-moment correlation coefficient,
in honor of the eminent British statistician Karl Pearson.)

Questions

11.4.8. Derive Equation 11.4.2 from Equation 11.4.1.

11.4.9. Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of
measurements whose sample correlation coefficient is r.
Show that

r = β̂1 ·

√
n

n∑
i=1

x2
i −
(

n∑
i=1

xi

)2

√
n

n∑
i=1

y2
i −
(

n∑
i=1

yi

)2

where β̂1 is the maximum likelihood estimate for the
slope.

INTERPRETING R

The properties cited for ρ(X,Y) in Theorem 11.4.1 are not sufficient to provide a
useful interpretation of R. What does it mean, for example, to say that the sample
correlation coefficient is 0.73, or 0.55, or −0.24? One way to answer such a question
focuses on the square of R, rather than on R itself.
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We know from Equation 11.3.3 that
n∑

i=1

(yi − β̂0 − β̂1xi)2 =
n∑

i=1

(yi − ȳ)2 − β̂2
1

n∑
i=1

(xi − x̄)2

Using the relationship between β̂1 and r in Question 11.4.9—together with the fact
that

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2
i −
(

n∑
i=1

xi

)2/
n

we can write

n∑
i=1

(yi − β̂0 − β̂1xi)2 =
n∑

i=1

(yi − ȳ)2 − r2 ·

n∑
i=1

(yi − ȳ)2

n∑
i=1

(xi − x̄)2
·

n∑
i=1

(xi − x̄)2

which reduces to

r2 =

n∑
i=1

(yi − ȳ)2 −
n∑

i=1
(yi − β̂0 − β̂1xi)2

n∑
i=1

(yi − ȳ)2
(11.4.3)

Equation 11.4.3 has a nice, simple interpretation. Notice that

1.
n∑

i=1
(yi − ȳ)2 represents the total variability in the dependent variable, that is, the

extent to which the yi’s are not all the same.

2.
n∑

i=1
(yi − β̂0 − β̂1xi)2 represents the variation in the yi’s not explained (or ac-

counted for) by the linear regression with x.

3.
n∑

i=1
(yi − ȳ)2 −

n∑
i=1

(yi − β̂0 − β̂1xi)
2

represents the variation in the yi’s that is ex-

plained by the linear regression with x.

Therefore, r2 is the proportion of the total variation in the yi’s that can be attributed
to the linear relationship with x. So, if r = 0.60, we can say that 36% of the variation
in Y is explained by the linear regression with X (and that 64% is associated with
other factors).

Comment The quantity r2 is sometimes called the coefficient of determination.

CASE STUDY 11.4.1

The Scholastic Aptitude Test (SAT) is widely used by colleges and universities
to help choose their incoming classes. It was never designed to measure the qual-
ity of education provided by secondary schools, but critics and supporters alike
often force it into that role. The problem is that average SAT scores associated
with schools or districts or states reflect a variety of factors, some of which have
little or nothing to do with the quality of instruction that students are receiving.
One of these factors, as Section 3.13 pointed out is the states’ participation rate,
the percentage of eligible students who take the SAT.
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Figure 11.4.1

Table 11.4.1 shows one testing period’s average SAT scores (y), by state, as
a function of participation rate (x). Figure 11.4.1 suggests a strong dependency
between the two measurements—as a state’s participation rate goes down, its
average SAT score goes up. In North Dakota, for example, only 2% of the stu-
dents eligible to take the test actually did; in Maryland, the participation rate
was a dramatically larger 78%. The average SAT score in Maryland was 1468; in
North Dakota the average score of 1816 was 24% higher.

A good way to quantify the overall relationship between test scores and par-
ticipation rates is to calculate the data’s sample correlation coefficient, r. From
Table 11.4.1, we can calculate the sums necessary to evaluate Equation 11.4.2

51∑
i=1

xi = 2,099
51∑

i=1

yi = 81,108

51∑
i=1

x2
i = 147,507

51∑
i=1

y2
i = 129,989,648

51∑
i=1

xiyi = 3,112,824

Substituting the sums into the formula for r, then, shows that the sample corre-
lation coefficient is −0.912:

r =
n

n∑
i=1

xiyi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)
√

n
(

n∑
i=1

x2
i

)
−
(

n∑
i=1

xi

)2
√

n
(

n∑
i=1

y2
i

)
−
(

n∑
i=1

yi

)2

= 51(3, 112, 824) − (2099)(81, 108)√
51(147, 507) − 20992

√
51(129, 909, 648) − 81, 1082

(Continued on next page)
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(Case Study 11.4.1 continued)

Table 11.4.1

Participation Average Participation Average
State Rate SAT Score State Rate SAT Score

Alabama 7% 1617 Montana 18% 1637
Alaska 54% 1485 Nebraska 4% 1745
Arizona 36% 1547 Nevada 54% 1458
Arkansas 4% 1698 New Hampshire 70% 1566
California 60% 1504 New Jersey 79% 1526
Colorado 14% 1735 New Mexico 12% 1617
Connecticut 88% 1525 New York 76% 1468
Delaware 100% 1359 North Carolina 64% 1483
Dist. Columbia 100% 1309 North Dakota 2% 1816
Florida 72% 1448 Ohio 15% 1652
Georgia 77% 1445 Oklahoma 5% 1697
Hawaii 63% 1460 Oregon 48% 1544
Idaho 100% 1364 Pennsylvania 71% 1481
Illinois 5% 1802 Rhode Island 73% 1480
Indiana 71% 1474 South Carolina 65% 1443
Iowa 3% 1794 South Dakota 3% 1792
Kansas 5% 1753 Tennessee 8% 1714
Kentucky 5% 1746 Texas 62% 1432
Louisiana 5% 1667 Utah 5% 1690
Maine 96% 1387 Vermont 63% 1554
Maryland 78% 1468 Virginia 73% 1530
Massachusetts 84% 1556 Washington 63% 1519
Michigan 4% 1784 West Virginia 15% 1522
Minnesota 6% 1786 Wisconsin 4% 1782
Mississippi 3% 1714 Wyoming 3% 1762
Missouri 4% 1771

Based on data from: http://blog.prepscholar.com/average-sat-scores-by-state-most-recent

Since r2 = (0.912)2 = 0.832, we can say that 83.2% of the variability in SAT
scores from state to state can be attributed to the linear relationship between
test scores and participation rates.

About the Data The magnitude of r2 for these data should be a clear warning
that comparing average SATs at face value from state to state or school system
to school system is largely meaningless. It would make more sense to examine
the residuals associated with y = β̂0 + β̂1x. States with particularly large positive
values for y − ŷ may be doing something that other states might be well advised
to copy.

Questions

11.4.10. In Case Study 11.3.1, how much of the variability
in CHD mortality is explained by cigarette consumption?

11.4.11. Some baseball fans believe that the number of
home runs a team hits is markedly affected by the alti-
tude of the club’s home park. The rationale is that the
air is thinner at the higher altitudes, and balls would

be expected to travel farther. The following table shows
the altitudes (X ) of American League ballparks and the
number of home runs (Y) that each team hit during
a recent season (183). Calculate the sample correlation
coefficient, r, using the sums below. What would you
conclude?
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12∑
i=1

xi = 4936
12∑

i=1
yi = 1175

12∑
i=1

x2
i = 3,071,116

12∑
i=1

y2
i = 123,349

12∑
i=1

xiyi = 480,565

Club Altitude, x Number of Home Runs, y

Cleveland 660 138
Milwaukee 635 81
Detroit 585 135
New York 55 90
Boston 21 120
Baltimore 20 84
Minnesota 815 106
Kansas City 750 57
Chicago 595 109
Texas 435 74
California 340 61
Oakland 25 120

11.4.12. Many people believe that a salary bonus is a re-
ward for good performance. The corporate world may
have a different understanding. A random sample of
thirty chief executive officers of large capitalization public
companies recorded the cash bonus paid, x (in $100,000),
and the performance of the company, y, as measured by
percentage change in company revenues. The following
sums resulted.

30∑
i=1

xi = 1,300.69
30∑

i=1

yi = 323

30∑
i=1

x2
i = 86,754.6939

30∑
i=1

y2
i = 11, 881

30∑
i=1

xiyi = 7,807.36

Find the sample coefficient of correlation. What does this
study say about the relationship between bonuses and
performance?

11.4.13. The extent to which stress is a contributing fac-
tor to the severity of chronic illnesses was the focus of
the study summarized in the following table (221). Seven-
teen conditions were compared on a Seriousness of Illness
Rating Scale (SIRS). Patients with each of these condi-
tions were asked to fill out a Schedule of Recent Experi-
ence (SRE) questionnaire. Higher scores on the SRE re-
flect presumably greater levels of stress. How much of the
variation in the SIRS values can be attributed to the linear
regression with SRE?

Admitting Diagnosis Average SRE, x SIRS, y

Dandruff 26 21
Varicose veins 130 173
Psoriasis 317 174
Eczema 231 204
Anemia 325 312
Hyperthyroidism 816 393
Gallstones 563 454
Arthritis 312 468
Peptic ulcer 603 500
High blood pressure 405 520
Diabetes 599 621
Emphysema 357 636
Alcoholism 688 688
Cirrhosis 443 733
Schizophrenia 609 776
Heart failure 772 824
Cancer 777 1020

Use the following sums:

17∑
i=1

xi = 7,973
17∑

i=1
yi = 8,517

17∑
i=1

x2
i = 4,611,291

17∑
i=1

y2
i = 5,421,917

17∑
i=1

xiyi = 4,759,470

11.4.14. Burglary and larceny both involve the illegal tak-
ing of something of value. The difference, simply put, is
that burglary involves unlawful entry to a structure, while
larceny does not. While the two crimes might seem simi-
lar, the correlation between the two is quite low. A data
set to be used for such an analysis is the annual rates
of burglary, x, and larceny, y, from 1975 to 2010. Both
variables give the number of crimes per 100,000 U.S.
citizens. Calculate the xy correlation. Use the following
sums:

36∑
i=1

xi = 994.7700,
36∑

i=1
x2

i = 28462.1047,

36∑
i=1

yi = 254.6900,
36∑

i=1
y2

i = 1816.1417,

36∑
i=1

xiyi = 7051.2633

11.4.15. A common saying in golf is “You drive for show,
but you putt for dough.” To see if there is any truth in this
assertion, data for ninety-six top money-winning golfers
were examined. For each, their money earnings in 2014
(y, in $ millions), their average yards per drive (v), and
their average number of putts (x) were tallied.
(a) Show that the correlation coefficient between the
putting average and earnings reveal a slightly stronger
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relationship than that for driving and earnings. Use the
following sums:

96∑
i=1

vi = 27,989,
96∑

i=1
v2

i = 8,167,723,

96∑
i=1

yi = 230.87,
96∑

i=1
y2

i = 734.32,

96∑
i=1

viyi = 67658.00,

and also
96∑

i=1
xi = 169.31,

96∑
i=1

x2
i = 298.64,

96∑
i=1

xiyi = 406.37

(b) For each correlation r, compute r2 to show that nei-
ther the v nor the x variable alone is a good predictor of
earnings.

11.5 The Bivariate Normal Distribution
The singular importance of the normal distribution in univariate inference proce-
dures should, by now, be abundantly clear. In dealing with problems that involve
two random variables—for example, the calculation of ρ(X,Y)—it should come as
no surprise that the most frequently encountered joint pdf, fX,Y (x, y), is a bivariate
version of the normal curve. Our objectives in this section are twofold: (1) to deduce
the form of the bivariate normal from basic principles and (2) to identify the partic-
ular properties of that pdf that pertain to the problem of assessing the nature of the
dependence between X and Y .

GENERALIZING THE UNIVARIATE NORMAL PDF

At this point, we know many things about the univariate normal pdf,

fY (y) = 1√
2πσ

e− 1
2 ( y−μ

σ )2

, −∞ < y < ∞

Sections upon sections have been devoted to estimating and testing its parameters,
studying its transformations, and learning about its role as an approximation to the
distribution of sums and averages. What has not been discussed is the generalization
of fY (y) itself, to a bivariate, trivariate, or multivariate pdf.

Given the mathematical complexities inherent in the univariate normal pdf, it
should come as no surprise that its extension to higher dimensions is not a simple
matter. In the bivariate case, for example, which is the only generalization we will
consider, fX,Y (x, y) has five different parameters and its functional form is decidely
unpleasant.

We will begin by “constructing” a bivariate normal pdf, fX,Y (x, y), using proper-
ties suggested by what we already know holds true for the univariate normal, fY (y).
As a first condition to impose, it seems reasonable to require that the marginal pdfs
associated with fX,Y (x, y) be univariate normal densities. It will be sufficient to con-
sider the case where the two marginals are standard normals.

If X and Y are independent standard normal random variables,

fX,Y (x, y) = 1
2π

e− 1
2 (x2 + y2),

−∞ < x < ∞
−∞ < y < ∞ (11.5.1)

Notice that the simplest extension of fX,Y (x, y) in Equation 11.5.1 is to replace
− 1

2 (x2 + y2) with − 1
2 c(x2 + uxy + y2), or, equivalently, with − 1

2 c(x2 − 2vxy + y2),
where c and v are constants. The desired joint pdf, then, would have the general
form

fX,Y (x, y) = Ke− 1
2 c(x2−2vxy+y2) (11.5.2)

where K is the constant that makes the double integral of fX,Y (x, y) from −∞ to ∞
equal to 1.
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Now, what must be true of K, c, and v if the marginal pdfs based on fX,Y (x, y)
are to be standard normals? Note, first, that completing the square in the exponent
makes

x2 − 2vxy + y2 = x2 − v2x2 + (y2 − 2vxy + v2x2)

= (1 − v2)x2 + (y − vx)2

so

fX,Y (x, y) = Ke− 1
2 c(1−v2)x2

e− 1
2 c(y−vx)2

The exponents, though, must be negative, which implies that 1 − v2 > 0, or, equiva-
lently, |v| < 1.

To find K, we start by calculating∫ ∞

−∞

∫ ∞

−∞
e−(1/2)c(1−v2)x2 · e−(1/2)c(y−vx)2

dy dx

=
∫ ∞

−∞
e−(1/2)c(1−v2)x2

[∫ ∞

−∞
e−(1/2)c(y−vx)2

dy
]

dx

=
∫ ∞

−∞
e−(1/2)c(1−v2)x2

(√
2π√
c

)
dx

=
√

2π√
c

√
2π√

c
√

1 − v2

= 2π

c
√

1 − v2

It follows that

K = c
√

1 − v2

2π

The constant c can be any positive value, but a convenient choice proves to be
c = 1/(1 − v2). Substituting K and c, then, into Equation 11.5.2 gives

fX,Y (x, y) = 1

2π
√

1 − v2
e−(1/2)[1/(1−v2)](x2−2vxy+y2)

= 1

2π
√

1 − v2
e−x2 · e−(1/2)[1/(1−v2)](y−vx)2

(11.5.3)

Recall that our choice of the form of fX,Y (x, y) was predicated on a wish for the
marginal pdfs to be normal. A simple integration shows that to be the case:

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy

= 1

2π
√

1 − v2
e−(1/2)x2

∫ ∞

−∞
e−(1/2)[1/(1−v2)](y−vx)2

dy

= 1

2π
√

1 − v2
e−(1/2)x2 ·

√
2π
√

1 − v2

= 1√
2π

e−(1/2)x2

Since fX,Y (x, y) is symmetric in x and y, fY (y) is also the standard normal.
The constant v is actually the correlation coefficient between X and Y . Since

E(X ) = E(Y) = 0 and σX = σY = 1,
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ρ(X,Y) = E(XY) =
∫ ∞

−∞

∫ ∞

−∞
xy fX,Y (x, y) dx dy

= 1√
2π

∫ ∞

−∞
xe−(1/2)x2

[
1√

2π
√

1 − v2

∫ ∞

−∞
ye−(1/2)[1/(1−v2)](y−vx)2

dy
]

dx

= 1√
2π

∫ ∞

−∞
xe−(1/2)x2 · vx dx (why?)

= v
1√
2π

∫ ∞

−∞
x2e−(1/2)x2

dx = v Var(X ) = v

Finally, we can replace x with (x − μX )/σX and y with (y − μY )/σY . Doing
so requires that the original pdf be multiplied by the derivative of both the X -

transformation and the Y -transformation, that is, by
1

σX σY
[see (109)].

Definition 11.5.1
Let X and Y be random variables with joint pdf

fX,Y (x, y) = 1

2πσX σY

√
1 − ρ2

· exp
{
−1

2

(
1

1 − ρ2

)[
(x − μX )2

σ2
X

− 2ρ
x − μX

σX
· y − μY

σY
+ (y − μY )2

σ2
Y

]}
for all x and y. Then X and Y are said to have the bivariate normal distribution
(with parameters μX , σ2

X , μY , σ2
Y , and ρ).

Comment For bivariate normal densities, ρ(X,Y) = 0 implies that X and Y are
independent, a result not true in general.

PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION

Francis Galton, the renowned British biologist and scientist, perhaps more than any
other person was responsible for launching regression analysis as a worthwhile field
of statistical inquiry. Galton was a redoubtable data analyst whose keen insight en-
abled him to intuit much of the basic mathematical structure that we now associate
with correlation and regression.

One of his more famous endeavors (63) was an examination of the relationship
between parents’ heights (X ) and their adult children’s heights (Y). Those partic-
ular variables have a bivariate normal distribution, the mathematical properties of
which Galton knew nothing. Just by looking at cross-tabulations of X and Y , though,
Galton postulated that (1) the marginal distributions of X and Y are both nor-
mal, (2) E(Y | x) is a linear function of x, and (3) Var(Y | x) is constant with x. As
Theorem 11.5.1 shows, all of his empirically based deductions proved to be true.

Theorem
11.5.1

Suppose that X andY are random variables having the bivariate normal distribution
given in Definition 11.5.1. Then

a. fX (x) is a normal pdf with mean μX and variance σ2
X ; fY (y) is a normal pdf

with mean μY and variance σ2
Y .

b. ρ is the correlation coefficient between X and Y.

c. E(Y | x) = μY + ρσY

σX
(x − μX ).

d. Var(Y | x) = (1 − ρ2)σ2
Y .
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Proof We have already established (a) and (b). Properties (c) and (d) will be
examined for the special case μX = μY = 0 and σx = σy = 1. The extension to
arbitrary μX , μY , σX , and σY is straightforward.

First, note that

fY |x(y) = fX,Y (x, y)
fX (x)

=
1

2π
√

1−ρ2
e−(1/2)x2

e−(1/2)[1/(1−ρ2)](y−ρx)2

1√
2π

e−(1/2)x2

= 1√
2π
√

1 − ρ2
e−(1/2)[1/(1−ρ2)](y−ρx)2

(11.5.4)

By inspection, we see that Equation 11.5.4 is the pdf of a normal random vari-
able with mean ρx and variance 1 − ρ2. Therefore, E(Y | x) = ρx and Var(Y | x) =
1 − ρ2. Replacing y with (y − μY )/σY and x with (x − μX )/σX gives the desired
results.

Comment The term regression line derives from a consequence of part (c) of
Theorem 11.5.1. Suppose we make the simplifying assumption that μX = μY = μ

and σX = σY . Then part (c) reduces to

E(Y | x) − μ = ρ(X,Y)(x − μ)

But recall that |ρ(X,Y)| ≤ 1 and, in this case, 0 < ρ(X,Y) < 1. Here, the positive
sign of ρ(X,Y) tells us that, on the average, tall parents have tall children. How-
ever, ρ(X,Y) < 1 means (again, on the average) that the children’s heights are closer
to the mean than are the parents’. Galton called this phenomenon “regression to
mediocrity.”

Questions

11.5.1. Suppose that X and Y have a bivariate normal pdf
with μX = 3, μY = 6, σ2

X = 4, σ2
Y = 10, and ρ = 1

2 . Find
P(5 < Y < 6 1

2 ) and P(5 < Y < 6 1
2 | x = 2).

11.5.2. Suppose that X and Y have a bivariate normal dis-
tribution with Var(X ) = Var(Y).
(a) Show that X and Y − ρX are independent.
(b) Show that X + Y and X − Y are independent. [Hint:

See Question 11.4.7(a).]

11.5.3. Suppose that X and Y have a bivariate normal dis-
tribution.

(a) Prove that X + Y has a normal distribution when X
and Y are standard normal random variables.

(b) Find E(cX + dY) and Var(cX + dY) in terms of μX ,
μY , σX , σY , and ρ(X,Y), where X and Y are arbitrary
normal random variables.

11.5.4. Suppose that the random variables X and Y have
a bivariate normal pdf with μX = 56, μY = 11, σ2

X = 1.2,

σ2
Y = 2.6, and ρ = 0.6. Compute P(10 <Y < 10.5 | x = 55).

Suppose that n = 4 values were to be observed with x
fixed at 55. Find P(10.5 < Ȳ < 11 | x = 55).

11.5.5. If the joint pdf of the random variables X and Y is

fX,Y (x, y) = ke−(2/3)[(1/4)x2−(1/2)xy+y2]

find E(X ), E(Y), Var(X ), Var(Y), ρ(X,Y), and k.

11.5.6. Give conditions on a > 0, b > 0, and u so that

fX,Y (x, y) = ke−(ax2−2uxy+by2)

is the bivariate normal density of random variables X
and Y each having expected value 0. Also, find Var(X ),
Var(Y), and ρ(X,Y).

ESTIMATING PARAMETERS IN THE BIVARIATE NORMAL PDF

The five parameters in fX,Y (x, y) can be estimated in the usual way with the method
of maximum likelihood. Given a random sample of size n from fX,Y (x, y)—(x1, y1),
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(x2, y2), . . . , (xn, yn)—we define L =
n∏

i=1

fX,Y (xi, yi) and take the derivatives of ln L

with respect to each of the parameters. Solved simultaneously, the resulting five equa-
tions (each derivative set equal to 0) yield the maximum likelihood estimators given
in Theorem 11.5.2. Details of the derivation will be left as an exercise.

Theorem
11.5.2

Given that fX,Y (x, y) is a bivariate normal pdf, the maximum likelihood estima-
tors for μX , μY , σ2

X , σ2
Y , and ρ, assuming that all five are unknown, are X̄ , Ȳ ,(

1
n

)
n∑

i=1
(Xi − X̄ )2,

(
1
n

)
n∑

i=1
(Yi − Ȳ)2, and R, respectively.

TESTING H0: ρ = 0

If X and Y have a bivariate normal distribution, testing whether the two variables are
independent is equivalent to testing whether their correlation coefficient, ρ, equals
0 (recall the Comment following Definition 11.5.1). Two different procedures are
widely used for testing H0: ρ = 0. One is an exact test based on the Tn−2 random
variable given in Theorem 11.5.3; the other is an approximate test based on the stan-
dard normal distribution.

Theorem
11.5.3

Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) be a random sample of size n drawn from a bi-
variate normal distribution, and let R be the sample correlation coefficient. Under
the null hypothesis that ρ = 0, the statistic

Tn−2 =
√

n − 2 R√
1 − R2

has a Student t distribution with n − 2 degrees of freedom.

Proof See (54).

Example
11.5.1

Table 11.5.1 gives the mean temperature for twenty successive days in April and the
average daily butterfat content in the milk of ten cows (148). Can we conclude that
temperature and butterfat content have a nonzero correlation?

Let ρ denote the true correlation coefficient between X and Y . The hypotheses
to be tested are

H0: ρ = 0

versus

H1: ρ �= 0

Let α = 0.05. Given that n = 20, the statistic

t =
√

n − 2 · r√
1 − r2

follows a Student t distribution with 18 df (if H0: ρ = 0 is true). That being the case,
the null hypothesis will be rejected if t is either (1) ≤ −2.1009 (= −t0.025,18) or (2) ≥
+2.1009(= t0.025,18).
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Table 11.5.1

Date Temperature, x Percent Butterfat, y

April 3 64 4.65
4 65 4.58
5 65 4.67
6 64 4.60
7 61 4.83
8 55 4.55
9 39 5.14

10 41 4.71
11 46 4.69
12 59 4.65
13 56 4.36
14 56 4.82
15 62 4.65
16 37 4.66
17 37 4.95
18 45 4.60
19 57 4.68
20 58 4.65
21 60 4.60
22 55 4.46

For the data in Table 11.5.1,
20∑

i=1
xi = 1,082

20∑
i=1

yi = 93.5

20∑
i=1

x2
i = 60,304

20∑
i=1

y2
i = 437.6406

20∑
i=1

xiyi = 5,044.5

so

r = 20(5,044.5) − (1,082)(93.5)√
20(60,304) − (1,082)2

√
20(437.6406) − (93.5)2

= −0.453

Therefore,

t =
√

n − 2 · r√
1 − r2

=
√

18(−0.453)√
1 − (−0.453)2

= −2.156

and our conclusion is reject H0. It would appear that temperature and butterfat con-
tent are not independent.

Comment An alternate approach to testing H0: ρ = 0 was given by Fisher (51). He
showed that the statistic

1
2

ln
1 + R
1 − R

is asymptotically normal with mean 1
2 ln[(1 + ρ)/(1 − ρ)] and variance approximately

1/(n − 3). Fisher’s formulation makes it relatively easy to determine the power of a
correlation test—a computation that would be much more difficult if the inference
had to be based on

√
n − 2 R/

√
1 − R2.
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Questions

11.5.7. What would be the conclusion for the test of
Example 11.5.1 if α = 0.01?

11.5.8. In a study of heart disease (79), the weight (in
pounds) and the blood cholesterol (in mg/dl) of four-
teen men without a history of coronary incidents were
recorded. At the α = 0.05 level, can we conclude from
these data that the two variables are independent?

Subject Weight, x Cholesterol, y

1 168 135
2 175 403
3 173 294
4 158 312
5 154 311
6 214 222
7 176 302
8 262 269
9 181 311

10 143 286
11 140 403
12 187 244
13 163 353
14 164 252

The data in the table give the following sums:
14∑

i=1
xi = 2,458

14∑
i=1

yi = 4,097

14∑
i=1

x2
i = 444,118

14∑
i=1

y2
i = 1,262,559

14∑
i=1

xiyi = 710,499

11.5.9. Recall the baseball data in Question 11.4.11. Test
whether home run frequency and home park altitude are
independent. Let α = 0.05.

11.5.10. Test H0: ρ = 0 versus H1: ρ �= 0 for the SRE/SIRS
data described in Question 11.4.13. Let 0.01 be the level
of significance.

11.5.11. The National Collegiate Athletic Association has
had a long-standing concern about the graduation rate
of athletes. Under the urging of the Association, some
prominent athletic programs increased the funds for tu-
toring athletes. The table below gives the amount spent
(in millions of dollars) and the resulting percentage of ath-
letes graduating in 2007. Does the money matter? Test H0 :
ρ = 0 versus H1 : ρ �= 0 at the 0.10 level of significance.

Money Spent on Graduation
University Athletes’ Tutoring, x Rate 2007, y

Minnesota 1.61 72
Kansas 1.61 70
Florida 1.67 87
LSU 1.74 69
Georgia 1.77 70
Tennessee 1.83 78
Kentucky 1.86 73
Ohio St. 1.89 78
Texas 1.90 72
Oklahoma 2.45 69

Based on data from: Pensacola News Journal (Florida),
December 21, 2008.

11.6 Taking a Second Look at Statistics (How Not to
Interpret the Sample Correlation Coefficient)

Of all the “numbers” that statisticians and experimenters routinely compute, the cor-
relation coefficient is one of the most frequently misinterpreted. Two errors in partic-
ular are common. First, there is a tendency to assume, either implicitly or explicitly,
that a high sample correlation coefficient implies causality. It does not. Even if the
linear relationship between x and y is perfect—that is, even if r = −1 or r = +1—
we cannot conclude that X causes Y (or that Y causes X ). The sample correlation
coefficient is simply a measure of the strength of a linear relationship. Why the xy-
relationship exists in the first place is a different question altogether.

George Bernard Shaw (an unlikely contributor to a mathematics text!) described
elegantly the fallacy of using statistical relationships to infer underlying causality.
Commenting on the “correlations” that exist between lifestyle and health, he wrote
in The Doctor’s Dilemma (174):

It is easy to prove that the wearing of tall hats and the carrying of umbrellas en-
larges the chest, prolongs life, and confers comparative immunity from disease; for
the statistics show that the classes which use these articles are bigger, healthier, and
live longer than the class which never dreams of possessing such things. It does not
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take much perspicacity to see that what really makes this difference is not the tall hat
and the umbrella, but the wealth and nourishment of which they are evidence, and
that a gold watch or membership of a club in Pall Mall might be proved in the same
way to have the like sovereign virtues. A university degree, a daily bath, the owning
of thirty pairs of trousers, a knowledge of Wagner’s music, a pew in church, anything,
in short, that implies more means and better nurture than the mass of laborers enjoy,
can be statistically palmed off as a magic-spell conferring all sorts of privileges.

Examples of “spurious” correlations similar to those cited by Shaw are dis-
turbingly commonplace. Between 1875 and 1920, for example, the correlation be-
tween the annual birthrate in Great Britain and the annual production of pig iron in
the United States was an almost “perfect” −0.98. High correlations have also been
found between salaries of Presbyterian ministers in Massachusetts and the price of
rum in Havana and between the academic achievement of U.S. schoolchildren and
the number of miles they live from the Canadian border. All too often, what looks
like a cause is not a cause at all, but simply the effect of one or more factors that were
not even measured. Researchers need to be very careful not to read more into the
value of r than the number legitimately implies.

The second error frequently made when interpreting sample correlation coefficients
is to forget that r measures the strength of a linear relationship. It says nothing about the
strength of a curvilinear relationship. Computing r for the points shown in Figure 11.6.1,
for example, is totally inappropriate. The (xi, yi) values in that scatterplot are clearly
related but not in a linear way. Quoting the value of r would be misleading.

y

x

Figure 11.6.1

It is unfortunately true, though, that some xy-relationships having values of r
close to either +1 or −1 are not as linear as their value of r might suggest. Recall the
Social Security expenditures described in Case Study 11.2.2. The value of r for the
9 data points graphed in Figure 11.2.3 is 0.98, but the residual plot in Figure 11.2.4
makes it abundantly clear that the relationship is, in fact, curvilinear (as data for
subsequent years confirmed).

The lesson to be learned from Figure 11.6.1 and Case Study 11.2.2 is clear—
always graph the data! No correlation should ever, ever be calculated (much less
interpreted) without first plotting the (xi, yi)’s to gain assurance that the relationship
is linear. Digital cameras and photoshopping may have diminished the value of pho-
tographs as evidence in courts of law, but for statisticians, a picture is still worth a
thousand words.

Appendix 11.A.1 A Proof of Theorem 11.3.3

The strategy for the proof is to express nσ̂
2 in terms of the squares of normal random

variables and then apply Fisher’s Lemma (see Appendix 7.A.2). The random vari-

ables to be used are β̂1 − β1, Wi = Yi − β0 − β1xi, i = 1, . . . , n, and W̄ = 1
n

n∑
i=1

Wi =
Ȳ − β0 − β1x̄. Note that

Wi − W̄ = (Yi − Ȳ) − β1(xi − x̄)
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or, equivalently,

Yi − Ȳ = (Wi − W̄) + β1(xi − x̄)

Next, we express β̂1−β1 as a linear combination of the Wi’s. The argument begins
by using Equation 11.3.1 to express β̂1:

β̂1 − β1 =

n∑
i=1

(xi − x̄)(Yi − Ȳ)

n∑
i=1

(xi − x̄)2
− β1

=

n∑
i=1

(xi − x̄)(Yi − Ȳ) − β1

n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)[(Wi − W̄) + β1(xi − x̄)] − β1

n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − x̄)2

=

n∑
i=1

(xi − x̄)(Wi − W̄)

n∑
i=1

(xi − x̄)2
(11.A.1.1)

Recall from Equation 11.3.3 that

nσ̂
2 =

n∑
i=1

(Yi − Ȳ)2 − β̂
2
1

n∑
i=1

(xi − x̄)2 (11.A.1.2)

We need to express Equation 11.A.1.2 in terms of the Wi’s—that is,

nσ̂
2 =

n∑
i=1

[(Wi − W̄) + β1(xi − x̄)]2 − β̂
2
1

n∑
i=1

(xi − x̄)2

=
n∑

i=1

(Wi − W̄)2 + 2β1

n∑
i=1

(xi − x̄)(Wi − W̄) + β2
1

n∑
i=1

(xi − x̄)2

− β̂
2
1

n∑
i=1

(xi − x̄)2 (11.A.1.3)

From Equation 11.A.1.1, we can write

n∑
i=1

(xi − x̄)(Wi − W̄) = (β̂1 − β1)
n∑

i=1

(xi − x̄)2

Substituting the right-hand side of the preceding expression for
n∑

i=1
(xi − x̄)(Wi − W̄)

in Equation 11.A.1.3 gives
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nσ̂
2 =

n∑
i=1

(Wi − W̄)2 + 2β1(β̂1 − β1)
n∑

i=1

(xi − x̄)2

+ β2
1

n∑
i=1

(xi − x̄)2 − β̂
2
1

n∑
i=1

(xi − x̄)2

=
n∑

i=1

(Wi − W̄)2 +
n∑

i=1

(xi − x̄)2[2β1(β̂1 − β1) + β2
1 − β̂

2
1

]
=

n∑
i=1

(Wi − W̄)2 −
n∑

i=1

(xi − x̄)2[β̂2
1 − 2β̂1β1 + β2

1

]
=

n∑
i=1

(Wi − W̄)2 −
n∑

i=1

(xi − x̄)2(β̂1 − β1)2

=
n∑

i=1

W 2
i − nW̄ 2 −

n∑
i=1

(xi − x̄)2(β̂1 − β1)2

Now, choose an orthogonal matrix, M, whose first two rows are
x1 − x̄√

n∑
i=1

(xi − x̄)2

· · · xn − x̄√
n∑

i=1
(xi − x̄)2

and
1√
n

· · · 1√
n

Define the random variables Z1, . . . , Zn through the transformation⎛
⎜⎝

Z1
...

Zn

⎞
⎟⎠ = M

⎛
⎜⎝

W1
...

Wn

⎞
⎟⎠

By Fisher’s Lemma, the Zi’s are independent, normal random variables with
mean zero and variance σ2, and

n∑
i=1

Z2
i =

n∑
i=1

W 2
i

Also, by Equation 11.A.1.1 and the choice of the first row of M,

Z2
1 =

n∑
i=1

(xi − x̄)2(β̂1 − β1)2

and, by the selection of the second row of M,

Z2
2 = nW

2

Thus,

nσ̂
2 =

n∑
i=1

W 2
i − Z2

1 − Z2
2 =

n∑
i=3

Z2
i

From this follows the independence of nσ̂
2, β̂1, and Ȳ .

Finally, notice that

nσ̂
2

σ̂2
=

n∑
i=3

(
Zi

σ

)2

The fact that the sum has a chi square distribution with n − 2 degrees of freedom
proves the last part of the theorem.
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