
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

11.1 Introduction

11.2 Reusability

11.3 Access Specifiers and Simple Inheritance

11.4 Protected Data with Private Inheritance

11.5 Types of Inheritance

11.6 Single Inheritance

11.7 Multilevel Inheritance

11.8 Multiple Inheritance

11.9 Hierarchical Inheritance

11.10 Hybrid Inheritance

11.11 Multipath Inheritance

11.12 Virtual Base Classes

11.13 Constructors, Destructors, and Inheritance

11.14 Object as a Class Member

11.15 Abstract Classes

11.16 Qualifier Classes and Inheritance

11.17 Constructors in Derived Class

11.18 Pointers and Inheritance

11.19 Overloading Member Functions

11.20 Advantages of Inheritance

11.21 Disadvantages of Inheritance

11.22 More Programs

11Inheritance

C
h

a
p

t
e

r
 O

u
t

l
in

e

C H A P T E R

442 Inheritance

11.1 INTRODUCTION

Inheritance is one of the most useful and essential characteristics of object-oriented programming.
The existing classes are the main components of
inheritance. The new classes are created from ex-
isting ones. The properties of the existing classes
are simply extended to the new classes. The new
classes created by using such a method are known
as derived classes, and the existing classes
are known as base classes, as shown in Figure
11.1. The relationship between the base and derived
classes is known as kind of relationship.
The programmer can define new member variables
and functions in the derived class. The base class
remains unchanged. The object of the derived class
can access members of the base as well as derived
classes. On the other hand, the object of the base
class cannot access members of the derived classes.
The base class does not know about their subclasses.

11.2 REUSABILITY

Reusability means the reuse of properties of the base class in the derived classes. Reusabil-
ity permits the reuse of members of the previous class. We can add extra features in the existing
class. This is possible by creating a new class from the existing class. The new class will have
the features of both the old and the derived new class. In Figure 11.1, the base class is reused.
Reusability is achieved using inheritance. Inheritance and reusability are not different from each
other. The outcome of inheritance is reusability.

In this chapter, we will deal with implementation of the mechanism of inheritance and under-
stand its features by illustrating several examples. One can find the inheritance property in several
languages, but inheritance property in C++ is slightly different. C++ enables an inheritance of all
the properties of the previous class, and there is a flexibility to add new members in the derived
class, which are not available in the parent class.

The base class is also called superclass, parent, or ancestor, and the derived
class is called subclass, child, or descendent. It is also possible to derive a class from
a previously derived class. A class can be derived from more than one class.

INHERITANCE

The procedure of creating a new class from one or more existing classes is termed inheritance.

11.3 ACCESS SPECIFIERS AND SIMPLE INHERITANCE

Before elaborating the inheritance mechanism, it is necessary to recall our memory for access
rules studied in the Chapter 8 on classes and objects. We have studied the access specifiers pri-
vate and public in detail and briefly studied the protected access specifiers.

MEMBER A

MEMBER B

MEMBER A

MEMBER B

MEMBER C

MEMBER D

BASE CLASS

DERIVED CLASS

 Fig. 11.1 Inheritances

Access Specifiers and Simple Inheritance 443

The public members of a class can be accessed by an object directly outside the class.
Directly means when objects access the data member without the member function of the
class. The private members of the class can only be accessed by the public member function
of the same class. The protected access specifier is the same as private. The only difference
is that it allows its derived classes to access the protected members directly without the member
functions. This difference is explained later with suitable examples.

A new class can be defined as per the syntax given below. The derived class is indicated by
associating with the base class. A new class also has its own set of member variables and func-
tions. The syntax given below creates the derived class.

class name of the derived class: access specifiers - name of the base
class
{

 // member variables of new class (derived class)

}

The names of the derived and base classes are separated by a colon (:). The access specifiers may
be private or public. The keyword private or public is specified followed by a colon.
Generally, the access specifier is to be specified. In the absence of an access specifier, the default
is private. The access specifiers decide whether the characteristics of the base class are derived
privately or publicly. The derived class also has its own set of member variables and functions.
The following are the possible syntaxes of declaration:

(1)

class B: public A
{
 // Members of class B
};

In the above syntax, class A is a base class, and class B is a derived class. Here, the class
B is derived publicly.

(2)

class B: private A // private derivation
{
 // members of class B
};

(3)

class B: A // by default private derivation
{
 // members of class B
};

444 Inheritance

(4)

class B: protected A // same as private
{
 // members of class B
};

(5)

Struct B: A // public derivation
{
 // members of class B
};

In the above syntaxes, the class B is derived privately from the base class A. If no
access specifier is given, the default mode is private. The use of protected access
specifier is the same as private access. If struct is used instead of class, the
default derivation is public. It is important to note the following points:
(a) When a public access specifier is used (example 1), the public members of the base

class are public members of the derived class. Similarly, the protected members of
the base class are protected members of the derived class.

(b) When a private access specifier is used, the public and protected members of the
base class are the private members of the derived class.

Public Inheritance

The class can be derived either publicly or privately. No third type exists. When a class is derived
publicly, all the public members of the base class can be accessed directly in the derived class.
However, in private derivation, an object of the derived class has no permission to directly access
even public members of the base class. In such a case, the public members of the base class can
be accessed using public member functions of the derived class.

In case the base class has private member variables and a class derived publicly, the derived
class can access the member variables of the base class using only member functions of the
base class. The public derivation does not allow the derived class to access the private member
variable of the class directly as is possible for public member variables. The following example
illustrates public inheritance where base class members are declared public and private.

11.1 Write a program to derive a class publicly from base class. Declare the base class
with its member under public section.

#include<iostream.h>
#include<constream.h>
// PUBLIC DERIVATION //

class A // BASE CLASS
{
 public:

Access Specifiers and Simple Inheritance 445

 int x;
};
class B: public A // DERIVED CLASS
{
 public:
 int y;
};
int main()
{
 clrscr();
 B b; // DECLARATION OF OBJECT
 b.x=20;
 b.y=30;
 cout<<“\n member of A:”<<b.x;
 cout<<“\n Member of B:”<<b.y;
 return 0;
}

OUTPUT

 Member of A : 20
 Member of B : 30

Explanation: In the above program, two classes are defined, and each contains one public
member variable. The class B is derived publicly from the class A. Consider the following
statement:

class B : public A

The above statement is used to derive the new class. The keyword public is used to derive the
class publicly. The access specifier is followed by the name of the base class.

In function main(), b is an object of class B. The object b can access the members of
class A as well as of class B through the following statements:

b.x=20; // Access to base class members
b.y=30; // Access to derived class members

Thus, the derived class holds the members of the base class, and its object has the permission to
access the members of the base class.

11.2 Write a program to derive a class publicly from base class. Declare the base class
member under private section.

#include<iostream.h>
#include<constream.h>
// PUBLIC DERIVATION //

class A // BASE CLASS

446 Inheritance

{
 private:
 int x;
 public:
 A() {x=20;}
 void showx()
{
 cout<<“\n x=”<<x;
}
};
class B : public A // DERIVED CLASS
{
 public:
 int y;
 B() {y=30;}
void show()
{
 showx();
 cout<<“\n y=”<<y;
}
};
int main()
{
 clrscr();
 B b; // DECLARATION OF OBJECT
 b.show();
 return 0;
}

OUTPUT

 x=20
 y=30

Explanation: In the above program, the class A has one private member, default constructor,
and member function showx(). The class B is derived from the class A publicly. The class
B contains one public member variable y, default constructor, and member function show().

In function main(), b is an object of the derived class B. Though the class B is de-
rived publicly from the class A, the status of the members of the base class remains unchanged.
The object b can access public members, but cannot access the private members directly. The
private members of the base class can be accessed using the public member function of the base
class.

The object b invokes the member function show() of the derived class. The function
show() invokes the showx() function of the base class.

Access Specifiers and Simple Inheritance 447

The object b can access the member function defined in both base and derived classes. The
following statements are valid:

b.showx(); // Invokes member function of base class
b.show(); // Invokes member function of derived class

The constructor and member functions of the derived class cannot access the private members.
Due to this, separate constructor and member functions are defined in both base and derived
classes.

Private Inheritance

The objects of the privately derived class cannot access the public members of the base class
directly. Hence, the member functions are used to access the members.

11.3 Write a program to derive a class privately. Declare the member of base class under
public section.

// PRIVATE INHERITANCE //

#include<iostream.h>
#include<constream.h>

class A // BASE CLASS
{
 public:
 int x;
};
class B : private A // DERIVED CLASS
{
 public:
 int y;
 B()
 {x=20;
 y=40;
 }
void show()
 {cout<<“\n x=”<<x;
 cout<<“\n y=”<<y;
 }
};
int main()
{
 clrscr();
 B b; // DECLARATION OF OBJECT
 b.show();
 return 0;
}

448 Inheritance

OUTPUT

 x=20
 y=40

Explanation: In the above program, the class B is derived privately from the class A. The
member variable x is a public member of the base class. However, the object b of the derived
class cannot directly access the variable x. The following statements are invalid:

b.x=30; // cannot access

The class B is derived privately. Hence, its access is restricted. The member function of the
derived class can access the members of the base class. The function show() does the same.

11.4 Write a program to derive a class privately.

#include<iostream.h>
#include<constream.h>

class A // BASE CLASS
{
 int x;
 public:
 A()
 {x=20;}
 void showx()
 {
 cout<<“\n x=”<<x;
 }
};
class B : private A // DERIVED CLASS
{
 public:
 int y;
 B()
 { y=40;
 }
 void show()
 {
 showx();
 cout<<“\n y=”<<y;
 }
};
int main()
{
 clrscr();

Protected Data with Private Inheritance 449

 B b; // DECLARATION OF OBJECT
 b.show();
return 0;
}

OUTPUT

 x=20
 y=40

Explanation: In the above program, the member variables of the base class and derivation meth-
ods are private. The derived class and its objects cannot access the private members of the base
class directly. Hence, separate constructor and member functions are defined in both base and
derived classes. The object b invokes the member function show() to display the members. The
constructors are used to initialize the member variables.

From the last few programs, it is clear that handling the public data of a class is not a tough
task for the programmer. However, while accessing the private data, difficulties are faced by the
programmer, because they cannot be accessed without the member functions. Even the derived
class has no permission to access the private data directly. Hence, the programmer needs to define
separate constructor and member functions to access the private data of that particular base class.
Due to this, the length of the program is increased.

11.4 PROTECTED DATA WITH PRIVATE INHERITANCE

The member function of the derived class cannot access the private member variables of the base
class. The private members of the base class can be accessed using the public member function of
the same class. This approach makes the program lengthy. To overcome the problems associated
with private data, the creator of C++ introduced another access specifier protected. The pro-
tected is similar to private, but it allows the derived class to access the private members directly.
Consider the following example:

11.5 Write a program to declare protected data in base class. Access data of base class
declared under Protected section using member functions of derived class.

// PROTECTED DATA //

#include<iostream.h>
#include<constream.h>

class A // BASE CLASS
{
 protected: // protected declaration
 int x;
};
class B : private A // DERIVED CLASS
{

450 Inheritance

 int y;
 public:
 B()
 {
 x=30;
 y=40;
 }
 void show()
 {
 cout<<“\n x=”<<x;
 cout<<“\n y=”<<y;
 }
};
int main()
{
 clrscr();
 B b; // DECLARATION OF OBJECT
 b.show();
 return 0;
}

OUTPUT

 x=30
 y=40

Explanation: In this program, the data member variable of class A is declared under the
protected section. The class A contains neither default constructor nor any member function.
The class b is derived from class A. The member function of the derived class B can ac-
cess the protected member of the base class.

Thus, the protected mechanism reduces the program size. The derived class need not depend
on the member function of the base class to access the data. The protected data safeguard the data
from direct use and allow only the derived classes to access the data.

The protected access specifier should be used when it is known in advance that a particular
class can be used as a base class. The data members of the classes that can be used as a base class
should be declared as protected. In such classes, the programmer need not define functions. The
member functions of the base class are rarely useful.

In the inheritance mechanism, the derived classes have more number of members as com-
pared with the base class. The derived class contains the properties of a base class and a few of
its own. The object of the derived class can access the members of both base and derived classes.
However, the object of the base can access the members of only the base class and not any of the
derived class, as shown in Figure 11.2. Hence, the programmer always uses objects of the derived
classes and performs operations. The member function of the base class cannot access the data of
the derived class. Obviously, the programmer uses the object of the derived classes and possibly
avoids defining the member function in the base class.

Protected Data with Private Inheritance 451

Base class
{

}

}

Member A
Member B

Member C
Member D

Derived class
{

Object of base class

Object of derived class

 Fig. 11.2 Difference between base and derived class objects

We have learned about the access specifiers in detail. Now before moving on to a new topic,
let us revise a few points related to private, public, and protected keywords. Table 11.1
gives a description of access specifiers followed by an explanation. Figure 11.3 gives a pictorial
representation of access control.

 Table 11.1 Access specifiers with their scope

Sr.No. Base class
access mode

Derived class access mode

Private derivation Public derivation Protected derivation

A public private public protected

B private Not inherited Not inherited Not inherited

C protected private protected protected

public

private

protected

class B

public

private

protected

Class D : public B

Base class object

Derived class object

 Fig. 11.3 Access scope of class members

452 Inheritance

(a) Accessible to the member function of the same class, derived class, and using objects.
When a class is derived by private derivation, public members of the base class are pri-
vate in the derived class.

(b) Accessible to the member function inside its own class but not in the derived class. The de-
rived class cannot access the private members of the base class directly. The private members
of the base class can be accessed only using the public member function of the same class.

(c) Accessible to the member function of the base and derived classes. When a class is
derived privately, the protected members of the base class become private, and when
they are derived publicly, the protected members remain protected in the derived class.

The syntax of public, private, and protected access specifiers is as follows:

Syntax:
Public: <declarations>
Private: <declarations>
Protected: <declarations>

If the member variables of a class are protected, the access specifier should be private. A pro-
tected member can be considered a hybrid of public and private members. A protected member
is public for its derived class and private for other class members. Member functions and friends
can use the member classes derived from the declared class. Only objects of the derived class do
this task. It is possible to override the default struct access with private or protected. However, it
is not possible to override the default union access. Figure 11.5 shows a pictorial representation
of the access control in classes.

(1) All private members of the class are accessible to public members of the same class.
They cannot be inherited.

(2) The derived class can access the private members of the base class using the member
function of the base class.

(3) All the protected members of the class are available to its derived classes and can be ac-
cessed without the use of the member function of the base class. In other words, we can
say that all protected members act as public for the derived class.

(4) If any class is prepared for deriving classes, it is advisable to declare all members of the
base class as protected, so that derived classes can access the members directly.

(5) All the public members of the class are accessible to its derived class. There is no re-
striction for accessing elements.

(6) The access specifier required while deriving class is either private or public. If not speci-
fied, private is default for classes and public is default for structures.

(7) Constructors and destructors are declared in the public section of the class. If declared
in the private section, the object declared will not be initialized and the compiler will
flag an error.

(8) The private, public, and protected sections (visibility sections) can be defined several
times in any sequence. In Figure 11.4, you can observe that the public section is de-
clared twice, the private section is defined at last, and the protected section is declared
in between two public sections. The sections can be declared in any sequence for any
number of times.

Protected Data with Private Inheritance 453

class <class name>
{
 public: // public section
 <declarations>
 protected: // protected section
 <declarations>
 public: // public section
 <declarations>
 private: // private section.
 <declarations>
};

 Fig. 11.4 Visibility sections

Member functions scope

The following type of functions can have access to the protected and private members of the
class. Table 11.2 describes these functions. Figure 11.5 shows access scope.

 Table 11.2 Access controls of functions

Sr. No. Type of Functions Access modes

Private Protected Public

A Class member function

B Derived class member

C Friend function

D Friend class member

private

protected

public

Class X

private

protected

public

Class Y : public X

private

protected

public

Class Z : private X

private

protected

public

Class W : public Y, public Z

Not Inheritable

 Fig. 11.5 Access scope in classes

454 Inheritance

(a) The class member function can access the private, protected, and public members.
(b) The derived class member function cannot access the private members of the base class

directly. However, the private members can be accessed using the member functions of
the base class.

(c) The friend function of a friend class can access the private and protected members.
(d) The member function of a friend class can access the private and protected member

of the class.

11.5 TYPES OF INHERITANCE

So far, we have learned examples of simple inheritance that use one base class and one derived
class. The process of inheritance can be either simple or complex.

This depends on the following points:

(1) Number of base classes: The program can use one or more base classes to
derive a single class.

(2) Nested derivation: The derived class can be used as a base class, and a new
class can be derived from it. This can be possible at any extent.

Based on the above points, inheritance is classified as follows:

(a) Single Inheritance
(b) Multiple Inheritance
(c) Hierarchical Inheritance
(d) Multilevel Inheritance
(e) Hybrid Inheritance
(f) Multi-path Inheritance

The different types of inheritance are described in Figure 11.6. The base classes are at the top,
and the derived classes are at the bottom. The arrow pointing from top to bottom indicates that
the properties of the base class are inherited by the derived class and vice versa is not applicable.

(a) Single Inheritance
This occurs when only one base class is used for the derivation of a derived class. Further, de-
rived class is not used as a base class, such a type of inheritance that has one base and derived
class is known as single inheritance. Figure 11.6 (a) indicates single inheritance.

(b) Multiple Inheritance
When two or more base classes are used for the derivation of a class, it is called multiple
inheritance. Figure 11.6 (b) indicates multiple inheritance.

(c) Hierarchical Inheritance
When a single base class is used for the derivation of two or more classes, it is known as
hierarchical inheritance. Figure 11.6 (c) indicates hierarchical inheritance.

(d) Multilevel Inheritance
When a class is derived from another derived class, that is, the derived class acts as a base
class, such a type of inheritance is known as multilevel inheritance. Figure 11.6 (d)
indicates multilevel inheritance.

(e) Hybrid Inheritance
A combination of one or more types of inheritance is known as hybrid inheritance.
Figure 11.6 (e) indicates hybrid inheritance.

Types of Inheritance 455

(f) Multipath Inheritance
When a class is derived from two or more classes, those are derived from the same base
class. Such a type of inheritance is known as multipath inheritance. Figure 11.6 (f)
indicates multipath inheritance.

X

Y

X is a base class. Y is a derived class. This type
involves one base and derived class. Further, no
class is derived from Y.

(a) Single Inheritance

X Y

Z

X and Y are base classes. Z is a derived class.
Class Z inherits properties of both X and Y.
Further, Z is not used as a base class.

(b) Multiple Inheritance

W

ZYX

W is only one base class. X, Y and Z are derived
classes. Further, X, Y and Z are not used for
deriving a class.

(c) Hierarchical Inheritance

X

Y

Z

X is a base class. Y is derived from X. Further, Z is
derived from Y. Here, Y is not only a derived class
but also a base class. Further, Z can be used as a
base class.

(d) Multilevel Inheritance

X

Y Z

W

In this type, two types of inheritance is used, i.e.
single and multiple inheritance. Class Y is derived
from class X. It is single type of inheritance.
Further, the derived class Y acts as a base class.
The class W is derived from base classes Y and Z.
This type of inheritance that uses more than one
base class is known as multiple inheritances. Thus,
combination of one or more type of inheritance is
called as Hybrid inheritance.

(e) Hybrid Inheritance

W

X Y

Z

W is a base class. The classes X and Y are derived
from W base class. Both X and Y inherits
properties of class W. Further, class Z is derived
from X and Y. X and Y have same copies of
members inherited from W. Here, ambiguity is
generated. Hence, virtual keyword is used to avoid
ambiguity. The virtual mechanism is explained
later.

(f) Multipath Inheritance

 Fig. 11.6 Types of inheritance

456 Inheritance

11.6 SINGLE INHERITANCE

When only one class is derived from a single base class, such a derivation of a class is known
as single inheritance; further, the derived class is not used as a base class. This type of
inheritance uses one base and one derived class.

The new class is termed derived class, and the old class is called base class, as
shown in Figure 11.7. A derived class inherits data member
variables and functions of the base class. However, construc-
tors and destructors of the base class are not inherited in the
derived class.

The newly created class receives entire characteristics
from its base class. In single inheritance, there are only one
base class and one derived class. The single inheritance is not
as complicated as compared with other types of inheritance.
Consider the following example:

In the above diagram, class ABC is a base class,
and class abc is a derived class. The arrow shows that class abc is derived from
class ABC. The program given below illustrates the single inheritance.

11.6 Write a program to show single inheritance between two classes.

#include<iostream.h>
#include<constream.h>

class ABC
{
 protected:
 char name[15];
 int age;
};
class abc : public ABC // public derivation
{
 float height;
 float weight;
 public:
 void getdata()
 {
 cout<<“\n Enter Name and Age:”;
 cin>>name>>age;
 cout<<“\n Enter Height and Weight:”;
 cin>>height >>weight;
 }
 void show()
 {

Class ABC

Class abc

Base
Class

Derived
class

 Fig. 11.7 Single inheritance

Multilevel Inheritance 457

 cout<<“\n Name:”<<name <<“\n Age:”<<age<<“ Years”;
 cout<<“\n Height:”<<height <<“ Feets”<<“\n Weight:”<<weight

<<“Kg.”;
 }
};
int main()
{
 clrscr();
 abc x;
 x.getdata(); // Reads data through keyboard.
 x.show(); // Displays data on the screen.
 return 0;
}

OUTPUT

Enter Name and Age : Santosh 24
Enter Height and Weight : 4.5 50
Name : Santosh
Age : 24 Years
Height : 4.5 Feets
Weight : 50 Kg.

Explanation: In the above program, the two classes ABC and abc are declared. The class
ABC has two protected data members, name and age. The class abc has two float data
members, height and weight with a two-member function getdata() and show(). The
class abc is derived from class ABC. The statement class abc: public ABC defines the
derived class abc. In function main(), x is an object of the derived class abc. The ob-
ject x invokes the member function getdata() and show(). This function reads and displays
data, respectively.

11.7 MULTILEVEL INHERITANCE

The procedure of deriving a class from a derived class is
called multilevel inheritance.

In the above figure, class A3 is derived from
class A2. The class A2 is derived from class A1.
The class A3 is a derived class. The class A2 is
a derived class as well as a base class for class A3.
The class A2 is called an intermediate base
class. The class A1 is a base class of classes A2
and A3. The series of classes A1, A2, and A3 is called an
inheritance pathway, as shown in Figure 11.8.

class A1

class A2

class A3

Base
class

Middle
base class

Derived
class

 Fig. 11.8 Multilevel inheritance

458 Inheritance

11.7 Write a program to create multilevel inheritance. Create classes A1, A2, and A3.

// Multilevel inheritance //
#include<iostream.h>
#include<constream.h>

class A1 // Base class
{
 protected:
 char name[15];
 int age;
};
class A2 : public A1 // Derivation first level
{
 protected:
 float height;
 float weight;
};
class A3 : public A2 // Derivation second level
{
 protected:
 char sex;
 public:
 void get() // Reads data
 {
 cout<<“Name:”; cin>>name;
 cout<<“Age:”; cin>>age;
 cout<<“Sex:”; cin>>sex;
 cout<<“Height:”; cin>>height;
 cout<<“Weight:”; cin>>weight;
 }
 void show() // Displays data
 {
 cout<<“\nName:” <<name;
 cout<<“\nAge:” <<age <<“ Years”;
 cout<<“\nSex:” <<sex;
 cout<<“\nHeight:” <<height <<“ Feets”;
 cout<<“\nWeight:” <<weight <<“ Kg.”;
 }
}; int main()
{
 clrscr();
 A3 x; // Object Declaration
 x.get(); // Reads data
 x.show(); // Displays data

Multiple Inheritance 459

 return 0;
}

OUTPUT

Name : Balaji
Age : 26
Sex : M
Height : 4
Weight : 49.5
Name : Balaji
Age : 26 Years
Sex : M
Height : 4 Feets
Weight : 49.5 Kg.

Explanation: In the above program, the classes A1, A2, and A3 are declared. The mem-
ber variables of all these classes are protected. The class A2 is derived from class A1. The
class A3 is derived from class A2. Thus, the class A2 acts as a derived class as well as
a base class. The function get() reads data through the keyboard, and the function show()
displays data on the screen. Both the functions are invoked using object x of class A3.

11.8 MULTIPLE INHERITANCE

Multiple inheritance is a latest addition to the
C++ language. When a class is derived from
more than one class, this type of inheritance is
called multiple inheritance. A class
can be derived by inheriting the properties
of more than one class. Properties of various
pre-defined classes are transferred to a single
derived class. Figure 11.9 shows multiple in-
heritance.

11.8 Write a program to derive a class from multiple base classes.

// Multiple Inheritance //

#include<iostream.h>
#include<constream.h>
class A {protected: int a;}; // class A declaration
class B {protected: int b;}; // class B declaration
class C {protected: int c;}; // class C declaration
class D {protected: int d;}; // class D declaration
// class E : public A, public B, public C, public D

class E : public A,B,C,D // Multiple derivation

class A class B class C

class E

class D

 Fig. 11.9 Multiple inheritance

460 Inheritance

{
 int e;
 public:
 void getdata()
 {
 cout<<“\n Enter values of a,b,c & d & e:”;
 cin>>a>>b>>c>>d>>e;
 }
 void showdata()
 {
 cout<<“\n a=”<<a <<“ b=”<<b <<“ c = ”<<c <<“ d= ”<<d <<“ e=”<<e;
 }
};
int main()
{
 clrscr();
 E x;
 x.getdata(); // Reads data
 x.showdata(); // Displays data
 return 0;
}

OUTPUT

Enter values of a,b,c & d & e : 1 2 4 8 16
a=1 b = 2 c = 4 d= 8 z= 16

Explanation: In the above program, classes A, B, C, D, and E are declared with a
one-integer member variable each. The class E has a two-member function getdata() and
showdata(), respectively. The getdata() is used to read integers through the keyboard,
and showdata() is used to display the contents on the screen. The class E is derived from
the classes A, B, C, and D. The classes A, B, C, and D act as a base class. The deri-
vation is carried out with the statement class E: public A, B, C, and D. The class
members of A are publicly derived, and the members of other classes are privately derived. To
derive all class members publicly, they would be as class Z: public A, public B,
public C, and public D. Remember, the meaning of both the statements is not same.
Most programmers refer to the second format, as it reduces the code. The output of the program
is as given above.

11.9 HIERARCHICAL INHERITANCE

We learned that in inheritance, one class could be inherited from one or more classes. In addi-
tion, new members are added to the derived class. The inheritance also supports the hierarchical
arrangement of a program. Several programs require the hierarchical arrangement of classes,
in which derived classes share the properties of the base class. A hierarchical unit exhibits top-

Hierarchical Inheritance 461

down style through splitting a compound class into several simple subclasses. Figure 1.16 in
Chapter 1 is a perfect example of the hierarchy of classes. The program based on it is illustrated
as follows:

11.9 Write a program to show hierarchical inheritance.

#include<constream.h>
#include<iostream.h>

class red
{
 public:
 red() {cout<<“Red”;};
};
class yellow
{
 public:
 yellow() {cout<<“Yellow”;}
};
class blue
{
 public:
 blue() {cout<<“Blue”;}
};
class orange : public red, public yellow
{
 public:
 orange() {cout<<“=Orange”;}
};
class green : public blue, public yellow
{
 public:
 green() {cout<<“=Green”;}
};
class violet : public red, public blue
{
 public:
 violet() {cout<<“=Violet”;}
};
class reddishbrown : public orange, public violet
{
 public:
 reddishbrown() {cout<<“=Reddishbrown”;}
};
class yellowishbrown : public green, public orange

462 Inheritance

{
 public:
 yellowishbrown() {cout<<“=Yellowishbrown”;}
};
class bluishbrown : public violet, public green
{
 public:
 bluishbrown() {cout<<“=Bluishbrown”;}
};
int main()
{
 clrscr();
 reddishbrown r;
 endl(cout);
 bluishbrown b;
 endl(cout);
 yellowishbrown y;
 endl(cout);
 return 0;
}

OUTPUT

Red Yellow = Orange Red Blue = Violet = Reddishbrown
Red Blue = Violet Blue Yellow = Green = Bluishbrown
Blue Yellow = Green Red Yellow = Orange = Yellowishbrown

Explanation: For each color, a separate class with constructors is declared. The classes red, blue,
and yellow are base classes. The class orange is derived from red and yellow. The class green is
derived from blue and yellow. The class violet is derived from red and blue.

The class reddishbrown is derived from orange and violet; the class yellowishbrown is de-
rived from green and orange; and, lastly, the class bluishbrown is derived from violet and green.

In function main(), objects of the classes reddishbrown, yellowishbrown, and bluishbrown are
declared. When the objects are declared, constructors are executed from the base to derived classes.
When executed, the constructor displays the class name (color name). The output shows the names of

different colors and resulting colors after their combination.

11.10 HYBRID INHERITANCE

A combination of one or more types of inheritance is known
as hybrid inheritance. Sometimes, it is essential to
derive a class using more types of inheritance. Figure 11.10
shows hybrid inheritance. In the below given diagram, the
class game is derived from two base classes, that is,
location and physique. The class physique is
also derived from the class player.

Location Player

Physique

Game

 Fig. 11.10 Hybrid inheritance

Hybrid Inheritance 463

11.10 Write a program to create a derived class from multiple base classes.

// Hybrid Inheritance //
#include<iostream.h>
#include<constream.h>

class PLAYER
{
 protected:
 char name[15];
 char gender;
 int age;
};
class PHYSIQUE : public PLAYER
{
 protected:
 float height;
 float weight;
};
class LOCATION
{
 protected:
 char city[10];
 char pin[7];
};
class GAME : public PHYSIQUE, LOCATION
{
 protected:
 char game[15];
 public:
 void getdata()
 {
 cout<<“Enter Following Information\n”;
 cout<<“Name:”; cin>>name;
 cout<<“Gender:”; cin>>gender;
 cout<<“Age:”; cin>>age;
 cout<<“Height:”; cin>>height;
 cout<<“Weight:”; cin>>weight;
 cout<<“City:”; cin>>city;
 cout<<“Pincode:”; cin>>pin;
 cout<<“Game:”; cin>>game;
 }
 void show()
 {
 cout<<“\n Entered Information”;
 cout<<“\nName:”; cout<<name;

464 Inheritance

 cout<<“\nGender:”; cout<<gender;
 cout<<“\nAge:”; cout<<age;
 cout<<“\nHeight:”; cout<<height;
 cout<<“\nWeight:”; cout<<weight;
 cout<<“\nCity:”; cout<<city;
 cout<<“\nPincode:”; cout<<pin;
 cout<<“\nGame:”; cout<<game;
 }
};
int main()
{
 clrscr();
 GAME G;
 G.getdata();
 G.show();
 return 0;
}

OUTPUT

Enter Following Information
Name : Mahesh
Gender : M
Age : 25
Height : 4.9
Weight : 55
City : Nanded
Pincode : 431603
Game : Cricket
Entered Information
Name : Mahesh
Gender : M
Age : 25
Height : 4.9
Weight : 55
City : Nanded
Pincode : 431603
Game : Cricket

Explanation: In the above program, player, physique, location, and game classes are
defined. All the data members of these four classes are protected. The class physique is de-
rived from the base class player. The class game is derived from physique and lo-
cation; that is, the derived class game has two base classes physique and location.
The location is a separate class and is not derived from any other class. The getdata() and

Multipath Inheritance 465

show() are functions of class game and reads and display data, respectively. In main(),
the object G of class game calls these functions one
by one to read and write the data. The output of the pro-
gram is shown at the end of the above program.

11.11 MULTIPATH INHERITANCE

When a class is derived from two or more classes, those
are derived from the same base class. Such a type of in-
heritance is known as multipath inheritance.
The multipath inheritance also consists of many types of
inheritance, such as multiple, multilevel, and hierarchi-
cal, as shown in Figure 11.11.

Consider the following example:
class A1
{
 protected:
 int a1;
};
class A2 : public A1
{
 protected:
 int a2;
};
class A3: public A1
{
 protected: int a3;
};

class A4: public A2,A3
{
int a4;
};

In the above example, classes A2 and A3 are derived from class A1; that is, their base class is
similar to class A1 (hierarchical inheritance). Both classes A2 and A3 can access the vari-
able a1 of class A1. The class A4 is derived from classes A2 and A3 by multiple inheritance.
If we try to access the variable a1 of class A1, the compiler shows error messages as given below.

(a) Error PRG58.CPP 30: Member is ambiguous: ‘A1::a1’ and ‘A1::a1’
(b) Error PRG58.CPP 37: Member is ambiguous: ‘A1::a1’ and ‘A1::a1’

In the above example, we can observe all types of inheritance, that is, multiple, multi-
level, and hierarchical. The derived class A4 has two sets of data members of
class A1 through the middle base classes A2 and A3. The class A1 is inherited twice.

class A1

class A2 class A3

class A4

 Fig. 11.11 Ambiguity in classes

466 Inheritance

11.12 VIRTUAL BASE CLASSES

To overcome the ambiguity occurring due to multipath inheritance, the C++ provides the key-
word virtual. The keyword virtual declares the specified classes virtual. The example
given below illustrates the virtual classes:

class A1
{
protected:
int a1;
};

class A2 : virtual public A1 // virtual class declaration
{
protected:
int a2;
};

class A3: virtual public A1 // virtual class declaration
{
protected:
int a3;
};
class A4: public A2,A3
{
int a4;
};

When classes are declared as virtual, the compiler takes essential caution to avoid the duplication
of member variables. Thus, we make a class virtual if it is a base class that has been used by more
than one derived class as their base class.

Consider another example that will give you a clear idea of virtual classes as well as the
necessary care to be taken while declaring virtual classes.

(a) A base class cannot be specified more than once in a derived class.

class A
{------
------};
class A1: A, A {...}; // Illegal Declaration

Here, class A is specified twice. Hence, it is an illegal declaration.
(b) A base class can be indirectly passed to the derived class more than once.

class L: public A {...}
class K: public A {...}
class J: public L, public K {...} // Legal declaration

Virtual Base Classes 467

In the above case (b), each object of class J will contain two sub-objects of class A
through classes L and K.

(c) The case (b) causes problems. To avoid duplication, we can add the keyword vir-
tual to a base class specifier.

For example,
class L: virtual public A {...}
class K: virtual public A {...}
class J: public K, public J {...}

The keyword virtual always appears before the class name. A is now a virtual base
class, and class J has only one sub-object of class A.

11.11 Write a program to declare virtual base classes. Derive a class using two virtual
classes.

// VIRTUAL BASE CLASSES //

#include<iostream.h>
#include<conio.h>

class A1
{
 protected:
 int a1;
};
class A2 : public virtual A1 // virtual declaration
{
 protected:
 int a2;
};
class A3 : public virtual A1 // virtual declaration
{
 protected:
 int a3;
};
class A4 : public A2,A3 // virtual declaration
{
 int a4;
 public:
 void get()
 {
 cout<<“Enter values for a1, a2,a3 and a4:”;
 cin>>a1>>a2>>a3>>a4;
 }
 void put()

468 Inheritance

 {
 cout<<“a1=”<<a1 <<“a2=”<<a2 <<“a3=”<<a3 <<“a4=”<<a4;
 }
};
int main()
{
 clrscr();
 A4 a;
 a.get(); // Reads data
 a.put(); // Displays data
 return 0;
}

OUTPUT

Enter values for a1, a2,a3 and a4 : 5 8 7 3
a1= 5 a2 = 8 a3 = 7 a4 = 3

Explanation: In the above program, the classes A1, A2, A3, and A4 are declared, and
each contains one protected member variable. The class A4 has two member functions
get() and put(). The get() function reads integers through the keyboard. The put() func-
tion displays the contents of the member variables on the screen. The classes A2 and A3 are
derived from class A1. While deriving these two classes, the class A1 is declared as virtual
as per the following statements:

class A2: public virtual A1 // derivation of class A2
class A3: public virtual A1 // derivation of class A3
class A4: public A2,A3 // derivation of class A4

The class A4 is derived from two classes A2 and A3 as per the statement (c). In func-
tion main(), the object a of class A4 invokes the member function get() and put().
The output of the program is as shown above.

11.13 CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

The constructors are used to initialize member variables of the object, and the destructor is used
to destroy the object. The compiler automatically invokes constructors and destructors. The de-
rived class does not require a constructor, if the base class contains a zero-argument constructor.
In case the base class has a parameterized constructor, then it is essential for the derived class to
have a constructor. The derived class constructor passes arguments to the base class constructor.
In inheritance, normally derived classes are used to declare objects. Hence, it is necessary to de-
fine constructors in the derived class. When an object of a derived class is declared, the construc-
tors of the base and derived classes are executed.

Constructors, Destructors, and Inheritance 469

11.13.1 Constructors and destructors in base and derived classes

In inheritance, destructors are executed in reverse order of constructor execution. The destruc-
tors are executed when an object goes out of scope. To know the execution of constructors and
destructors, let us study the following program:

11.12 Write a program to show sequence of execution of constructor and destructor in
multiple inheritance.

#include<iostream.h>
#include<constream.h>

class A // base class
{
 public:
 A()
 {
 cout<<“\n Zero-argument constructor of base class A”;}
 ~A()
 {
 cout<<“\n Destructor of the class A”;}
 };
class B // base class
{
 public:
 B()
 {
 cout<<“\n Zero-argument constructor of base class B”;}
 ~B() {cout<<“\n Destructor of the class B” ;}
 };
class C : public A, public B // Derivation of class
{
 public:
 C()
 {
 cout<<“\n Zero-argument constructor of derived class C”;
 }
 ~C() {cout<<“\n Destructor of the class C”;}
};
int main()
{
 clrscr();
 C objc; // Object declaration
 return 0;
}

470 Inheritance

OUTPUT

Zero-argument constructor of base class A
Zero-argument constructor of base class B
Zero-argument constructor of derived class C
Destructor of the class C
Destructor of the class B
Destructor of the class A

Explanation: In the above program, classes A and b are two classes. The class C is
derived from classes A and B. The constructors of the base classes are executed first fol-
lowed by the derived class. The destructor of the derived class is executed first followed by the
base class.

11.13 Write a program to use constructor and destructor in all classes (base and derived
class). Read and display the data.

#include<iostream.h>
#include<conio.h>

class A1
{
 protected:
 char name[15];
 int age;
 A1()
 {
 cout<<“Name:”; cin>>name;
 cout<<“Age:”; cin>>age;
 }
 ~A1()
 {
 cout<<“\nName:” <<name;
 cout<<“\nAge:” <<age;
 }
};
class A2 : public A1
{
 protected:
 float height;
 float weight;
 A2()
 {
 cout<<“Height:”; cin>>height;
 cout<<“Weight:”; cin>>weight;
 }

 ~ A2()
 {
 cout<<“\nHeight:”<<height;
 cout<<“\nWeight:”<<weight;
 }
};
class A3 : public A2
{
 char sex;
 public:
 A3()
 {
 cout<<“Sex:”; cin>>sex;
 }
 ~ A3()
 {
 cout<<“\nSex:” <<sex;
 }
};
int main()
{
 clrscr();
 A3 x;
 return 0;
}

OUTPUT

Name : Ajay
Age : 20
Height : 4.5
Weight : 40
Sex : M
Sex : M
Height : 4.5
Weight : 40
Name : Ajay
Age : 20

Explanation: In the above program, classes A1, A2, and A3 have their own constructors and
destructors. Here, the class A1 is the base class of A2, and A2 is the base class of A3 or, in
other words, A3 is a derived class of A2 and A2 is a derived class of A1.

Execution of constructors: The execution of constructors takes place from the
base class to the derived class. Thus, the sequence of the execution of constructors is A1(),
A2(), and A3().

Constructors, Destructors, and Inheritance 471

472 Inheritance

Execution of destructors: The execution of destructors is in opposite order as
compared with constructors, that is, from the derived class to the base class. Thus, the sequence
of the execution of destructors is A3(), A2(), and A1(). We learnt in Chapter 9 that the
object created last destroyed first. The same rule is applicable in the execution of constructors
and destructors in inheritance.

11.14 Write a program to create derived class from base classes. Use constructor and
destructors.

#include<iostream.h>
#include<conio.h>

class in_t
{
 protected:
 int i;
 public:
 in_t()
 {
 cout<<“\n Constructor in_t()”;
 i=1;
 }
 ~in_t()
 {
 cout<<“\n Destructor in_t()”;
 }
};
class floa_t
{
 protected:
 float f;
 public:
 floa_t()
 {
 cout<<“\n Constructor floa_t()”;
 f=1.5;
 }
 ~floa_t()
 {
 cout<<“\n Destructor floa_t()”;
 }
};
class cha_r : public in_t, floa_t
{
 protected:

 char c;
 public:
 void show()
 {
 cout<<“\n\ti=”<<i;
 cout<<“\n\tf=”<<f;
 cout<<“\n\tc=”<<c;
 }
 cha_r()
 {
 cout<<“\n Constructor cha_r()”;
 c=‘A’;
 }
 ~cha_r()
 {
 cout<<“\n Destructor cha_r()”;
 }
};
main()
{
 clrscr();
 cha_r a;
 a.show();
 return 0;
}

OUTPUT
Constructor in_t()
Constructor floa_t()
Constrcutor cha_r()
i= 1
f= 1.5
c= A
Destructor cha_r()
Destructor floa_t()
Destructor in_t()

Explanation: In the above program, three classes in_t, floa_t, and cha_r are de-
fined, and each contains one protected variable of type int, float, and char, respectively.
Each class contains a constructor and a destructor. In function main(), a is an object of class
derived class chr_r. The member function show() is invoked by the object a to display
the contents of member variables of all the classes. The constructors are executed from the base
to the derived class, and destructors are loaded from the derived to the base class. The following
program explains the execution of constructors and destructors in classes in greater detail:

Constructors, Destructors, and Inheritance 473

474 Inheritance

11.13.2 Base and derived classes without constructors

In the absence of constructors in base and derived classes, the implicit constructors and destruc-
tors are executed when objects are declared. Consider the following program:

11.15 Write a program to derive a class. The base and derive classes should be without
constructors.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 int x;
};
class II : public I
{
 int y;
 public:
 void set (int j, int k)
 {
 x=j;
 y=k;
 }
 void show()
 {
 cout<<“x=”<<x <<“y=”<<y;
 }
};
int main()
{
 clrscr();
 II i;
 i.set(4,5);
 i.show();
 return 0;
}

OUTPUT

X = 4 y = 5

Explanation: In the above program, class I is a base class, and class II is derived from I.
Both classes are without constructors. The class II has used member functions set() and
show()to assign and display data.

11.13.3 Base class with constructors and derived class without constructors

11.16 Write a program to declare a base class with constructor and a derived class with-
out constructor.

#include<iostream.h>
#include<constream.h>

class I
{
 public:
 int x;
 I()
 {
 cout<<“In base class constructor”;
 x=10;
 }
};
class II : public I
{
 int y;
 public:
};
int main()
{
 clrscr();
 II i;
 return 0;
}

OUTPUT

In base class constructor

Explanation: The base class I has a constructor, and the derived class II does not have a
constructor. The i is an object of the derived class II. When i is declared, the constructor of
the base class is executed. The derived class is without a constructor; hence, only the base class
constructor is executed.

11.13.4 Base class without constructors and derived class with constructors

11.17 Write a program to declare base class without constructor and derived class with-
out constructor.

#include<iostream.h>
#include<constream.h>

Constructors, Destructors, and Inheritance 475

476 Inheritance

class I
{
};
class II : public I
{
 public:
 II()
 {
 cout<<“\nIn derived class constructor\n”;
 }
};
int main()
{
 clrscr();
 II i; // Object declaration
 return 0;

}

OUTPUT

In derived class constructor

Explanation: In the above program the base class I has no constructor. The derived class
II has a constructor. The constructor is executed when the object of class II is declared.

11.13.5 Base and derived classes with constructors

11.18 Write a program to declare both base and derived classes with constructor.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 I()
 {
 cout<<“\n In base class constructor”;}
 };
 class II : public I
 {
 public:
 II() {cout<<“\n In derived class constructor\n”;}
};

int main()
{
 clrscr();
 II i;
 return 0;
}

OUTPUT

In base class constructor
In derived class constructor

Explanation: In the above program, both the base and derived classes contain constructors. When
the object of the derived class type is declared and constructors of both the classes are executed,
the constructor of the base class is executed first followed by the constructor of the derived class.

11.13.6 Base class with various constructors and derived class with one
constructor

11.19 Write a program to declare multiple constructors in base class and single construc-
tor in derived class.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 int x;
 I() {cout<<“\nZero argument base class constructor”;}
 I (int k)
 {
 cout<<“\nOne argument base class constructor”;
 }
};
class II : public I
{
 int y;
 public:
 II (int j)
 {
 cout<<“\nOne argument derived class constructor”;
 y=j;
 }
};

Constructors, Destructors, and Inheritance 477

478 Inheritance

int main()
{
 clrscr();
 II i(2);
 return 0;
}

OUTPUT

Zero argument base class constructor
One argument derived class constructor

Explanation: In the above program, the class I has a zero- and a one-argument constructor.
The class II has only a one-argument constructor. The object i is declared with an integer.
The zero-argument constructor of the base class and the one-argument constructor of the derived
class are executed.

11.13.7 Base and derived classes without default constructors

11.20 Write a program to declare base and derived class without default constructor.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 int x;
 I (int k)
 {
 x=k;
 cout<<“\nOne argument base class constructor”;}
};
class II : public I
{
 int y;
 public:
 II (int j):I(j)
 {
 cout<<“\nOne argument derived class constructor”;
 y=j;
 }
};
int main()
{

 clrscr();
 II i(2);
 return 0;
}

OUTPUT

One argument base class constructor
One argument derived class constructor

Explanation: In the above program, no default constructor is declared. In the class II one
argument, a constructor is declared, and the base class constructor is explicitly invoked. When
object i is declared, a one-argument constructor of both the classes is executed. In the absence of
an explicit call of the base class constructor, the compiler will display the error message “Can-
not find default constructor to initialize base class ‘I.’”

11.13.8 Constructors and multiple inheritance

11.21 Write a program to derive a class using multiple base classes. Observe the execution
of constructor when the object of derived class is declared.

#include<iostream.h>
#include<conio.h>
class I
{
 public:
 I()
{
 cout<<“\n Zero argument constructor of base class I”;
}
};
class II
{
 public:
 II() {cout<<“\n Zero argument constructor of base class II”;}
};
class III : public II,I
{
 public:
 III()
{
 cout<<“\n Zero argument constructor of base class III”;}
};
int main()
{

Constructors, Destructors, and Inheritance 479

480 Inheritance

 clrscr();
 III i;
 return 0;
}

OUTPUT

Zero argument constructor of base class II
Zero argument constructor of base class I
Zero argument constructor of base class III

Explanation: The classes I and II are the base classes of the derived class III. In func-
tion main(), i is an object of the derived class III. The execution of constructors depends
on the sequence given while deriving a class as per the following statement:

class III : public II,I

Here, the class II is the first base class, and class I is the second base class; the execution
sequence of the constructors will be as shown in the output.

11.13.9 Constructors in multiple inheritance with explicit calls

11.22 Write a program to derive a class using multiple base classes. Invoke the construc-
tors of base classes explicitly.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 I() {cout<<“\n Zero argument constructor of base class I”;}
};
class II
{
 public:
 II() {cout<<“\n Zero argument constructor of base class II”;}
};
class III : public II,I
{
 public:
 III():II(), I()
 {
 cout<<“\n Zero argument constructor of base class III”;
 }
};

int main()
{
 clrscr();
 III i;
 return 0;
}

OUTPUT

Zero argument constructor of base class II
Zero argument constructor of base class I
Zero argument constructor of base class III

Explanation: In this program in the class III, explicitly the constructor of both the base
classes II and I are invoked. The execution sequence can be observed in the output as shown
above. The execution sequence of the constructors depends on the sequence of the base class and
not on the explicit calls.

11.13.10 Multiple inheritance and virtual class

11.23 Write a program to derive a class using multiple base classes. Invoke the construc-
tors of base classes explicitly. Declare any one base class as virtual.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 I()
{
 cout<<“\n Zero argument constructor of base class I”;
}
};
class II
{
 public:
 II()
{ cout<<“\n Zero argument constructor of base class II”; }
};
class III : public II, virtual I
{
 public:
 III() : II(), I()
 {

Constructors, Destructors, and Inheritance 481

482 Inheritance

 cout<<“\n Zero argument constructor of base class III”;
 }
};
int main()
{
 clrscr();
 III i;
 return 0;
}

OUTPUT

Zero argument constructor of base class I
Zero argument constructor of base class II
Zero argument constructor of base class III

Explanation: In this program, the base class I is declared a virtual class while deriving the
class. The constructor of the virtual class is executed first. The execution of the constructor here
is not according to the sequence of the base class.

11.13.11 Execution of constructors in multilevel inheritance

11.24 Write a program to derive a classes using multilevel inheritance and observe the
execution sequence of constructors.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 I()
 {
 cout<<“\n Zero argument constructor of base class I”;
 }
};
class II : public I
{
 public:
 II()
 {
 cout<<“\n Zero argument constructor of base class II”;
 }
};
class III : public II
{

Object as a Class Member 483

 public:
 III() {cout<<“\n Zero argument constructor of base class III”;}
};
int main()
{
 clrscr();
 III ii;
 return 0;
}

OUTPUT

Zero argument constructor of base class I
Zero argument constructor of base class II
Zero argument constructor of base class III

Explanation: In this program, the class II is derived from the class I. The class III
is derived from the class II. The class II is a base as well as a derived class. In function
main(), ii is an object of the class III. The constructors are executed from base to derived
classes as shown in the output. Table 11.3 shows the order of execution of the constructors.

 Table 11.3 Execution sequences of constructors

Statements Sequence of execution Remarks

Class II : public I I() – Base class constructor
II() – Derived class constructor

Single inheritance

Class III: public I, II I() – Base class constructor
II() – Base class constructor
III() – Derived class constructor

Multiple inheritance

Class III: public I, virtual II II() – Virtual class constructor
I() – Base class constructor
III() – Derived class constructor

Multiple inheritance

class II : public I {};
class III: public II {};

I() – First base class constructor
II() – Second base class constructor
III() – Derived class constructor

Multilevel inheritance

11.14 OBJECT AS A CLASS MEMBER

Properties of one class can be used in another class using inheritance or using the object of a class
as a member in another class. Declaring the object as a class data member in another class is also
known as delegation. When a class has an object of another class as its member, such a
class is known as a container class.

In inheritance, the derived class can use members of the base class. Here, the derived class is
a kind of base class. The programmer can also add new members to the derived class.

In delegation, the class consists of objects from other classes. The composed class uses the
properties of other classes through their objects. This kind of a relationship is known as has-a-
relationship or containership.

484 Inheritance

class I
{
***** // members

}
class II
{
I j; // object of class I as member

}

11.25 Write a program use object of one class in another class as a member.

#include<iostream.h>
#include<conio.h>

class I
{
 public:
 int x;
 I()
 {
 cout<<“\n Constructor of class I”;
 x=20;
 }
};
class II
{
 public:
 int k;
 I y;
 II()
 {
 k=30;
 cout<<“\n Constructor of class II”;
 }
 void show()
 {
 cout<<“\n x=”<<y.x <<“ k=”<<k;
 }
};
int main()
{
 clrscr();

 ii.show();
 return 0;
}

OUTPUT

Constructor of class I
Constructor of class II
x= 20 k = 30

Explanation: In the above program, the class II contains integer k and object y of class
I. In function main(), object ii is an object of class II. The constructor of class I is
executed first, because when the compiler reaches the class II, it finds an object of class
I. We know that the object declaration always executes the constructor of that class. Thus, the
object of class I is declared, and the constructor of class I is executed. The constructor
of class II is executed, and the variable of class II is initialized. The member function
show() displays the contents of x and k. The contents of class I member is obtained from
object y. The dot (.) operator is used to access the elements of class I.

11.26 Write a program to access member variable of base class using object, scope access
operator and direct.

#include<iostream.h>
#include<conio.h>

class A1
{
 public:
 char name[15];
 int age;
};
class A2: public A1
{
 private:
 A1 a;
 float height;
 float weight;
 public:
 A2()
 {
 clrscr();
 cout<<“Access Using Scope Access operator\n”;
 cout<<“Name:”; cin>>A1::name;
 cout<<“Age:”; cin>>A1::age;
 cout<<“Access Using object of the class\n”;

Object as a Class Member 485

486 Inheritance

 cout<<“Name:”; cin>>a.name;
 cout<<“Age:”; cin>>a.age;
 cout<<“Access Using direct member variables\n”;
 cout<<“Name:”; cin>>name;
 cout<<“Age:”; cin>>age;
 cout<<“Height:”; cin>>height;
 cout<<“Weight:”; cin>>weight;
 }
 ~A2()
 {
 cout<<“\nDisplay using Scope Access operator\n”;
 cout<<“\nName:” <<A1::name;
 cout<<“\nAge:” <<A1::age;
 cout<<“\nDisplay Using object of the class\n”;
 cout<<“\nName:” <<a.name;
 cout<<“\nAge:” <<a.age;
 cout<<“\nAccess Using direct member variables\n”;
 cout<<“\nName:” <<name;
 cout<<“\nAge:” <<age;
 cout<<“\nHeight:” <<height;
 cout<<“\nWeight:” <<weight;
 }
};
int main()
{
 A2 x;
 return 0;
}

OUTPUT

Name : Ajay
Age : 21
Access Using object of the class
Name : Amit
Age : 20
Access Using direct member variables
Name : Arun
Age : 19
Height : 5.5
Weight: 31
Display using Scope Access operator
Name : Arun
Age : 19
Display Using object of the class

Name : Amit
Age : 20
Access Using direct member variables
Name : Arun
Age : 19
Height: 5.5
Weight: 31

Explanation: In the above program, A1 and A2 are two classes. The class A2 is derived
from the class A1. The class A1 has two public member variables. The class A2 has
three private members; one of the members is an object of class A1, that is, object a. The
object a holds its separate set of member variables of class A1. There are three ways of
accessing the member variables of base class A1. Table 11.4 describes the status of access of
the member variables of class A1 and the derived class A2 when we use access specifiers
such as private, public, and protected.

 Table 11.4 Access Specifiers

Access (using) Public Private Protected

Scope Access :: operator Possible Not Possible Possible

Object Possible Not Possible Not Possible

Direct Possible Not Possible Possible

(1) The first way is to use scope access operators as per the following statements:

cin>>A1::name;
cin>>A1::age;

In the above statements, A1 is a class name, and name and age are member variables
of class A1. When an access specifier is public or protected, the above statements
are valid.

(2) The second method is to use an object of the base class, as per the following statements:

cin>>a.name;
cin>>a.age;

In the above statement, the member variables of class A1 are accessed using an
object of the same class, who is the member of the derived class. This is possible only
when the member variables of class A1 are public and is not possible if the member
variables of class A1 are protected or private.

(3) The third method directly uses the member variables. Direct access is possible when the
access specifier is public or protected, as per the following statements:

cin>>name;
cin>>age;

Object as a Class Member 487

488 Inheritance

11.27 Write a program to derive a class from two base classes. Use objects of both the
classes as member variables for derived class. Initialize and display the contents of classes
using constructor and destructor.

#include<iostream.h>
#include<conio.h>

class A
{
 public :
 int a1;
};
class B
{
 public:
 int b1;
};
class AB
{
 public:
 A a;
 B b;
 public :
 AB()
 {
 a.a1=65;
 b.b1=66;
 cout<<“a1=”<<a.a1 <<“b1=”<<b.b1;
 }
 ~AB(){};
};
int main()
{
 clrscr();
 AB ab;
 return 0;
}

OUTPUT

a1=65 b1=66

Explanation: In the above program, classes A and B are declared with one integer each. The
class AB is declared, which contains objects of classes A and B as member variables.
The constructor of class AB initializes the member variables of classes A and B. The
constructor also displays contents on the screen. Finally, the destructor destroys the object.

Qualifier Classes and Inheritance 489

11.15 ABSTRACT CLASSES

When a class is not used for creating objects, it is called an abstract class. The abstract class
can act as a base class only. It is a layout abstraction in a program, and it allows a base on which
several levels of inheritance can be created. The base classes act as a foundation of the hierarchi-
cal class. An abstract class is developed only to act as a base class and to inherit, and no objects of
this class are declared. An abstract class gives a skeleton or a structure; using this, other classes are
shaped. The abstract class is central and generally present at the starting of the hierarchy. The hi-
erarchy of classes means a chain or group of classes that are involved with one another. In
the last program, class A is an abstract class, because no instance (object) of class A is declared.

11.16 QUALIFIER CLASSES AND INHERITANCE

The following program explains the behavior of qualifier classes and the classes declared within
them with inheritance.

11.28 Write a program to create derived class from the qualifier class.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 int x;
 A() {}
 class B
 {
 public:
 int y;
 B() {}
 };
}; class C : public A,A::B
{
 public:
 int z;
 void show()
 {
 cout<<endl<<“x=”<<x <<“y=”<<y<<“z=”<<z;
 }
 C (int j,int k, int l)
 {
 x=j;
 y=k;
 z=l;
 }
};

490 Inheritance

int main()
{
 clrscr();
 C c(4,7,1);
 c.show();
 return 0;
}

OUTPUT

x = 4 y =7 z = 1

Explanation: In the above program, the class B is defined inside the class A. The class
A is a qualifier class of class B. The class C is inherited from the classes A and B. In
the statement class C: public A, A::B, class C is inherited from A and B. To ac-
cess the class B, it is preceded by the qualifier class A and the scope access operator. If we
mention only class A, the class B will not be considered for inheritance. Similarly, if we
mention only class B, the qualifier class A will not be considered for inheritance.

11.17 CONSTRUCTORS IN DERIVED CLASS

When a class is declared, a constructor is also declared inside the class in order to initialize data
members. It is not possible to use a single constructor for more classes. Every class has its own
constructor and destructor with a similar name as the class. When a class is derived from another
class, it is possible to define a constructor in the derived class, and the data members of both base
and derive classes can be initialized. It is not essential to declare a constructor in a base class.
Thus, the constructor of the derived class works for its base class; such constructors are called
constructors in the derived class or common constructors.

11.29 Write a program to initialize member variables of both base and derived class using
a constructor of derived class.

#include<iostream.h>
#include<conio.h>

class A
{
 protected:
 int x;
 int y;
};
class B : private A
{
 public:
 int z;
 B() {x=1,y=2,z=3;

Pointers and Inheritance 491

 cout<<“x=”<<x <<“y=”<<y <<“z=”<<z;}
};
int main()
{
 clrscr();
 B b;
 return 0;
}

OUTPUT

x= 1 y =2 z=3

Explanation: In the above program, the classes A B are declared. The class B is derived
from the class A. The constructor of the class B initializes member variables of both
classes. Hence, it acts as a common constructor of both base and derived classes.

11.18 POINTERS AND INHERITANCE

The private and public member variables of a class are stored in successive memory locations. A
pointer to a public member variable gives us access to private member variables.

The same is true for the derived class. The member variables of the base and derived classes
are also stored in successive memory locations. The following program explains the mechanics
of accessing private data members of the base class using the address of public member variables
of the derived class using pointers. Here, no member functions are used.

11.30 Write a program to access private member variables of base class using pointers

#include<iostream.h>
#include<conio.h>

class A
{
 private:
 int x;
 int y;
 public:
 A() {
 x=1;
 y=2;
}
};
class B : private A
{
 public:

492 Inheritance

 int z;
 B() {z=3;}
};
int main()
{
 clrscr();
 B b; // object declaration
 int *p; // pointer declaration
 p=&b.z; // address of piblic member variabe is stored in

pointer
 cout<<endl<<“ Address of z:”<<(unsigned)p <<“”<<“Value of

z:”<<*p;
 p--; // points to previous location
 cout<<endl<<“ Address of y:”<<(unsigned)p <<“”<<“Value of

y:”<<*p;
 p--;
 cout<<endl<<“ Address of x:”<<(unsigned)p <<“”<<“Value of

x:”<<*p;
 return 0;
}

OUTPUT

Address of z : 65524 Value of z :3
Address of y : 65522 Value of y :2
Address of x : 65520 Value of x :1

Explanation: In the above program, class A contains two private member variables x and y.
The constructor initializes the member variables. The class B is derived from the class A.
The class B has one public member variable. In function main(), b is an object of class B.
The pointer p is an integer pointer. The address of the member variable z of the derived class
B is assigned to the pointer p. By applying a decrease operation, we get the previous memory
locations where the member variables of the base class are stored. The values of all member vari-
ables are displayed along with their addresses.

11.19 OVERLOADING MEMBER FUNCTION

The derived class can have a similar function name as the base class member function. An object
of the derived class invokes the member function of the derived class even if a similar function
is preset in the base class.

11.31 Write a program to overload member function in base and derived class.

#include<iostream.h>
#include<constream.h>

Overloading Member Function 493

class B
{
 public:
 void show()
 {
 cout<<“\n In base class function”;
 }
};
class D: public B
{
 public:
 void show()
 {
 cout<<“\n In derived class function”;
 }
};
int main()
{
 clrscr();
 B b; // b is object of base class
 D d; // d is object of derived class
 b.show(); // Invokes Base class function
 d.show(); // Invokes Derived class function
 d.B::show(); // Invokes Base class function
 return 0;
}

OUTPUT

In base class function
In derived class function
In base class function

Explanation: In this program, the class D is derived from the class B. Both the classes
have a similar function show() as a member function. In function main(), the objects of both
classes B and D are declared. The object b invokes the member function show(). The
object b is the object of the base class; hence, it invokes the member function of show() of
the base class. In addition, the object of the base class cannot invoke the member function of the
derived class, because the base class does not have information on the classes derived under it.

The object d of the derived class invokes the function show(). When functions with a
similar name and argument list are present in both the base and derived classes, the object
of the derived class gives first priority to the function of its own class. Thus, the statement
d.show() invokes the function of the derived class. To invoke the function of the base
class with the object of the derived class, the class name and scope access operator precede

494 Inheritance

the matching function name. From the above program, it is also clear that we can declare the
objects of both base and derived classes. The objects of both base and derived classes are in-
dependent of one another.

11.20 ADVANTAGES OF INHERITANCE

(1) The most frequent use of inheritance is for deriving classes using existing classes, which
provides reusability. The existing classes remain unchanged. By reusability, the devel-
opment time of software is reduced.

(2) The derived classes extend the properties of base classes to generate more dominant
objects.

(3) The same base classes can be used by a number of derived classes in class hierarchy.
(4) When a class is derived from more than one class, all the derived classes have similar

properties to those of base classes.

11.21 DISADVANTAGES OF INHERITANCE

(1) Though object-oriented programming is frequently propagandized as an answer for
complicated projects, inappropriate use of inheritance makes programs more compli-
cated.

(2) Invoking member functions using objects creates more compiler overheads.
(3) In class hierarchy, various data elements remain unused, and the memory allocated to

them is not utilized.

11.22 MORE PROGRAMS

11.32 Write a program to explain execution of constructor and destructor in single in-
heritance.

#include<iostream.h>
#include<conio.h>
// Constructor, Destructor and Single Inheritance //

class Father
{
 protected:
 char name[20];
 public:
 Father()
 {cout<<“\n Base Class Constructor.”;
 cout<<“\n Enter Father Name:”;
 cin>>name;
 }
 ~Father()
 {

More Programs 495

 cout<<“\n Base Class Destructor.\n”;
 }
};
class Child: private Father
{
 char cname[15];
 public:
 Child()
 {
 cout<<“\n Derived Class Constructor.”;
 cout<<“\n Enter Child Name:”;
 cin>>cname;
 }
 ~ Child()
 {
 cout<<“\n Derived Class Destructor\n”;
 cout<<“”<<cname <<“”<<name;
 }
};
int main()
{
 clrscr();
 Child C;
 return 0;
}

OUTPUT

Base Class Constructor.
Enter Father Name : Manoj
Derived Class Constructor.
Enter Child Name : Sanjay
Derived Class Destructor
Sanjay Manoj
Base Class Destructor.

Explanation: In the above program, two classes, class father and class child, are de-
clared with one character data member each. Both the classes contain a constructor and a destruc-
tor. The class child is derived from the class father. Hence, the class father is
the base class, and the class child is the derived class.

In function main(), C is an object of the derived class child. The constructor of the
base class is executed first followed by the constructor of the derived class. However, the destruc-
tor of the derived class is executed first. After this, the destructor of the base class is executed.

496 Inheritance

Here, the destructor of the derived class prints the contents of both the data members. The base
class has no knowledge of the derived class. Hence, it cannot access the data members of the
derived class.

11.33 Write a program to explain execution of constructor and destructor in multilevel
inheritance.

#include<iostream.h>
#include<conio.h>
// Constructor, Destructor and Multilevel Inheritance //

class Grandfather
{
 protected:
 char gname[20];
 public:
 Grandfather()
 {
 cout<<“\n Constructor of class Grandfather\n”;
 cout<<“\n Enter Grandfather Name:”;
 cin>>gname;
 }
 ~Grandfather()
 {
 cout<<“\n Destructor of class Grandfather\n”;
 }
};
class Father : public Grandfather
{
 protected:
 char name[20];
 public:
 Father()
 {cout<<“\n Constructor of class Father\n”;
 cout<<“\n Enter Father Name:”;
 cin>>name;
 }
 ~Father()
 {
 cout<<“\n Destructor of class Father\n”;
 }
};
class Child: private Father
{
 char cname[15];
 public:

More Programs 497

 Child()
 {
 cout<<“\n Constructor of class Child\n”;
 cout<<“\n Enter Child Name:”;
 cin>>cname;
 }
 ~ Child()
 {
 cout<<“\n Destructor of class Child\n”;
 cout<<“\n Grand Father:”<<gname;
 cout<<“\n Father:”<<name;
 cout<<“\n Child:”<<cname;
 }
};
int main()
{
 clrscr();
 Child C;
 return 0;
}

OUTPUT

Constructor of class Grandfather
Enter Grandfather Name : x
constructor of class Father
Enter Father Name : y
Constructor of class Child
Enter Child Name : z
Destructor of class Child
Grand Father : x
Father : y
Child : z
Destructor of class Father
Destructor of class Grandfather

Explanation: In the above program, three classes are declared. They are grandfather, fa-
ther, and child. Each one of them has a character data-type member. Each class contains a
pair of a constructor and a destructor. The class father is derived from the class grand-
father. Similarly, the class child is derived from the class father. The class
grandfather is a base class of the class father. The class father is a base class
of the class child. The class child is derived from the class father. The class
father is an intermediate class that acts as a base class as well as a derived class. Construc-
tors are executed from the base class to the derived class, and destructors are executed from the
derived class to the base class.

498 Inheritance

 11.34 Write a program to explain multilevel inheritance with member functions.

#include<iostream.h>
#include<conio.h>
// Multilevel Inheritance and member functions//

class Grandfather
{
 private:
 char gname[20];
 public:
 void getg()
 {
 cout<<“\n Enter Grandfather Name:”;
 cin>>gname;
 }
 void showg()
 {cout<<“\n Grandfather Name:”<<gname;}
};
class Father : public Grandfather
{
 private:
 char name[20];
 public:
 void getf()
 {
 cout<<“\n Enter Father Name:”;
 cin>>name;
 }
 void showf()
 {cout<<“\n Father Name:” <<name;}
};
class Child : public Father
{
 private:
 char cname[15];
 public:
 void getc()
 {
 getg();
 getf();
 cout<<“\n Enter Child Name:”;
 cin>>cname;
 }

More Programs 499

 void showc()
 {
 showg();
 showf();
 cout<<“\n Child:”<<cname;
 }
};
int main()
{clrscr();
 Child C;
 C.getc();
 C.showc();
 return 0;
}

OUTPUT

Enter Grandfather Name : XXX
Enter Father Name : YYY
Enter Child Name : ZZZ
Grandfather Name : XXX
Father Name : YYY
Child : ZZZ

Explanation: The above program is similar to the previous one. Instead of constructor and de-
structor members, functions are used.

11.35 Write a program to explain how constructor and destructor are executed in mul-
tiple inheritance.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 A() {cout<<“\n Constructor of class A”;}
 ~A() {cout<<“\n Destructor of class A”;}
};
class B
{
 public:
 B() {cout<<“\n Constructor of class B”;}
 ~B() {cout<<“\n Destructor of class B”;}
};

500 Inheritance

class C
{
 public:
 C() {cout<<“\n Constructor of class C”;}
 ~C() {cout<<“\n Destructor of class C”;}
};
class D : public A,B,C
{
 public:
 D() {cout<<“\n Constructor of class D”;}
 ~D() {cout<<“\n\n Destructor of class D”;}
};
int main()
{
 clrscr();
 D x;
 return 0;
}

OUTPUT

Constructor of class A
Constructor of class B
Constructor of class C
Constructor of class D
Destructor of class D
Destructor of class C
Destructor of class B
Destructor of class A

Explanation: In the above program the class D is a derived class from base classes A,
B, and C. Each class contains a constructor and a destructor. This type of inheritance is called
multiple inheritance. The classes A, B, and C are base classes. The execution of
construction depends on the order of the base class given while deriving the class. Consider the
statement class D: public A, B, C. Here, the execution of constructors starts from base
class A to base class C followed by derived class D, If we change the order similar to
the statement class D: public C, B, A, the execution of construction starts from class
C to class A followed by derived class D.

11.36 Write a program to explain execution of constructor and destructor in hybrid in-
heritance.

#include<iostream.h>
#include<conio.h>
// Constructors and Hybrid Inheritance //

More Programs 501

class A
{
 public:
 A() {cout<<“\n Constructor of class A”;}
 ~A() {cout<<“\n Destructor of class A”;}
};
class B : public A
{
 public:
 B() {cout<<“\n Constructor of class B”;}
 ~B() {cout<<“\n Destructor of class B”;}
};
class C
{
 public:
 C() {cout<<“\n Constructor of class C”;}
 ~C() {cout<<“\n Destructor of class C”;}
};
class D : public B,C
{
 public:
 D() {cout<<“\n Constructor of class D”;}
 ~D() {cout<<“\n\n Destructor of class D”;}
};
int main()
{
 clrscr();
 D x;
 return 0;
}

OUTPUT

Constructor of class C
Constructor of class A
Constructor of class B
Constructor of class D
Destructor of class D
Destructor of class B
Destructor of class A
Destructor of class C

Explanation: The above program is similar to the previous one. The class B is derived from
class A. The class D is derived from classes B and C. This type of inheritance is called
hybrid inheritance. The execution of constructors is similar to multiple inheritance.

502 Inheritance

11.37 Write a program to demonstrate single inheritance.

#include<iostream.h>
#include<conio.h>

class A
{
 protected:
 int c;
 public:
 A() {c=0;}
 A (int j) {c=j;}
 void show() {cout<<endl<<“c=”<<c;}
 void operator ++() {c++;}
};
class B : public A
{
 public:
 void operator --() {c--;}
};
int main()
{
 clrscr();
 B a;
 ++a;
 a.show();
 --a;
 a.show();
 return 0;
}
OUTPUT
c = 1
c = 0

Explanation: In the above program, the class B is inherited from class A, and hence, the
object of the derived class B can access the member functions of the base class. When the ob-
ject is created, the constructor of the base class is executed. The derived class has no constructor.
The member of the derived class can access the members of the base class if the access specifier
is public or protected. A protected member can be accessed by the member function of a similar
class or any class derived from it.

11.38 Write a program to access function derived from private inheritance.

#include<iostream.h>
#include<conio.h>

class B

More Programs 503

{
 public:
 void one() {cout<<endl<<“one”;}
 void two() {cout<<endl <<“two”;}
};
class D : private B
{
 public:
 B::one;
};
int main()
{
 clrscr();
 D d;
 d.one();
 //d.two(); // not accessible
 return 0;
}

Explanation: In the above program, the class B has two member functions, one() and
two(). The class D is derived using private inheritance. The public section of the derived
class contains declaration B::one that allows the object of the derived class to access the function.
The function one() is accessible, and the function two() is not accessible.

11.39 Write a program to derive classes using multilevel inheritance. Create a common
constructor in the lowermost derived class.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 int x;
 A() {}
};
class B : public A
{
 public:
 int y;
 B() {}
};
class C : public B
{
 public:
 int z;

504 Inheritance

 void show()
 {
 cout<<endl<<“x=”<<x <<“y=”<<y<<“z=”<<z;
 }
 C (int j,int k, int l)
 {
 x=j;
 y=k;
 z=l;
 }
};
int main()
{
 clrscr();
 C c(4,7,1);
 c.show();
 return 0;
}

OUTPUT

x = 4 y =7 z = 1

Explanation: In the above program, classes A, B, and C are declared. The class B is
inherited from the class A, and the class C is inherited from the class B. The classes
A and B have a zero-argument constructor. The class C has three argument constructors and
an initialized element of base classes A and B. Thus, the constructor defined in class C
acts as a common constructor between these three classes.

In function main(), the variable c is an object of class C, and three integers are passed
to it. The function show() is used to display the contents of the variables.

11.40 Write a program to explicitly call constructor of base classes in multiple inheri-
tances.

#include<constream.h>
#include<iostream.h>

struct X
{
 X (int a) // constructor
 {
 cout<<a;
 }
};
struct Y // constructor

{
 Y (int b) {cout<<b;}
};
struct Z : public X, public Y
{
 Z (int p, int q,int r): X(p), Y(q) // constructor
 {
 cout<<r;
 }
};
int main()
{
 clrscr();
 Z z(1,2,3); // Object of derived class
 return 0;
}

OUTPUT

123

Explanation: The constructors of the base class are executed first followed by the derived class
constructor. When a class is derived using multiple inheritance, the execution of base class con-
structors depends on the sequence of the base class given in the derivation statement. The state-
ment is as follows:

struct Z : public X, public Y

Here, both X and Y are base classes, and the constructor of class X is executed first followed by
the constructor of class Y.

Both base and derived classes contain a one-argument constructor. When an object is de-
clared, three values are passed to it. In the derived class constructor, constructors of both the
classes are explicitly invoked with one argument. Thus, arguments of base as well as derived
classes are initialized using constructors.

SUMMARY

(1) Inheritance is one of the most useful and
essential characteristics of an object-
oriented programming language. Inheri-
tance allows the programmer to utilize
the previously defined classes with newer
ones. The new class is assembled using
the properties of the existing classes.

(2) The procedure of developing a new class
from an old class is termed inheritance.

(3) The new class is termed a derived
class, and the old class is called a
base class.

(4) Single inheritance: When a
new class is derived from only one base

Summary 505

506 Inheritance

(1) What do you mean by inheritance?
(2) What do you mean by base class and de-

rived class?
(3) Describe the various types of inheritance

with examples.
(4) What is the difference between single

and multilevel inheritance?
(5) What is the difference between multilev-

el and hybrid inheritance?

(6) How are constructors and destructors ex-
ecuted in multilevel inheritance?

(7) What is the use of the keyword vir-
tual?

(8) What do you mean by virtual
classes?

(9) What are abstract classes?
(10) Describe the use of public, private, and

protected access specifiers.

class, such a type of inheritance is called
a single inheritance.

(5) Multilevel inheritance: The
procedure of deriving a class from a de-
rived class is called multilevel in-
heritance.

(6) Multiple inheritance or hier-
archical inheritance: When a
class is derived from more than one class,
this type of inheritance is called multi-
ple inheritance or hierarchi-
cal inheritance.

(7) Hybrid inheritance: When a
class is derived from another one or more
base classes, this process is termed hy-
brid inheritance.

(8) When classes are declared virtual, the
compiler takes essential caution to avoid
duplication of member variables. Thus,
we make a class virtual if it is a base class
that has been used by more than one de-
rived class as their base class.

(9) Execution of constructors in
inheritance: The execution of con-
structors takes place from base class to
derived class.

(10) Execution of destructors in
inheritance: The execution of
destructors is in opposite order as com-
pared with constructors, that is, from de-
rived class to base class.

(11) Public: If member variables of a class
are public, any function can access them.

In C++, the members of a struct and
union are by default public.

(12) Private: If member variables of a
class are private, member functions and
friends can only access them, declared in
a similar class. The members of a class
are by default private.

(13) Protected: If member variables of
a class are protected, its scope is simi-
lar to that for private functions. In addi-
tion, member functions and friends can
use the member classes derived from the
declared class, but only in objects of the
derived type.

(14) When a class is not used for creating ob-
jects, it is called an abstract class.

(15) The constructor of the derived class
works for its base class; such constructors
are called common constructors.

(16) The derived class can have a similar
function name as the base class member
function. An object of the derived class
invokes a member function of the derived
class even if a similar function is preset
in the base class.

(17) Properties of one class can be used in an-
other class using inheritance or using the
object of a class as a member in another
class. Declaring the object as a class data
member in another class is also known as
delegation. When a class has an ob-
ject of another class as its member, such a
class is known as a container class.

EXERCISES

(A) Answer the following questions

(11) What are nested classes?
(12) Explain the mechanism for accessing

private members of the base class using
pointers.

(13) What is the difference between private
and protected access specifiers?

(14) Do you think that accessing private data
using pointers is a limitation of encapsu-
lation?

(15) How do structures and classes provide
inheritance differently?

(16) What is the difference between private
and protected inheritance?

(17) What are the advantages and disadvan-
tages of inheritance?

(18) What do you mean by object delegation?
(19) What is a common constructor?
(20) Explain hierarchical inheritance.

(1) What will be the output of the following
program?

class A
{public:
int a;
A() {a=10;}
};
class B : public A
{public:
int b;
B() {b=20;}
~ B() {cout<<“\n a=”<<a <<“
b=”<<b;}
};
void main() {B();}

(a) a = 10 b = 20
(b) a = 20 b = 10
(c) a = 30 b = 30
(d) none of the above

(2) Identify the access specifier
(a) public
(b) virtual
(c) void
(d) _class

(3) An object a cannot access the variable

class A
{public:
int a;
private:
int b;
public:
A() {a=10,b=20;}
};
void main() {A a;}

(a) b
(b) a

(c) both (a) and (b)
(d) both a and b are accessible

(4) Private data members of a class can be
accessed by
(a) public member function of a simi-

lar class
(b) directly by the object
(c) private member function of a simi-

lar class
(d) none of the above

(5) In multilevel inheritance, the middle
class acts as
(a) base class as well as derived class
(b) only base class
(c) only derived class
(d) none of the above

(6) In single inheritance, constructors are ex-
ecuted from
(a) base class to derived class
(b) derived class to base class
(c) both (a) and (b)
(d) none of the above

(7) In the following program, the object of
which class can access all member vari-
ables?

struct A {int x;};
struct B: A {int y;};
struct C: B {int z;};
struct D: C {int k;};

(a) Object of class D
(b) Object of class B
(c) Object of class C
(d) Object of class A

(8) The protected keyword allows
(a) derived class to access base class

members directly

(B) Answer the following by selecting the appropriate option

Exercises 507

508 Inheritance

(1) Write a program to define three classes A,
B, and C. Each class contains private data
members. Derive class C from classes A
and B by applying multiple inheritance.
Read and display the data using a con-
structor and a destructor.

(2) Write a program to declare classes X, Y,
and Z. Each class contains one character
array as a data member. Apply multiple
inheritance. Concatenate a string of class-
es X and Y and store it the class Z. Show

all the three strings. Use a constructor and
a destructor.

(3) Write a program to calculate the salary
of a medical representative based on the
sales. Bonus and incentive to be offered
to him will be based on total sales. If
the sale exceeds Rs.150000/- follow the
particulars of Column (1); otherwise,
follow those given in Column (2). Ap-
ply a conditional constructor and de-
structor.

(4) Write a program to calculate the energy
bill. Read the starting and ending meter
reading. The charges are as follows:

No. of Units
Consumed

Rates in (Rs.)

200 – 500 4.50

100 – 200 3.50

Less than 100 2.50

(5) The price of a trophy depends on the type
of material from which it is created. The
following table gives the list of prizes.
Write a program to input the serial num-
ber of the material. In addition, display
the material and its prize.

Serial no. Material Prize of trophy

01 Gold Rs. 20000/-

02 Silver Rs. 9500/-

(b) prevents direct access of public
members

(c) allows objects to access private
members

(d) all of the above
(9) The class is declared virtual when

(a) two or more classes involved in
inheritance have a common base
class

(b) more than one class is derived
(c) we want to prevent a base class

from inheritance
(d) one of the above

(10) The ambiguity of members normally oc-
curs in
(a) single inheritance
(b) multilevel inheritance

(c) multiple inheritance
(d) none of the above

(11) In the following program, class A is an

class A {int x;};
class B: A {int y;};
void main() {B b;}

(a) abstract class
(b) virtual class
(c) derived class
(d) none of the above

(12) Class A is a base class of class B. The
relationship between them
(a) is a kind of a relationship
(b) has a relationship
(c) is a relationship
(d) none of the above

(C) Attempt the following programs

Column 1 Column 2

Basic = Rs. 3000.
Hra = 20% of basic.
Da = 110% of basic.
Conveyance = Rs.500.
Incentive = 10% of sales.
Bonus = Rs. 1500.

Basic = Rs. 3000.
Hra = 20% of basic.
Da = 110% of basic.
Conveyance = Rs.500.
Incentive = 5% of sales.
Bonus = Rs. 1000.

03 Steel Rs. 5000/-

04 Bronze Rs. 500/-

05 Pewter Rs. 750/-

(6) A newspaper agent pays two variant rates
for the delivery of newspapers. A delivery
boy can earn Rs.2/- on a morning delivery
but only Rs. 1.50/- on an evening deliv-
ery. Boys are salaried either for a morn-
ing delivery or for an evening paper round
but not both morning and evening paper
rounds. Write a program to read (input)
the code for rounds (0 for morning and
1 for evening round) and the number of
total paper rounds in one week done by a
boy; compute his earnings and display it.

(7) The postage for ordinary post is Rs. 2/- for
the first 15 grams and Rs. 1 for each ad-
ditional 10 grams. Write a program to cal-
culate the charge of the postage for a post
weighing N grams. Read the weights of
N packets and display the total amount of
postage.

(8) Declare a class of vehicle. Derived class-
es are two-wheelers, three-wheelers, and
four-wheelers. Display the properties of
each type of vehicle using the member
function of classes.

(9) Create classes’ country, state, city, and
village. Arrange these classes in a hierar-
chical manner.

(D) Find bugs in the following programs
(1)

struct A {int x;};
struct B {int y;};
class C: public A, B {};
void main()
{
C c;
c.x=20;
c.y=30;
}

(2)

struct A {int x;};
struct B: A {int y;};
struct C: A {int z;};
struct D: B,C {int k;};
void main()
{
 D d;
d.x=20;
}

(3)

struct A
{int x;
struct B {int y;};};
struct C : A::B,A {};
void main()
{C c;
c.x=40;
c.y=20;
}

(4)

struct A {int x;};
class B : A
{A a;};
void main()
{
B b; b.x=20;
b.a.x=30;
}

Exercises 509

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology
	1.5 Disadvantage of Conventional Programming
	1.6 Programming Paradigms
	(1) Monolithic Programming
	(2) Procedural/Structured Programming

	1.7 Preface to Object Oriented Programming
	1.8 Key Concepts of Object Oriented Programming
	(1) Objects
	(2) Classes
	(3) Method
	(4) Data Abstraction
	(5) Encapsulation
	(6) Inheritance
	(7) Polymorphism
	(8) Dynamic Binding
	(9) Message passing
	(10) Reusability
	(11) Delegation
	(12) Genericity

	1.9 Advantages of OOP
	1.10 Object Oriented Languages
	SMALTALK
	CHARM++
	JAVA

	1.11 Usage of OOP
	1.12 Usage of C++
	Summary
	Exercises

	Chapter 2 : Basics of C++
	2.1 Introduction
	2.2 Steps to Create and Execute a C++ Program
	2.3 Flowchart for Creating a Source File, Compiling, Linkingand Executing in C++
	2.4 C++ Environments
	2.5 Typical C++ Environment (Borland C++)
	Step 1: Open any Text Editor
	Step 2: Write the Code for the Program
	Step 3: Save the File with .CPP AS an Extension
	Step 4: Compile the Program
	Step 5: Run the Program

	2.6 Structure of a C++ Program
	2.7 Illustrative Simple Program in C++ without Class
	2.8 Header Files and Libraries
	Summary
	Exercises

	Chapter 3 : Input and Output in C++
	3.1 Introduction
	3.2 Streams in C++ and Stream Classes
	3.3 Pre-defined Streams
	3.4 Buffering
	3.5 Stream Classes
	3.6 Formatted and Unformatted Data
	3.7 Unformatted Console I/O Operations
	Input and Output Streams

	3.8 Type Casting with the cout Statement

