
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

 9.1 Introduction

 9.2 Constructors and Destructors

 9.3 Characteristics of Constructors and Destructors

 9.4 Applications with Constructors

 9.5 Constructors with Arguments (Parameterized Constructor)

 9.6 Overloading Constructors (Multiple Constructors)

 9.7 Array of Objects Using Constructors

 9.8 Constructors with Default Arguments

 9.9 Copy Constructors

9.10 The const Objects

9.11 Destructors

9.12 Calling Constructors and Destructors

9.13 Qualifier and Nested Classes

9.14 Anonymous Objects

9.15 Private Constructors and Destructors

9.16 Dynamic Initialization Using Constructors

9.17 Dynamic Operators and Constructors

9.18 main() as a Constructor and Destructor

9.19 Recursive Constructors

9.20 Program Execution before main()

9.21 Constructor and Destructor with Static Members

9.22 Local Versus Global Object

9.23 More Programs

9Constructors and
Destructors

C
h

a
p

t
e

r
 O

u
t

l
in

e

C H A P T E R

346 Constructors and Destructors

9.1 INTRODUCTION

When a variable is declared and if not initialized, it contains garbage value. The programmer
needs to assign appropriate value to the variable. The compiler itself cannot carry out the process
of initialization of a variable. The programmer needs to explicitly assign a value to the variable.
Initialization prevents the variable from containing garbage value.

Consider an example
float height; // variable declaration
height=5.5; // assigning value to variable

In the above example, height is a variable of float type. It holds any garbage value before
initialization. In the next statement, variable height is initialized with 5.5.

C++ handles abstract data type, which is the combination of one or more basic data types. An
object holds copies of one or more individual data member variables. When an object is created,
its data member contains garbage value.

We learnt in the previous chapter that declaring static member variables facilitates the pro-
grammer to initialize member variables with desired values. The drawback of static members is
that only one copy of the static member is created for the entire class. All objects share the same
copy, which does not provide security.

Another approach is to define an object as static. When an object is declared as static, all its
member variables are initialized to zero. This is a useful approach. Declaring static object does
not create common copies of member variables. Every static object has its own set of member
variables. The drawback of static object is that the contents of static object remain throughout the
program occupying more memory space. The following program illustrates this point.

9.1 Write a program to declare static objects and display their contents.

#include<iostream.h>
#include<conio.h>

class data
{
 int x;
 float y;
 public:
 void show()
 {
 x++;
 y++;
 cout<<“\n x=”<<x <<“\n y=”<<y;
 }
};
void main()
{

Introduction 347

9.2 Write a program to demonstrate that static object persists its values.

#include<iostream.h>
#include<conio.h>

class data
{
 int x;
 float y;
 public:
 void show()
 {
 x++;
 y++;
 cout<<“\n x=”<<x <<“\n y=”<<y;
 }
};
void main()
{

Explanation: In the above program, objects A and B are declared as static. Their data member
variables are initialized to zero. The member function show() increments value of member
variables by one and displays them. Both the objects A and B invoke the function show(). The
contents displayed are same for both the objects. Therefore, we can say that individual copies are
created for each static object.

The main drawback of static object is that its value remains in the memory throughout the
program. The following program illustrates that the static object remains in the memory even if
it goes out of scope.

 clrscr();
 static data A,B;
 cout<<“\n Object A”;
 A.show();
 cout<<“\n Object B”;
 B.show();
}

OUTPUT

Object A
x=1
y=1
Object B
x=1
y=1

348 Constructors and Destructors

Explanation: In the above program, function display() is a normal function. The member
function show() performs the same task as described in the previous program. The static object
K is declared in the function display(). The object K is local object of function display().
The function main() invokes function display() two times. In the first call, the contents
displayed are one and one. In the second call, the contents displayed are two and two. It means
in second call, the previous values are not cleared. Hence, we can say that static objects are intact
or persist their values. The static object K remains throughout the program and is not destroyed
even if execution of display() terminates.

9.2 CONSTRUCTORS AND DESTRUCTORS

In the previous chapter, we defined a separate member function for reading input values for data
members. Using object, member function is invoked and data members are initialized. The pro-
grammer needs to call the function. C++ provides a pair of in-built special member functions called
constructor and destructor. The constructor constructs the objects and destructor destroys
the objects. In operation, they are opposite to each other. The compiler automatically executes these
functions. The programmer does not need to make any effort for invoking these functions.

The C++ run-time arrangement takes care of execution of constructors and destructors.
When an object is created, constructor is executed. The programmer can also pass values to
the constructor to initialize member variables with different values. The destructor destroys the
object. The destructor is executed at the end of the function when objects are of no use or go out
of scope. It is optional to declare constructor and destructor. If the programmer does not define
them, the compiler executes implicit constructor and destructor.

Constructors and destructors are special member functions. They decide how the objects of a
class are created, initialized, copied, and destroyed. Their names are distinguished from all other
member functions because their names are same as the class they belong to. The only difference
is that destructor is preceded by a ~ (tilde) operator.

 clrscr();
 void display (void);
 display();
 display();
}
void display()
{
 static data K;
 K.show();
}

OUTPUT

x=1
y=1
x=2
y=2

Characteristics of Constructors and Destructors 349

Constructors and destructors have many attributes as that of normal member functions. We
can declare and define them within the class, or declare them within the class and define them
outside; however, they have few unique characteristics.

9.2.1 Constructors

If a class B has one or more constructors, one of them is invoked each time when we define
an object b of class B. The constructor creates object b and initializes it. Constructors
are also called when local or temporary objects of a class are created.

Example

B() { }

9.2.2 Destructors

Destructors are opposite to the constructor. The process of destroying the class objects cre-
ated by constructors is done in destructor. The destructors have the same name as their class,
preceded by a tilde (~). A destructor is automatically executed when object goes out of scope.
It is also invoked when delete operator is used to free the memory allocated with class pointer.
Similar to the constructor, it is not possible to define overloaded destructors and pass arguments
to them. The class can have only one destructor. Destructors are called when these objects go
out of scope.

Example

~B() { }

9.3 CHARACTERISTICS OF CONSTRUCTORS AND DESTRUCTORS
9.3.1 Constructors

(1) Constructors have the same name as that of the class they belong to.
(2) Constructors are executed when an object is declared.
(3) Constructors have neither return value nor void.
(4) The main function of constructor is to initialize objects and allocate appropriate memory

to objects.
(5) Though constructors are executed implicitly, they can be invoked explicitly.
(6) Constructors can have default values and can be overloaded.
(7) The constructor without arguments is called as default constructor.

9.3.2 Destructors

(1) Destructors have the same name as that of the class they belong to preceded by ~
(tilde).

(2) Similar to constructors, the destructors do not have return type and not even void.
(3) Constructors and destructors cannot be inherited, though a derived class can call the

constructors and destructors of the base class.
(4) Destructors can be virtual, but constructors cannot.

350 Constructors and Destructors

(5) Only one destructor can be defined in the destructor. The destructor does not have any
arguments.

(6) Destructors neither have default values nor can be overloaded.
(7) Programmer cannot access addresses of constructors and destructors.
(8) TURBO C++ compiler can define constructors and destructors if they have not been

 explicitly defined. They are also called on many cases without explicit calls in pro-
grams. Any constructor or destructor created by the compiler will be public.

(9) Constructors and destructors can make implicit calls to operators new and delete if
memory allocation/de-allocation is needed for an object.

(10) An object with a constructor or destructor cannot be used as a member of a union.

9.4 APPLICATIONS WITH CONSTRUCTORS

The initialization of member variables of class is carried out using constructors. The constructor
also allocates required memory to the object. An example of a constructor is as follows:

class num
{
 private:
 int a, b,c;
 public:

 num (void); // declaration of constructor
 - - - - -
 - - ---
};
num:: num (void) // definition of constructor
{
 a=0;b=0;c=0; // value assignment
}
main()
{class num x;
}

In the above example, class num has three member integer variables a, b, and c. The
declaration of constructor can be done inside the class and definition outside the class. In defini-
tion, the member variables of a class num are initialized to zero.

In the function main(), x is an object of type class num. When an object is created, its
member variables (private and public) are automatically initialized to the given value. The pro-
grammer need not write any statement to call the constructor. The compiler automatically calls
the constructors. If programmer writes a statement for calling a constructor, a constructor is
called again. In case there is no constructor in the program, the compiler calls a dummy construc-
tor. The constructor without argument is known as default constructor.

Applications with Constructors 351

9.3 Write a program to define a constructor and initialize the class data member vari-
ables with constants.

#include<iostream.h>
#include<conio.h>

class num
{
 private:
 int a,b,c;
 public:
 int x;
 num(void); // declaration of constructor
 void show()
 { cout<<“\n x=”<<x <<“a=”<<a<< “b=”<<b<< “c=”<<c; }
};
num:: num (void) // definition of constructor
{
 cout<<“\n Constructor called”;
 x=5; a=0;b=1;c=2;
}
main()
{
 clrscr();
 num x;
 x.show();
 return 0;
}

OUTPUT

Constructor called
x = 5 a= 0 b= 1 c= 2

Explanation: In the above program, the class num is declared with four integers a, b, c,
and x. The variables a, b, and c are private and x is a public variable. The class also
has show() function and constructor prototype declaration. The function show() displays the
contents of the member variables on the screen. The definition of a constructor is done outside
the class. In the function main(), x is an object of class num. When an object is created, con-
structor is automatically invoked and member variables are initialized to given values as per the
constructor definition. The values of variables x, a, b, and c are as per the output shown. The
compiler calls the constructor for every object created. For each object the constructor is executed
once; that is, the number of times the execution of constructor is equal to the number of objects
created. The below-given program explains this point.

352 Constructors and Destructors

9.4 Write a program to show that for each object constructor is called separately.

#include<iostream.h>
#include<conio.h>

class num
{
 private:
 int a;
 public:
 num (void) // definition of constructor
 {
 cout<<“\n Constructor called.”;
 a=1;
 cout<<“a=”<<a;
 }
};
main()
{
 clrscr();
 num x,y,z;
 num a[2];
 return 0;
}

OUTPUT

Constructor called. a = 1
Constructor called. a = 1
Constructor called. a = 1
Constructor called. a = 1
Constructor called. a = 1

Explanation: In the above program, x, y, and z are objects of class num. A[2] is an array of
objects. For each individual object constructor is called. The total number of objects declared is
five; hence, the constructor is called five times.

9.5 Write a program to read values through the keyboard. Use constructor.

#include<iostream.h>
#include<conio.h>
class num
{
 private:
 int a,b,c;

Constructors with Arguments (Parameterized Constructor) 353

Explanation: The above program is same as the previous one. In this program, whenever an
object is created, the constructor is called and it reads the integer values through the keyboard.
Thus, the entered constants are assigned to member variables of the class. Here, the constructor
is used like other functions.

9.5 CONSTRUCTORS WITH ARGUMENTS (PARAMETERIZED
CONSTRUCTOR)

In the previous example, constructors initialize the member variables with given values. It is also
possible to create constructor with arguments, and such constructors are called parameterized
constructors. For such constructors, it is necessary to pass values to the constructor when an object
is created. Consider the following example:

class num
{
 private:
 int a, b, c;
 public:

 public:
 num(void); // declaration of constructor
 void show()
 { cout<<“\n”<<“a=” <<a <<“b=”<<b <<“c=”<<c; }
};
num:: num (void) // definition of constructor
{
 cout<<“\n Constructor called”;
 cout<<“\n Enter Values for a,b and c:”;
 cin>> a>>b>>c;
}
main()
{
 clrscr();
 class num x;
 x.show();
 return 0;
}

OUTPUT

Constructor called
Enter Values for a,b and c: 1 5 4
a= 1 b= 5 c= 4

354 Constructors and Destructors

num (int m, int j, int k); // declaration of constructor
with arguments
 - - - - -
 - - ---
};
num:: num (int m, int j, int k) // definition of construc-
tor with arguments
{
 a=m;
 b=j;
 c=k;
}
main()
{
 class num x=num (4,5,7); // Explicit call
 class num y (9,5,7); // Implicit call
}

In the above example, the declaration and definition of a constructor contains three integer
arguments. In the definition, the three arguments m, j, and k are assigned to member variables
a, b, and c.

In a situation like this when class has a constructor with arguments, care is to be taken while
creating objects. So far, we created the object using the following statement:

num x

This statement will not work. We need to pass required arguments as per the definition of
constructor. Hence, to create object, the statements must be as given below:

(a) class num x=num (4,5,7); // Explicit call
(b) class num y (9,5,7); // Implicit call

The statements (a) and (b) can be used to create objects, which not only create objects but
also pass given values to the constructor. The method (a) is called explicit call and the method
(b) implicit call.

9.6 Write a program to create a constructor with arguments and pass the arguments to
the constructor.

#include<iostream.h>
#include<conio.h>

class num
{
 private:

Overloading Constructors (Multiple Constructors) 355

 int a,b,c;
 public:
 num(int m, int j, int k); // declaration of constructor with
arguments
 void show()
 {
 cout<<“\na=”<<a <<“b=”<<b <<“c=”<<c;
 }
};
num:: num (int m, int j, int k) // definition of constructor with
arguments
{
 a=m;
 b=j;
 c=k;
}
main()
{
 clrscr();
 num x=num(4,5,7); // Explicit call
 num y(1,2,8); // Implicit call
 x.show();
 y.show();
 return 0;
}

OUTPUT

a= 4 b= 5 c= 7
a= 1 b= 2 c= 8

Explanation: In the above program, x and y are objects of class num. When objects are created,
three values are passed to the constructor. These values are assigned to the member variables.
The function show() displays the contents of member variables.

9.6 OVERLOADING CONSTRUCTORS (MULTIPLE CONSTRUCTORS)

Similar to functions, it is also possible to overload constructors. In the previous examples, we
declared single constructors without arguments and with all arguments. A class can contain more
than one constructor. This is known as constructor overloading. All constructors are defined with
the same name as the class they belong to. All the constructors contain different number of argu-
ments. Depending upon the number of arguments, the compiler executes appropriate constructor.
Table 9.1 describes object declaration and appropriate constructor to it. Consider the following
example:

356 Constructors and Destructors

class num
{
 private:
 int a;
 float b;
 char c;
 public:
 a) num (int m, float j , char k);
 b) num (int m, float j);
 c) num();
 d) class num x (4,5.5,’A’);
 e) class num y (1,2.2);
 f) class num z;
 }

 Table 9.1 Overloaded Constructors

Constructor Declaration Object Declaration

(a) num (int m, float j, char k); (d) num x (4,5.5,‘A’);

(b) num (int m, float j); (e) num y (1,2.2);

(c) num(); (f) num z;

In the above example, the statements (a), (b), and (c) are constructor declarations and (d),
(e), and (f) are the object declarations. The compiler decides which constructor to be called de-
pending on the number of arguments present with the object.

When object x is created, the constructor with three arguments is called because the declara-
tion of an object is followed by three arguments. For object y, constructor with two arguments is
called and lastly the object z, which is without any argument, is candidate for constructor without
argument.

9.7 Write a program with multiple constructors for the single class.

#include<iostream.h>
#include<conio.h>

class num
{
 private:
 int a;
 float b;
 char c;
 public:
 num(int m, float j , char k);
 num (int m, float j);
 num();

Overloading Constructors (Multiple Constructors) 357

 void show()
 {
 cout<<“\n\ta=”<<a<<“b=”<<b<<“c=”<<c;
 }
};
num:: num (int m, float j , char k)
{
 cout<<“\n Constructor with three arguments”;
 a=m;
 b=j;
 c=k;
}
num:: num (int m, float j)
{
 cout<<“\n Constructor with two arguments”;
 a=m;
 b=j;
 c=’ ‘;
}
num:: num()
{
 cout<<“\n Constructor without arguments”;
 a=b=c=NULL;
}
main()
{
 clrscr();
 class num x(4,5.5,’A’);
 x.show();
 class num y(1,2.2);
 y.show();
 class num z;
 z.show();
 return 0;
}

OUTPUT

Constructor with three arguments
a= 4 b= 5.5 c= A
Constructor with two arguments
a= 1 b= 2.2 c=
Constructor without arguments
a= 0 b= 0 c=

358 Constructors and Destructors

Explanation: In the above program, three constructors are declared. The first constructor is
with three arguments, second with two, and third without any argument. While creating objects,
arguments are passed. Depending on number of arguments, compiler decides on the constructor
to be called. In this program, x, y, and z are three objects created. The x object passes three
arguments, the y object passes two arguments, and the z object passes no arguments. The func-
tion show() is used to display the contents of the class members.

9.8 Write a program to overload constructor and display date and time.

#include<iostream.h>
#include<conio.h>

class date_time
{
 int d,m,y,hrs,min,sec;
 public:
 date_time(int i,int j,int k,int a,int b,int c);
 date_time();
 void print()
 {
 cout<<“\nDate=”<<d<<“Month=”<<m<<“Year=”<<y<<endl;
 cout<<“\n Hour=”<<hrs<<“Minutes=” <<min<<“seconds=”<<sec;
 }
};
date_time::date_time(int i,int j,int k,int a,int b,int c)
{
 d=i;
 m=j;
 y=k;
 hrs=a;
 min=b;
 sec=c;
}
date_time::date_time()
{
 cout<<“\nEnter Date Month Year (dd/mm/yy):”;
 cin>>d>>m>>y;
 cout<<“\nEnter Hours Minutes Seconds (hr:min:sec):”;
 cin>>hrs>>min>>sec;
}
int main()
{
 clrscr();
 date_time n(1,1,2012,14,45,21);
 n.print();

Array of Objects Using Constructors 359

Explanation: The program has two constructors. The first constructor has six parameters. Six
arguments are passed through the object to the first constructor.

The second constructor takes the date and time details entered through keyboard.

9.7 ARRAY OF OBJECTS USING CONSTRUCTORS

An array is a collection of similar data types. We can also create an array of objects. The array ele-
ments are stored in contagious memory y locations. An array of objects is one of the most impor-
tant data structures when data is itself an object. Program on it is illustrated using constructor.

 cout<<“\n--”;
 date_time m;
 cout<<“\n--”;
 m.print();
 return 0;
}

OUTPUT

Date = 1 Month = 1 Year =2012
Hour = 14 Minutes = 45seconds =21

Enter Date Month Year (dd/mm/yy):4 4 2012
Enter Hours Minutes Seconds (hr:min:sec):23 45 12
--
Date = 4 Month = 4 Year =2012
Hour = 23 Minutes = 45seconds =12

9.9 Write a program to declare array of objects by using constructor.

#include<iostream.h>
#include<conio.h>
#include<stdio.h>

class capital
{
 public:
 char name[20],cpt[20];
 capital();
};
capital::capital()
{
 cout<<“\nState and its capital:”;
 cin>>name>>cpt;

360 Constructors and Destructors

Explanation: The above program is generalized and can be extended to large number of objects.
We have created an array of objects c[3] in the above program. The object c[3] initializes three
names of the states and their capitals through keyboard, and the object c[3] calls the constructor
three times.

9.8 CONSTRUCTORS WITH DEFAULT ARGUMENTS

Similar to functions, it is also possible to declare constructors with default arguments. Consider
the following example:

power(int 9,int 3);

In the above example, the default value for the first argument is nine and two for second.

power p1 (3);

In this statement, object p1 is created and 9 raise to 3 expression n is calculated. Here, one
argument is absent hence default value 9 is taken, and its third power is calculated. Consider the
following example on the above discussion:

}
int main()
{
 clrscr();
 capital c[3];
 return 0;
}

OUTPUT

State and its capital: Maharashtra Mumbai
State and its capital: Tamilnadu Chennai
State and its capital: Andhra-Pradesh Hyderabad

9.10 Write a program to declare default arguments in a constructor. Obtain the power
of the number.

#include<iostream.h>
#include<conio.h>
#include<math.h>
class power
{
 private:
 int num;

Copy Constrcutors 361

 int power;
 int ans;
 public:
 power(int n=9,int p=3); // declaration of constructor with
default arguments
 void show()
 {

 cout<<“\n”<<num <<“raise to”<<power <<“is” <<ans;
 }
};
power:: power (int n,int p)
{
 num=n;
 power=p;
 ans=pow(n,p);
}
main()
{
 clrscr();
 class power p1,p2(5);
 p1.show();
 p2.show();
 return 0;
}

OUTPUT

9 raise to 3 is 729
5 raise to 3 is 125

Explanation: In the above program, the class power is declared. It has three integer member
variables and one member function show(). The show() function is used to display the values
of member data variables. The constructor of class power is declared with two default argu-
ments. In the function main(), p1 and p2 are two objects of class power. The p1 object is cre-
ated without argument. Hence, the constructor uses default arguments in pow() function. The
p2 object is created with one argument. In this call of constructor, the second argument is taken
as default. Both the results are shown in output.

9.9 COPY CONSTRUCTORS

The constructor can accept arguments of any data type including user-defined data types, exclu-
sive of the class to which it belongs. Consider the following examples shown in Table 9.2.

362 Constructors and Destructors

 Table 9.2 Copy Constructors

Statement (a) Statement (b)

class num
{
 private:

 public:
 num(num);
}

class num
{
 private:

 public:
 num(num&);
}

In the example (a), an argument of the constructor is same as that of its class. Hence, this
declaration is wrong. It is possible to pass reference of object to the constructor. Such declaration
is known as copy constructor. The example (b) is valid and can be used to copy construc-
tor.

When we pass an object by value into a function, a temporary copy of that object is created.
All copy constructors require one argument, with reference to an object of that class. Using copy
constructors, it is possible for the programmers to declare and initialize one object using refer-

9.11 Write a program to pass an object with reference to constructor. Declare and initial-
ize other objects.

#include<iostream.h>
#include<conio.h>

class num
{
 int n;
 public:
 num() { } // constructor without argument
 num (int k) { n=k;} // constructor with one argument
 num (num &j) // copy constructor
 {
 n=j.n;
 }
 void show (void) {cout<<n;}
};
main()
{
 clrscr();
 num J(50);
 num K(J);
 num L=J;
 num M;
 M=J;

The const Objects 363

ence of another object. Thus, whenever a constructor is called, a copy of an object is created.

Explanation: In the above program, class num is declared with one integer member variable
n and three constructors. In function main(), the object J is created and 50 is passed to con-
structor. It is passed by value; hence, constructor with one argument is invoked. When object K
is created with one object, the copy constructor is invoked, object is passed, and data member is
initialized. The object L is created with assignment with object J; this time also copy constructor
is invoked. The compiler copies all the members of object J to destination object L in the assign-
ment statement num L = J. When object is created without any value, such as M, default con-
structor is invoked. The copy constructor is not invoked even if object J is assigned to object M.

The data member variables that are dynamically allocated should be copied to the target
object explicitly by using assignment statement or by copy constructor as per the following
statement:

num L = J; // copy constructor is executed
Consider the statement
M = J;
Here, M and J are predefined objects. In this statement, copy constructor is not executed. The

member variables of object J are copied to object M member by member. An assignment state-
ment assigns value of one entity to another.

The statement num L = J; initializes object L with J during definition. The member
variables of J are copied member by member into object L. This statement invokes constructor.
This statement can be written as num L (J), which we frequently use to pass values to the
constructor.

9.10 THE const OBJECTS

In the previous chapter, we have studied the constant functions. The const declared functions
do not allow the operations that alter the values. In the same fashion, we can also make the ob-
ject constant by the keyword const. Only constructor can initialize data member variables of

 cout<<“\n Object J Value of n:”;
 J.show();
 cout<<“\n Object K Value of n:”;
 K.show();
 cout<<“\n Object L Value of n:”;
 L.show();
 cout<<“\n Object M Value of n:”;
 M.show();
 return 0;
}

OUTPUT

Object J Value of n: 50
Object K Value of n: 50
Object L Value of n: 50
Object M Value of n: 50

364 Constructors and Destructors

Explanation: In the above program, class ABC is declared with one member variable and one con-
stant member function show(). The constructor ABC is defined to initialize the member variable.
The show() function is used to display the contents of member variable. In main(), the object x
is declared as constant with one integer value. When object is created, the constructor is executed
and value is assigned to data member. The object x invokes the member function show().

9.11 DESTRUCTORS

The destructor is also a special member function like constructor. Destructors destroy the class
objects created by constructors. The destructors have the same name as their class, preceded by
a tilde (~).

For local and non-static objects, the destructor is executed when the object goes out of scope.
In case the program is terminated by using return or exit() statements, the destructor is ex-

constant object. The data member of constant objects can be read-only and any effort to alter
values of variables will generate an error. The data members of constant object are also called
read-only data members. The constant object can access only constant functions. If constant
object tries to invoke a non-member function, an error message will be displayed.

9.12 Write a program to declare constant object. Also, declare constant member function
and display the contents of member variables.

#include<iostream.h>
#include<conio.h>

class ABC
{
 int a;
 public:
 ABC (int m)
 { a=m; }
 void show() const
 { cout<<“a=”<<a; }
};
int main()
{
 clrscr();
 const ABC x(5);
 x.show();
 return 0;
}

OUTPUT

A=5

Destructors 365

ecuted for every object existing at that time. It is not possible to define more than one destructor.
The destructor is only one way to destroy the object. Hence, they cannot be overloaded.

A destructor neither requires any arguments nor returns any value. It is automatically called
when object goes out of scope. Destructor releases memory space occupied by the objects.

The program given below explains the use of destructor.

9.13 Write a program to demonstrate execution of constructor and destructor.

#include<iostream.h>
#include<constream.h>

struct text
{
 text() // Constructor
 {
 cout<<“\n Constructor executed.”;
 }
 ~text() // Destructor
 {
 cout<<“\n Destructor executed.”;
 }
};
void main()
{
 clrscr();
 text t; // Object declaration
}

OUTPUT

Constructor executed.
Destructor executed.

Explanation: In the above program, the class text contains constructor and destructor. In func-
tion main(), object t is executed. When object t is declared, constructor is executed. When
object goes out of scope, destructor is executed.

9.14 Write a program to create an object and release them using destructors.

#include<iostream.h>
#include<conio.h>

int c=0; // counter for counting objects created and de-
stroyed.
class num

366 Constructors and Destructors

{
 public:
 num()
 {
 c++;
 cout<<“\n Object Created: Object(”<<c <<“)”;
 }
 ~num()
 {
 cout<<“\n Object Released: Object(”<<c <<“)”;
 c--;
 }
};
main()
{
 clrscr();
 cout<<“\n In main() \n”;
 num a,b;
 cout<<“\n\n In Block A\n”;
 {
 class num c;
 }
 cout<<“\n\n Again In main()\n”;
 return 0;
}

OUTPUT

In main()
Object Created: Object(1)
Object Created: Object(2)
In Block A
Object Created: Object(3)
Object Released: Object(3)
Again In main()
Object Released: Object(2)
Object Released: Object(1)

Explanation: In the above program, the variable c is initialized with zero. The variable c is in-
cremented in constructor and decremented in destructor. When objects are created, the compiler
calls the constructor. Objects are destroyed or released when destructor is called. Thus, the value
of a variable changes as the constructors and destructors are called. The value of a variable of c
shows number of objects created and destroyed. In this program, the objects a and b are created
in main(). The object c is created in another block, that is, in block A. The object c is created

Calling Constructors and Destructors 367

and destroyed in the same block. The objects are local to the block in which they are defined.
The objects a and b are released as the control passes to main() block. The object created last
is released first.

9.12 CALLING CONSTRUCTORS AND DESTRUCTORS

The compiler automatically calls the constructor and destructor. We can also call the construc-
tor and destructor in the same fashion as we call the normal user-defined function. The calling
methods are different for constructors and destructors. In practice, it may not be useful; but for
the sake of understanding, few examples are illustrated on this concept.

9.15 Write a program to invoke constructor and destructor.

#include<iostream.h>
#include<conio.h>

class byte
{
 int bit;
 int bytes;
 public:
 byte()
 {
 cout<<“\n Constructor invoked”;
 bit=64;
 bytes=bit/8;
 }
 ~byte()
 {
 cout<<“\n Destructor invoked”;
 cout<<“\n Bit=”<<bit;
 cout<<“\n Byte=”<<bytes;
 }
};
int main()
{
 clrscr();
 byte x;
 byte(); // calling constructor
 // x.byte() ; // invalid statement
 // x.byte::byte() // valid statement
 // ~ byte(); // invalid statement
 // byte.~byte(); // invalid statement
 // x.~byte(); // Member identifier expected
 x.byte::~byte();

368 Constructors and Destructors

Explanation: In the above program, the class byte is declared with two integer members. The
class has constructors and destructors. In the function main(), x is an object of class byte.
When an object is created, the compiler automatically invokes the constructor. The program also
invokes constructor. Thus, constructor is executed two times, that is, implicitly and explicitly. The
constructor is called without the help of object of that class. If we try to call the constructor with
the help of object x as per the statement x.byte(), the compiler displays an error message.

The destructor cannot be invoked like constructor. Calling destructor requires the help of
object and class name. Only object of the class alone is not able to invoke the destructor, the ob-
ject needs the help of the class. The statement x.~byte() is invalid, the compiler displays the
error message Member identifier expected. The destructor can be invoked using the statement
x.byte::~byte(). Here, in addition, class name is also specified.

The constructor and the destructor can call each other. The statement byte::byte() is
used for calling destructor ~byte() within the body of constructor byte(). The destructor
~byte() can call the constructor byte() using the statement byte(). The constructor
and the destructor may contain condition statements; such destructors or constructors are called
conditional destructor or conditional constructor, respectively. The conditional constructor can be
created using if-else or switch() statements. The example given below illustrates this.

9.16 Write a program to define conditional constructor and destructor.

#include<iostream.h>
#include<conio.h>
int c=0;

class byte
{
 int bit;
 int bytes;

 return 0;
}

OUTPUT

Constructor invoked
Constructor invoked
Destructor invoked
Bit = 64
Byte = 8
Destructor invoked
Bit = 64
Byte = 8
Destructor invoked
Bit = 64
Byte = 8

Explanation: In the above program, x and y are objects of class byte. The compiler auto-
matically invokes the constructor. The constructor invokes the destructor. The variable c is
declared and initialized with zero. It is a global variable declared before main() and can be
used anywhere in the program. The destructor contains conditional statement if. The if
block is executed only when c is zero. When destructor is called the first time, the if block
is executed and c is turned to a non-zero value. Next time when destructor is called, the
if condition evaluates false and the if block is not executed. Though destructor is called, no
result is displayed on the screen. Remember that the constructors and destructors are executed
for equal number of times. It is possible for the programmer to use the constructor and the
destructor like other user-defined functions.

 public:
 ~byte(); // Prototype declaration
 byte()
 { cout<<“\n Constructor invoked”;
 bit=64;
 bytes=bit/8;
 byte:: ~byte(); // call to destructor
 }
};
byte::~byte()
{
 if (c==0)
 {
 // byte() // call to constructor
 cout<<“\n Destructor invoked”;
 cout<<“\n Bit=”<<bit;
 cout<<“\n Byte=”<<bytes;
 }
 c++;
}
int main()
{ clrscr();
 byte x,y;
 return 0;
}

OUTPUT

Constructor invoked
Destructor invoked
Bit = 64
Byte = 8
Constructor invoked

Calling Constructors and Destructors 369

370 Constructors and Destructors

9.13 QUALIFIER AND NESTED CLASSES

The class declaration can also be done inside the other class. While declaring object of such class,
it is necessary to precede the name of the outer class. The name of outer class is called qualifier
name, and the class defined inside is called nested class.

The use of nested classes enhances the power of abstract data type and helps to construct
more powerful data structure. The qualifier (host class) and the nested class follow the same ac-
cess conditions. The nested classes are useful to hide a particular class and its objects within a
qualifier class. The following program illustrates this.

9.17 Write a program to declare classes within classes and access the variables of both
the classes.

#include<iostream.h>
#include<constream.h>

class A // Host class or qualifier class
{
 public:
 int x;
 A() { x=10; }
 class B // Nested class
 {
 public:
 int y;
 B() { y=20; }
 void show()
 {
 A a;
 cout<<“x=”<<a.x<<endl;
 cout<<“y=”<<y<<endl;
 }
 }; // End of nested (inner) class
}; // End of qualifier (outer) class
void main()
{
 clrscr();
 A::B b;
 b.show();
}

OUTPUT

x=10
y=20

Qualifier and Nested Classes 371

Explanation: In the above program, class B is declared inside class A. All the members of both
the classes are declared public so that they can be easily accessed. Both the classes have construc-
tors to initialize the member variables. The class B also has one member function show() to
display the contents on the screen.

In function main(), A::B b declares object of class B. The name of class A is preceded
because the class B is inside the class A. If we declare an object using the statement B b,
the program will be executed with a warning message “Use qualified name to access
nested type ‘A::B’”. Here, the class A acts as a qualified class.

The show() function is a member of class B. Due to this, variable y is its member vari-
able and can be directly accessed. To access the variable of a qualified class A, object of class A
a is declared and through this object variable x is accessed. The data variables are public. In case
of private, we can access member variables using member functions. There is no limit for declar-
ing classes within classes. The following program explains this.

9.18 Write a program to declare multiple qualifier classes and declare an object of every
class.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 int x;
 A() { x=5;
 cout<<“x=”<<x;
}
class B
{
 public:
 int y;
 B()
 {
 y=10;
 cout<<“y=”<<y;
 }
 class C
 {
 public:
 int z;
 C()
 {
 z=15;

372 Constructors and Destructors

Explanation: In the above program, classes A, B, and C are declared. The class B is declared
inside the class A. The class C is declared inside the class B. The classes A and B are qualified
classes for class C. The class A is qualified class for class B. Each class has a constructor that
initializes and displays the contents of the object.

9.14 ANONYMOUS OBJECTS

Objects are created with names. It is possible to declare objects without name. Such objects are
known as anonymous objects. We learnt how to invoke constructors and destructors. When
constructors and destructors are invoked, the data members of the class are initialized and de-
stroyed, respectively. Thus, without object we can initialize and destroy the contents of the class.
All these operations are carried out without object or we can also assume that the operations are
carried out using an anonymous object, which exists but is hidden. The second thought is correct
because if we apply pointer this (explained in Chapter 13 “Pointers and arrays”), we get the ad-
dress of the object. It is not possible to invoke member function without using object but we can
invoke the special member functions constructors and destructors which compulso-
rily exist in every class. Thus, without the use of constructor and destructor, the theory
of anonymous object cannot be implemented in practice. Consider the following example:

 cout<<“z=”<<z;
 }
 };
};
};
void main()
{
clrscr();
A a; // outer class object
A::B b; // middle class object
A::B::C c; // inner class object
}

OUTPUT

x= 5 y =10 z =15

9.19 Write a program to create an anonymous object. Initialize and display the contents
of member variables.

#include<conio.h>
#include<iostream.h>

class noname
{
 private:

Explanation: In the above program, class noname is declared with one integer data member.
The class also has constructor, destructor, and member function. The member function show()
is used to display the contents on the screen.

In function main(), no object is created. The constructor is called directly. Calling con-
structor directly implies creating anonymous objects. In the first call of the constructor, the mem-
ber variable is initialized with 15. The constructor invokes the member function show() that
displays the value of x on the screen.

 int x;
 public:
 noname (int j)
 {
 cout<<“\n In constructor”;
 x=j;
 show();
 }
 noname()
 {
 cout<<“\n In constructor”;
 x=15;
 show();
 }
 ~noname() { cout<<“\n In destructor”; }
 noname *const show()
 {
 cout<<endl<<“x:”<<x;
 return this;
 }
};
void main()
{
 clrscr();
 noname();
 noname(12);
}

OUTPUT

In constructor
x: 15
In destructor
In constructor
x: 12
In destructor

Qualifier and Nested Classes 373

374 Constructors and Destructors

It is not possible to create more than one anonymous object at a time. When constructor ex-
ecution work is over destructor destroys the object. Again, the constructor with one argument is
called and integer is passed to it. The member variable is initialized with 12 and it is displayed by
show() function. Finally, the destructor is executed that marks the end of program.

 TIP

Calling constructor directly means creating anonymous objects.

9.15 PRIVATE CONSTRUCTORS AND DESTRUCTORS

We learnt that when a function is declared as private, it could be invoked by the public function
of the same class. So far, we declared constructors and destructors as public. The constructor and
destructor can be declared as private. The constructor and destructor are automatically executed
when an object is executed and when an object goes out of scope. Nevertheless, when the con-
structor and destructor are private, they cannot be executed implicitly, and hence, it is a must to
execute them explicitly. The following program is illustrated concerning this.

9.20 Write a program to declare constructor and destructor as private and call them
explicitly.

#include<conio.h>
#include<iostream.h>

class A
{
 private:
 int x;
 ~A() { cout<<“\n In destructor ~A()”; }
 A() {x=7; cout<<“\n In constructor A()”; }
 public:
 void show()
 {
 this->A::A(); // invokes constructor
 cout<<endl<<“x=”<<x;
 this->A::~A(); // invoke destructor
 }
};
void main()
{
 clrscr();
 A *a;
 a->show();
}

Explanation: In the above program, class A is declared. It has one data member, constructor,
and destructor. The function show() is declared in public section. In function main(), a is
a pointer to class A. When pointer object is created, no constructor is executed. When show()
function is invoked, the constructor is invoked and its return value is assigned to pointer *this.
(The pointer *this is explained in Chapter 13 “Pointers and arrays.”) Every member function
holds this pointer that points to the calling object. Here, the pointer points to object a. When
the pointer invokes the constructor, constructor is invoked. Consider the statement this =
this->A::A(). The statement invokes the zero-argument constructors. The contents are dis-
played by the cout statement and again the this pointer invokes the destructor.

9.16 DYNAMIC INITIALIZATION USING CONSTRUCTORS

After declaration of the class data member variables, they can be initialized at the time of pro-
gram execution using pointers. Such initialization of data is called dynamic initialization. The
benefit of dynamic initialization is that it allows different initialization modes using overloaded
constructors. Pointer variables are used as argument for constructors. The following example
explains dynamic initialization using overloaded constructor.

OUTPUT

In constructor A()
x = 7
In destructor ~A()

9.21 Write a program to initialize member variables using pointers and constructors.

#include<iostream.h>
#include<conio.h>
#include<string.h>
class city
{
 char city[20];
 char state[20];
 char country[20];
 public:
 city() { city[0]=state[0]=country[0]=NULL; }
 void display(char *line);
 city(char *cityn)
 {
 strcpy(city, cityn);
 state[0]=NULL;
 }
 city(char *cityn,char *staten)

Dynamic Initialization Using Constructors 375

376 Constructors and Destructors

 {
 strcpy(city,cityn);
 strcpy(state,staten);
 country[0]=NULL;
 }
 city(char *cityn,char *staten, char *countryn)
 {
 _fstrcpy(city,cityn);
 _fstrcpy(state,staten);
 _fstrcpy(country,countryn);
 }
};
void city:: display (char *line)
{
 cout<<line<<endl;
 if (_fstrlen(city)) cout<<“City:”<<city<<endl;
 if (strlen(state)) cout<<“State:”<<state <<endl;
 if (strlen(country)) cout<<“Country:”<<country <<endl;
}
void main()
{
 clrscr();
 city c1(“Mumbai”),
 c2(“Nagpur”,“Maharashtra”),
 c3(“Nanded”,“Maharashtra”,“India”),
 c4(‘\0’,’\0’,’\0’);
 c1.display(“=========*=============”);
 c2.display(“=========*=============”);
 c3.display(“=========*=============”);
 c4.display(“=========*=============”);
}

OUTPUT

=========*=============
City: Mumbai
=========*=============
City: Nagpur
State: Maharashtra
=========*=============
City: Nanded
State: Maharashtra
Country: India
=========*=============

Dynamic Operators and Constructors 377

Explanation: In the above program, the class city is declared with three-character arrays:
city, state, and country. The class city also has four constructors: zero-argument con-
structor, one-argument constructor, two-argument constructor, and three-argument constructor.
The display() member function is used to display the contents on the screen.

In function main(), c1, c2, c3, and c4 are declared and strings are passed. Accord-
ing to the number of arguments, respective constructor is executed. The function display() is
called by all the four objects and information displayed is as shown in the output. While calling
function display(), the line format “=====” is passed that is displayed before displaying the
information. The display() function also contains if statements that check the length of the
string and display the string only when the variable contains string. In case the data variable con-
tains NULL, the string will not be displayed. The object c4 is initialized with NULL character.
The use of c4 object is only to display a line at the end of a program.

9.17 DYNAMIC OPERATORS AND CONSTRUCTORS

When constructor and destructor are executed they internally use new and delete opera-
tors to allocate and de-allocate memory. Dynamic construction means allocation of memory by
 constructor for objects, and dynamic destruction means releasing memory using the destruc-
tor. Consider the following program that explains the use of new and delete operators with
 constructor and destructor.

9.22 Write a program to use new and delete operators with constructor and destruc-
tor. Allocate memory for the given number of integers. Also release the memory.

#include<iostream.h>
#include<conio.h>

int number (void);
class num
{
 int *x;
 int s;
 public:
 num()
 {
 s=number();
 x= new int [s];
 }
 ~num() { delete x; }
 void input();
 void sum();
};
void num:: input()
{
 for (int h=0;h<s;h++)

378 Constructors and Destructors

Explanation: In the above program, class num is declared with two variables and they are integer
pointer *x and integer variable s. The class also contains constructor and destructor. The respon-
sibility of constructor is to allocate memory using new operator for a given number of integers
by the user. The non-member function number() is used to input number of elements through
the keyboard and the entered numbers are stored in the variable s. The variable s is used with the
new operator to allocate memory. The memory is allocated to the pointer x.

The member function input() reads elements and the for loop repeats the statement
cin>>x[h] for s (number of total elements) times. The x[h] is used like array. The x is
the starting address and h indicates the successive locations. The address of pointer x remains

 {
 cout<<“Enter number [”<<h+1<<“]:”;
 cin>>x[h];
 }
}
void num:: sum()
{
 int adi=0;
 for (int h=0;h<s;h++)
 adi+=x[h];
 cout<<“sum of elements=”<<adi;
}
number()
{
 clrscr();
 int n;
 cout<<“How many numbers:”;
 cin>>n;
 return n;
}
void main()
{
 num n1;
 n1.input();
 n1.sum();
}

OUTPUT

How many numbers: 3
Enter number [1]: 1
Enter number [2]: 4
Enter number [3]: 5
sum of elements = 10

main() as a Constructor and Destructor 379

unchanged. The value of h is added to value of x. In this way, all these numbers are stored in
continuous memory locations. If you are still confused how successive memory locations are ac-
cessed, go through the pointer arithmetic operations.

The sum() function is used to perform addition of all the entered numbers and displays the
same on the screen. The destructor is finally executed which releases the memory using delete
operator.

 TIP

In the above program, if we remove the operators new and delete, the program will work successfully.
However, this is suitable for small programs, developed for demonstration purpose. In real application, it
needs large amount of memory to be allocated or released. Hence, it is very essential to check the mem-
ory before doing the process. For example, when any program is loaded in the memory, the operating
system checks for available system resources that are sufficient enough to load the requested application
by the user. In such a case, the operating system checks memory resources and if memory is insufficient,
the compiler displays the same message to the user.

9.18 main() AS A CONSTRUCTOR AND DESTRUCTOR

We learnt that the constructor and destructor have the same name as their class. To use main()
as a constructor and destructor, we need to define class with the name main. So far, we have
declared object of classes without using the keyword class or struct because C++ treats classes
like built-in data types. The use of keyword class or struct is only compulsory when the
class name is main. This is because execution of program starts with the function main(). The
following program clears this point.

9.23 Write a program to declare class with name main.

#include<conio.h>
#include<iostream.h>
class main
{
 public:
 main() { cout<<“\n In constructor main()”; }
 ~main() { cout<<“\n In destructor main()”; }
};
void main()
{
 clrscr();
 class main a;
}

OUTPUT

In constructor main()
In destructor main()

380 Constructors and Destructors

Explanation: In the above program, the class is declared with the name main. Hence, it is com-
pulsory to use keyword class or struct while declaring objects.

 TIP

When the class name is main, it is compulsory to use keyword class or struct to declare objects.

9.19 RECURSIVE CONSTRUCTORS

Similar to normal and member functions, constructors also support recursion. The following
program explains this.

9.24 Write a program to invoke constructor recursively and calculate the triangular
number of the entered number.

#include<iostream.h>
#include<conio.h>
#include<process.h>

class tri_num
{
 int f;
 public:
 tri_num() { f=0; }
 void sum(int j) { f=f+j; }
 tri_num(int m)
 {
 if (m==0)
 {
 cout<<“Triangular number:”<<f;
 exit(1);
 }
 sum(m);
 tri_num::tri_num(--m);
 }
};
void main()
{
 clrscr();
 tri_num a;
 a.tri_num::tri_num(5);
}

OUTPUT

Triangular number: 15

Program Execution before main() 381

Explanation: In the above program, class tri_num is declared and with private integer f
and member function sum(). The class also has zero-argument constructor and one-argument
constructor.

In function main(), a is an object of tri_num class. When object a is declared, the zero-
argument constructor is executed. The object a invokes the constructor explicitly and passes
integer value to it. The passed value is received by the variable m of the constructor. The if state-
ment checks the value of variable m and if it is zero, the triangular number is displayed and the
program is terminated.

The sum() function is called by the constructor and the cumulative sum is calculated and
stored in the member variable f. Followed by the call of function sum(), the constructor tri_
num() is executed and the value of m is decreased by one. Thus, the recursion takes place and
each time value of m decreases. When the value of m becomes zero, as mentioned above, the
program terminates and we get the triangular number.

 TIP

Recursion is not difficult, though somewhat confusing. If you are still confused about recursion concept,
execute the program in a single step to know the flow of the program. First, try the recursion with normal
function in C style and after perfect understanding try with member function and constructors, but do not
drop it.

9.20 PROGRAM EXECUTION BEFORE main()

It is impossible to execute a program without main(). The declaration of objects is allowed be-
fore main(). We know that when an object is created, constructor and destructor are executed.
The constructor can call other member functions. When an object is declared before main(),
it is called as global object. For global object, constructor is executed before main() function
and destructor is executed after the completion of execution main() function. The following
program illustrates this.

9.25 Write a program to declare global object and observe execution of constructor.

#include<iostream.h>
#include<constream.h>

struct text
{
 text() // Constructor
 {
 cout<<“\n Constructor executed.”;
 }
 ~text() // Destructor
 {
 cout<<“\n Destructor executed.”;
 }

382 Constructors and Destructors

Explanation: In the above program, object t is declared before main(). It is a global object.
As soon as an object is declared, its constructor is invoked immediately. However, the execution
of every program starts from function main(), but for the object declared before main(), con-
structor is executed before execution of main(). The destructor for such object is executed after
the complete execution of function main(). The constructor can invoke other member functions.
These member functions are also executed before main(). The following program explains this.

};
text t; // Global object
void main()
{ }

OUTPUT

Constructor executed.
Destructor executed.

9.26 Write a program to declare object before main() and invoke member function.

#include<iostream.h>
#include<conio.h>
class A
{
 private:
 char *y;
 int x;
 public:
 A()
 {
 clrscr();
 cout<<“\n In constructor ”;
 x=15;
 show(); // invokes member function
 }
 void show() { cout<<endl<<“In show() x=”<<x; }
 ~A() { cout<<endl<<“In destructor”; }
};
A a;
void main() { }

OUTPUT

In constructor
In show() x=15
In destructor

Constructor and Destructor with Static Members 383

Explanation: In the above program, class A is declared with member variable character pointer
and integer x. The class also has constructor, destructor, and member function show(). Before
main(), object a is declared and constructor is executed that initializes the member variables.
The constructor invokes the member function show(). Finally, the destructor is executed.

9.21 CONSTRUCTOR AND DESTRUCTOR WITH STATIC MEMBERS

Every object has its own set of data members. When a member function is invoked, only copy of
data member of calling object is available to the function. Sometimes, it is necessary for all the
objects to share fields which are common for all the objects. If the member variable is declared as
static, only one copy of such member is created for entire class. All objects access the same copy
of static variable. The static member variable can be used to count the number of objects declared
for a particular class. The following program helps you to count the number of objects declared for
a class.

9.27 Write a program to declare a static member variable. Count the number of objects
 created and destroyed.

#include<iostream.h>
#include<constream.h>

class man
{
 static int no;
 char name;
 int age;
 public:
 man()
 {
 no++;
 cout<<“\n Number of Objects exists: ”<<no;
 }
 ~ man()
 {
 --no;
 cout<<“\n Number of objets exists:”<<no;
 }
};
int man:: no=0;
void main()
{
 clrscr();
 man A,B,C;
 cout<<“\n Press any key to destroy object”;

384 Constructors and Destructors

 getch();
}

OUTPUT

Number of Objects exists: 1
Number of Objects exists: 2
Number of Objects exists: 3
Press any key to destroy object
Number of objects exists: 2
Number of objects exists: 1
Number of objects exists: 0

Explanation: In this program, the class man has one static data member no. The static data mem-
ber is initialized to zero. Only one copy of static data member is created and all objects share the
same copy of static data member.

In function main(), objects A, B, and C are declared. When objects are declared, con-
structor is executed and static data member no is increased with one. The constructor also dis-
plays the value of no on the screen. The value of static member shows us the number of objects
present. When the user presses a key, destructor is executed, which destroys the object. The value
of static variable is decreased in the destructor. The value of static member variable shows the
number of existing objects.

9.22 LOCAL VERSUS GLOBAL OBJECT

The object declared outside all function bodies is known as global object. All functions can ac-
cess the global object. The object declared inside a function body is known as local object. The
scope of local object is limited to its current block. We learnt the behavior of constructor and
destructor with local and global object.

When global and local variables are declared with the same name, the scope access opera-
tor is used to access the global variable in the current scope of local variable. We know that the
local variable gets first precedence than the global variable. The same is applicable for objects.
When a program contains global and local objects with the same name, the local object gets first
preference in its own block. In such a case, scope access operator is used with global object. The
following program describes this.

9.28 Write a program to show difference between local and global object.

#include<iostream.h>
#include<constream.h>

class text
{
 public:

More Programs 385

 void show (char *c)
 {
 cout<<“\n”<<c;
 }
};
text t; // global object declaration
void main()
{
 text t; // local object declaration
 ::t.show(“Global”); // call using global object
 t.show(“Local”); // call using local object
}

OUTPUT

Global
Local

Explanation: In the above program, the object t is declared in local as well as global scope.
In function main(), using scope access operator and t, the function show() is invoked. The
first time function show() is invoked using global object. The second call to function show()
is made by local object. The local object does not require scope access operator. The scope ac-
cess operator is used only when the same name for object is used in global and local scopes. If
scope access operator is not used before object, for both times function show() is invoked by
local object.

9.23 MORE PROGRAMS

9.29 Write a program to pass arguments to constructor. Define conditional con structor.

#include<iostream.h>
#include<conio.h>
#include<math.h>

struct num
{
 num (int,char);
 ~num()
 { cout<<“\n Destructor invoked”; }
};
num::num (int s,char b)

{

386 Constructors and Destructors

 switch(b)
 {
 case ‘R’:
 cout<<“\n Square Root of”<<s <<“is” <<sqrt(s);
 break;
 case ‘S’:
 cout<<“\n Square of”<<s <<“is” <<pow(s,2);
 break;
 case ‘C’:
 cout<<“\n Cube of”<<s <<“is” <<pow(s,3);
 break;
 default:
 cout<<“\n Invalid choice”;
 }
}
int main()
{
 clrscr();
 int u;
 char o;
 cout<<“Enter a number:”;
 cin>>u;
 cout<<“Enter operation (S)quare,(C)ube,Square (R)oot”;
 cin>>o;
 num x(u,o);
 return 0;
}

OUTPUT

Enter a number: 64
Enter operation (S)quare,(C)ube,Square (R)oot R
Square Root of 64 is 8
Destructor invoked

Explanation: In the above program, struct num is declared. The structure is without any data
member. The struct contains constructor and destructor. In function main(), x is
an object. Before creating object x, an integer and a character are entered through the keyboard
in variables u and o, respectively. The variables u and o are passed to the constructor. The
switch case statement within the constructor selects appropriate operation depending upon the
value of variable o.

9.30 Write a program to copy constructor. Change the values of an object by calling the
 constructor.

#include<iostream.h>
#include<conio.h>

class data
{
 int u;
 char c;
 float f;
 public:
 ~data() { };
 data() {u=c=f=NULL; };
 data (int a,char b, float h) { u=a,c=b,f=h;}
 data (data &k)
 {
 u=k.u;
 c=k.c;
 f=k.f;
 }
 void show()
 { cout<<“\n u=”<<u <<“c=”<<(char)c <<“f=”<<f; }
};
void main()
{
 clrscr();
 data k(5,68,8.2);
 k.show();
 data l(k);
 l.show();
 data z;
 z.show();
 z=data(1,70,5.8);
 z.show();
}

OUTPUT

u = 5 c = D f= 8.2
u = 5 c = D f= 8.2
u = 0 c = f= 0
u = 1 c = F f= 5.8

More Programs 387

388 Constructors and Destructors

Explanation: In the above program, the class data is declared with three data member vari-
ables and one member function show(). The class data also contains destructor and over-
loaded constructors. For explanation of this program, please refer Program 5.7. In this program,
the object z is created and no arguments are passed. In such a case, the constructor with no
arguments is executed and the entire data members are initialized to NULL. The statement z =
data (1,70,5.8) explicitly calls the constructor and the object z is initialized. The result
of the program is as given above.

9.31 Write a program to call the constructor without using object.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 char c;
 int i;
 float f;
 A()
 {
 cout<<“\n Enter char, int and float value”;
 cin>>c>>i>>f;
 out(c,i,f);
 }
 void out (char l,int k, float j)
 {
 cout<<“\n char value=”<<l;
 cout<<“\n int value=”<<k;
 cout<<“\n float value=”<< j;
 cout<<“\n”;
 }
};
int main()
{
 clrscr();
 A()=A()=A();
 return 0;
}

OUTPUT

Enter char, int and float value A 65 6.5
char value = A

int value = 65
float value = 6.5
Enter char, int and float value B 66 6.6
char value = B
int value = 66
float value = 6.6
Enter char, int and float value C 67 6.7
char value = C
int value = 67
float value = 6.7

Explanation: In the above program, class A has three member variable c, i, and f of char,
int, and float type. The class A also one-member function out() and a constructor. The con-
structor invokes the out() function to output the contents on the screen. In function main(),
no object is declared. The constructor is called directly.

9.32 Write a program to demonstrate the use of copy constructor.

#include<iostream.h>
#include<conio.h>

class data
{
 private:
 int x;
 float y;
 public:
 data() { }
 data (int xx, float yy) { x=xx; y=yy; }
 data operator=(data & d)
 {
 cout<<endl<<“Assignment operator executed”;
 x=d.x;
 y=d.y;
 return data (x,y);
 }
 data (data &d)
 {
 cout<<endl<<“copy constructor executed”;
 x=d.x;
 y=d.y;
 }
 void show() { cout<<“X=”<<x<<“Y=”<<y; }

More Programs 389

390 Constructors and Destructors

};
void main()
{
 clrscr();
 data d1(12,5.8);
 data d2,d4;
 d4=d2=d1;
 data d3=d1;
 cout<<“\n Object d1:”;
 d1.show();
 cout<<“\n Object d2:”;
 d2.show();
 cout<<“\n Object d3:”;
 d3.show();
 cout<<“\n Object d4:”;
 d4.show();
}

OUTPUT

Assignment operator executed
Assignment operator executed
copy constructor executed
Object d1: X=12 Y=5.8
Object d2: X=12 Y=5.8
Object d3: X=12 Y=5.8
Object d4: X=12 Y=5.8

Explanation: In the above program, d1, d2, d3, and d4 are objects of the class data. The
statement d4 = d2 = d1 invokes the overloaded operator = and assignment is carried out. The
statement data d3 = d1 executes the copy constructor. The operator = () returns an object of
class data type and initializes it using three-parameter constructor. The above approach creates
an extra copy of the object that occupies extra memory space. To overcome this problem, we can
use copy constructor method in which no new object is created.

9.33 Write a program to invoke constructors of nested classes.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 int x;

 A() { x=5;
 cout<<endl<<“In constructor A x=”<<x;
}
class B
{
 public:
 int y;
 B()
 {
 y=10;
 cout<<endl<<“In constructor B y=”<<y;
 }
 class C
 {
 public:
 int z;
 C()
 {
 z=15;
 cout<<endl<<“In constructor C z=”<<z;
 }
 };
};
};
void main()
{
 clrscr();
 A();
 A::B();
 A::B::C();
}

OUTPUT

In constructor A x= 5
In constructor B y =10
In constructor C z =15

Explanation: In the above program, classes A, B, and C are declared. The class B
is declared inside the class A. The class C is declared inside the class B. A and B are
qualified classes for class C. The class A is qualified class for class B. Each class has a
constructor that initializes and displays the contents of the object.

More Programs 391

392 Constructors and Destructors

(1) What are constructors and destructors?
(2) Explain the characteristics of construc-

tors and destructors.

(3) Explain constructors with arguments.
How are arguments passed to the con-
structor?

SUMMARY

(1) C++ provides a pair of in-built functions
called constructor and destruc-
tor. The compiler automatically ex-
ecutes these functions. When an object
is created, constructor is executed. The
programmer can also pass values to the
constructor to initialize member variables
with different values. The destructor de-
stroys the object. It is executed at the end
of program when objects are of no use.

(2) Constructors and destructors decide how
the objects of a class are created, initial-
ized, copied, and destroyed. They are
member functions. Their names are dis-
tinguished from all other member func-
tions because they have the same name as
the class they belong to.

(3) It is also possible to create constructor
with arguments as in normal functions.

(4) Similar to functions, it is also possible to
overload constructors and assign default
 arguments.

(5) When we pass an object by value into a
function, a temporary copy of that object
is created. All copy constructors require
one argument, with reference to an object
of that class. Using copy constructors, it is
possible for the programmers to declare
and initialize one object using reference of
another object. Thus, whenever a construc-
tor is called, a copy of an object is created.

(6) We can also make the object constant by
the keyword const. Any effort to alter
values of variables made by it will gener-
ate an error. The constant object can ac-
cess only constant functions.

(7) The compiler automatically calls the con-
structor and destructor. We can also call
the constructor and destructor in the same
fashion as we call the normal user-defined
function. The calling methods are differ-
ent for constructor and destructor.

(8) Objects are created with names. It is pos-
sible to declare objects without name.
Such objects are known as anonymous
objects.

(9) When the constructor and destructor are pri-
vate, they cannot be executed implicitly, and
hence, it is a must to execute them explicitly.

(10) We can also call the constructor and de-
structor in the same fashion as we call the
normal user defined function.

(11) The class declaration can also be done
inside the other class. While declar-
ing object of such class, it is necessary
to precede the name of the outer class.
The name of outer class is called quali-
fier name, and the class defined inside is
called as nested class.

(12) The dynamic construction means alloca-
tion of memory by constructor for objects
and dynamic destruction means releasing
memory using the destructor.

(13) To use main() as a constructor and de-
structor, we need to define class with the
name main.

(14) Similar to normal and member functions,
constructors also support recursion.

(15) For global object, constructor is executed
before main() function and destructor
is executed after the completion of execu-
tion main() function.

EXERCISES

(A) Answer the following questions

(B) Answer the following by selecting the appropriate option
(1) Constructor and destructor are automat-

ically invoked by
(a) compiler
(b) operating system
(c) main() function
(d) object

(2) Constructor is executed when
(a) object is declared
(b) object is destroyed
(c) both (a) and (b)
(d) none of the above

(3) The destructor is executed when
(a) object goes out of scope
(b) object is not used
(c) object contains nothing
(d) none of the above

(4) When memory allocation is essential,
the constructor makes implicit call to
(a) new operator
(b) malloc()
(c) memset()
(d) random access memory

(5) Destructors can be
(a) overloaded
(b) of any data type
(c) able to return result
(d) explicitly called

(6) Constructors have the same name as
(a) the class they belong to
(b) the current program file name
(c) class name and preceded by ~
(d) both (a) and (c)

(7) The following program displays

#include<iostream.h>
class A
{
 int x;
 public:
 A() {x=10;}
 ~A() {}
};
void main()
{
 A a;
 cout<<(unsigned)
 a.A::A();
}

(a) address
(b) value
(c) both (a) and (b)
(d) none of the above

(8) The following program returns address of

#include<iostream.h>
class A
{public:
 A(){} ~A(){} A *dis-

play()
 {return (&A());}
};
void main()
{ void *p;
 clrscr();

Exercises 393

(4) What do you mean by overloading of
constructors? How it benefits the pro-
grammer?

(5) Explain constructor with default argu-
ments.

(6) What is copy constructor?
(7) What are constant objects? How are

they declared?
(8) How are constructors and destructors

called explicitly?
(9) What is the difference between calling

methods for constructors and destruc-
tors?

(10) Is it possible for a constructor and de-
structor to call each other?

(11) What are conditional constructors and
destructors?

(12) What is anonymous object?
(13) What are nested and qualifier classes?
(14) What is the difference between local

object and global object?
(15) What is static object? How it is different

from normal object?
(16) How are private constructors and de-

structors executed?
(17) How will you declare constant object?
(18) What is default constructor?
(19) What is parameterized constructor?
(20) Explain the negative aspect of static ob-

jects.

394 Constructors and Destructors

(1) class text
 { text() { cout<<“Start”; }
 ~text() { cout<<“\n End”; }

};

 void main() { text t; }

(2) struct text
 { public:

 text (char *c)

 { cout<<“\n”<<c; }

 };

 void main() { text t; }

(3) class text
 { char *c;

 public:

 text (*c) { cout<<“\n”<<c;
}

 };
 void main() { text t(“I

WON”); }

(1) Write a program to declare a class with
private data members. Accept data
through constructor and display the data
with destructor.

(2) Write a program to pass an object to con-
structor and carry out copy constructor.
Display contents of all the objects.

(3) Write a program to declare a class with
three data members. Declare overloaded
constructors with no arguments, one ar-
gument, two arguments, and three argu-
ments. Pass values in the object declara-
tion statement. Create four objects and
pass values in such a way that the entire
four constructors are executed one by
one. Write appropriate messages in con-
structor and destructor so that the execu-
tion of program can be understood.

(4) Write a program to declare a class with two
data members. Also, declare and define
member function to display the content
of the class data members. Create object
A. Display the contents of object A. Again
initialize the object A using explicit call to
constructor. This time pass appropriates
values to constructor. Display the contents
of object A using member function.

(5) Write a program to call constructor re-
cursively. Calculate factorial of a given
number.

(6) Write a program to create an array of
strings. Read and display the strings us-
ing constructor and destructor. Do not use
member functions.

(7) Write a program to create object without
name.

 A a;
 p=a.display();
 cout<<p;
}

(a) constructor
(b) display()
(c) first element if any
(d) none of the above

(D) Find the bugs in the following programs

(C) Attempt the following programs

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology
	1.5 Disadvantage of Conventional Programming
	1.6 Programming Paradigms
	(1) Monolithic Programming
	(2) Procedural/Structured Programming

	1.7 Preface to Object Oriented Programming
	1.8 Key Concepts of Object Oriented Programming
	(1) Objects
	(2) Classes
	(3) Method
	(4) Data Abstraction
	(5) Encapsulation
	(6) Inheritance
	(7) Polymorphism
	(8) Dynamic Binding
	(9) Message passing
	(10) Reusability
	(11) Delegation
	(12) Genericity

	1.9 Advantages of OOP
	1.10 Object Oriented Languages
	SMALTALK
	CHARM++
	JAVA

	1.11 Usage of OOP
	1.12 Usage of C++
	Summary
	Exercises

	Chapter 2 : Basics of C++
	2.1 Introduction
	2.2 Steps to Create and Execute a C++ Program
	2.3 Flowchart for Creating a Source File, Compiling, Linkingand Executing in C++
	2.4 C++ Environments
	2.5 Typical C++ Environment (Borland C++)
	Step 1: Open any Text Editor
	Step 2: Write the Code for the Program
	Step 3: Save the File with .CPP AS an Extension
	Step 4: Compile the Program
	Step 5: Run the Program

	2.6 Structure of a C++ Program
	2.7 Illustrative Simple Program in C++ without Class
	2.8 Header Files and Libraries
	Summary
	Exercises

