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One of the most influential of seventeenth-century mathematicians, Fermat earned his
living as a lawyer and administrator in Toulouse. He shares credit with Descartes for
the invention of analytic geometry, but his most important work may have been in
number theory. Fermat did not write for publication, preferring instead to send letters
and papers to friends. His correspondence with Pascal was the starting point for the
development of a mathematical theory of probability.

—Pierre de Fermat (1601–1665)

Pascal was the son of a nobleman. A prodigy of sorts, he had already published a
treatise on conic sections by the age of sixteen. He also invented one of the early
calculating machines to help his father with accounting work. Pascal’s contributions
to probability were stimulated by his correspondence, in 1654, with Fermat. Later
that year he retired to a life of religious meditation.

—Blaise Pascal (1623–1662)

2.1 INTRODUCTION
Experts have estimated that the likelihood of any given UFO sighting being genuine
is on the order of one in one hundred thousand. Since the early 1950s, some ten thou-
sand sightings have been reported to civil authorities. What is the probability that at
least one of those objects was, in fact, an alien spacecraft? In 1978, Pete Rose of the
Cincinnati Reds set a National League record by batting safely in forty-four consec-
utive games. How unlikely was that event, given that Rose was a lifetime .303 hitter?
By definition, the mean free path is the average distance a molecule in a gas travels
before colliding with another molecule. How likely is it that the distance a molecule
travels between collisions will be at least twice its mean free path? Suppose a boy’s
mother and father both have genetic markers for sickle cell anemia, but neither par-
ent exhibits any of the disease’s symptoms. What are the chances that their son will
also be asymptomatic? What are the odds that a poker player is dealt a full house
or that a craps-shooter makes his “point”? If a woman has lived to age seventy, how
likely is it that she will die before her ninetieth birthday? In 1994, Tom Foley was
Speaker of the House and running for re-election. The day after the election, his
race had still not been “called” by any of the networks: he trailed his Republican
challenger by 2174 votes, but 14,000 absentee ballots remained to be counted. Foley,
however, conceded. Should he have waited for the absentee ballots to be counted,
or was his defeat at that point a virtual certainty?

As the nature and variety of these questions would suggest, probability is a sub-
ject with an extraordinary range of real-world, everyday applications. What began as
an exercise in understanding games of chance has proven to be useful everywhere.
Maybe even more remarkable is the fact that the solutions to all of these diverse
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16 Chapter 2 Probability

questions are rooted in just a handful of definitions and theorems. Those results,
together with the problem-solving techniques they empower, are the sum and sub-
stance of Chapter 2. We begin, though, with a bit of history.

THE EVOLUTION OF THE DEFINITION OF PROBABILITY

Over the years, the definition of probability has undergone several revisions. There
is nothing contradictory in the multiple definitions—the changes primarily reflected
the need for greater generality and more mathematical rigor. The first formulation
(often referred to as the classical definition of probability) is credited to Gerolamo
Cardano (recall Section 1.3). It applies only to situations where (1) the number of
possible outcomes is finite and (2) all outcomes are equally likely. Under those con-
ditions, the probability of an event comprised of m outcomes is the ratio m/n, where
n is the total number of (equally likely) outcomes. Tossing a fair, six-sided die, for
example, gives m/n = 3

6 as the probability of rolling an even number (that is, either
2, 4, or 6).

While Cardano’s model was well-suited to gambling scenarios (for which it was
intended), it was obviously inadequate for more general problems, where outcomes
are not equally likely and/or the number of outcomes is not finite. Richard von
Mises, a twentieth-century German mathematician, is often credited with avoid-
ing the weaknesses in Cardano’s model by defining “empirical” probabilities. In
the von Mises approach, we imagine an experiment being repeated over and over
again under presumably identical conditions. Theoretically, a running tally could
be kept of the number of times (m) the outcome belongs to a given event di-
vided by n, the total number of times the experiment is performed. According to
von Mises, the probability of the given event is the limit (as n goes to infinity) of
the ratio m/n. Figure 2.1.1 illustrates the empirical probability of getting a head by
tossing a fair coin: As the number of tosses continues to increase, the ratio m/n
converges to 1
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Figure 2.1.1

The von Mises approach definitely shores up some of the inadequacies seen in
the Cardano model, but it is not without shortcomings of its own. There is some con-
ceptual inconsistency, for example, in extolling the limit of m/n as a way of defining a
probability empirically, when the very act of repeating an experiment under identical
conditions an infinite number of times is physically impossible. And left unanswered
is the question of how large n must be in order for m/n to be a good approximation
for lim m/n.

Andrei Kolmogorov, the great Russian probabilist, took a different approach.
Aware that many twentieth-century mathematicians were having success developing
subjects axiomatically, Kolmogorov wondered whether probability might similarly
be defined operationally, rather than as a ratio (like the Cardano model) or as a limit
(like the von Mises model). His efforts culminated in a masterpiece of mathematical
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elegance when he published Grundbegriffe der Wahrscheinlichkeitsrechnung
(Foundations of the Theory of Probability) in 1933. In essence, Kolmogorov was
able to show that a maximum of four simple axioms is necessary and sufficient to
define the way any and all probabilities must behave. (These will be our starting
point in Section 2.3.)

We begin Chapter 2 with some basic (and, presumably, familiar) definitions from
set theory. These are important because probability will eventually be defined as
a set function—that is, a mapping from a set to a number. Then, with the help of
Kolmogorov’s axioms in Section 2.3, we will learn how to calculate and manipu-
late probabilities. The chapter concludes with an introduction to combinatorics—the
mathematics of systematic counting—and its application to probability.

2.2 Sample Spaces and the Algebra of Sets
The starting point for studying probability is the definition of four key terms:
experiment, sample outcome, sample space, and event. The latter three, all carryovers
from classical set theory, give us a familiar mathematical framework within which to
work; the former is what provides the conceptual mechanism for casting real-world
phenomena into probabilistic terms.

By an experiment we will mean any procedure that (1) can be repeated, theo-
retically, an infinite number of times and (2) has a well-defined set of possible out-
comes. Thus, rolling a pair of dice qualifies as an experiment and so does measuring
a hypertensive’s blood pressure or doing a spectrographic analysis to determine the
carbon content of moon rocks. Asking a would-be psychic to draw a picture of an
image presumably transmitted by another would-be psychic does not qualify as an
experiment, because the set of possible outcomes cannot be listed, characterized, or
otherwise defined.

Each of the potential eventualities of an experiment is referred to as a sample
outcome, s, and their totality is called the sample space, S. To signify the membership
of s in S, we write s ∈ S. Any designated collection of sample outcomes, including
individual outcomes, the entire sample space, and the null set, constitutes an event.
The latter is said to occur if the outcome of the experiment is one of the members of
the event.

Example
2.2.1

Consider the experiment of flipping a coin three times. What is the sample space?
Which sample outcomes make up the event A: Majority of coins show heads?

Think of each sample outcome here as an ordered triple, its components repre-
senting the outcomes of the first, second, and third tosses, respectively. Altogether,
there are eight different triples, so those eight comprise the sample space:

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

By inspection, we see that four of the sample outcomes in S constitute the event A:

A = {HHH, HHT, HTH, THH}

Example
2.2.2

Imagine rolling two dice, the first one red, the second one green. Each sample out-
come is an ordered pair (face showing on red die, face showing on green die), and
the entire sample space can be represented as a 6 × 6 matrix (see Figure 2.2.1).
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   1 2 3 4 5 6

 1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

 2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

 3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

 4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

 5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

 6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Figure 2.2.1

Gamblers are often interested in the event A that the sum of the faces showing
is a 7. Notice in Figure 2.2.1 that the sample outcomes contained in A are the six
diagonal entries, (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1).

Example
2.2.3

A local TV station advertises two newscasting positions. If three women (W1,W2,W3)
and two men (M1, M2) apply, the “experiment” of hiring two coanchors generates a
sample space of ten outcomes:

S = {(W1,W2), (W1,W3), (W2,W3), (W1, M1), (W1, M2), (W2, M1),

(W2, M2), (W3, M1), (W3, M2), (M1, M2)}
Does it matter here that the two positions being filled are equivalent? Yes. If the
station were seeking to hire, say, a sports announcer and a weather forecaster, the
number of possible outcomes would be twenty: (W2, M1), for example, would repre-
sent a different staffing assignment than (M1,W2).

Example
2.2.4

The number of sample outcomes associated with an experiment need not be fi-
nite. Suppose that a coin is tossed until the first tail appears. If the first toss is itself
a tail, the outcome of the experiment is T; if the first tail occurs on the second toss,
the outcome is HT; and so on. Theoretically, of course, the first tail may never occur,
and the infinite nature of S is readily apparent:

S = {T, HT, HHT, HHHT, . . .}

Example
2.2.5

There are three ways to indicate an experiment’s sample space. If the number of pos-
sible outcomes is small, we can simply list them, as we did in Examples 2.2.1 through
2.2.3. In some cases it may be possible to characterize a sample space by showing
the structure its outcomes necessarily possess. This is what we did in Example 2.2.4.
A third option is to state a mathematical formula that the sample outcomes must
satisfy.

A computer programmer is running a subroutine that solves a general
quadratic equation, ax2 + bx + c = 0. Her “experiment” consists of choosing val-
ues for the three coefficients a, b, and c. Define (1) S and (2) the event A: Equation
has two equal roots.

First, we must determine the sample space. Since presumably no combinations
of finite a, b, and c are inadmissible, we can characterize S by writing a series of
inequalities:

S = {(a, b, c) : −∞ < a < ∞,−∞ < b < ∞,−∞ < c < ∞}



Section 2.2 Sample Spaces and the Algebra of Sets 19

Defining A requires the well-known result from algebra that a quadratic equation
has equal roots if and only if its discriminant, b2 − 4ac, vanishes. Membership in A,
then, is contingent on a, b, and c satisfying an equation:

A = {(a, b, c) : b2 − 4ac = 0}

Questions

2.2.1. A graduating engineer has signed up for three job
interviews. She intends to categorize each one as being
either a ‘‘success’’ or a ‘‘failure’’ depending on whether
it leads to a plant trip. Write out the appropriate sample
space. What outcomes are in the event A: Second success
occurs on third interview? In B: First success never occurs?
(Hint: Notice the similarity between this situation and the
coin-tossing experiment described in Example 2.2.1.)

2.2.2. Three dice are tossed, one red, one blue, and one
green. What outcomes make up the event A that the sum
of the three faces showing equals 5?

2.2.3. An urn contains six chips numbered 1 through 6.
Three are drawn out. What outcomes are in the event
“Second smallest chip is a 3”? Assume that the order of
the chips is irrelevant.

2.2.4. Suppose that two cards are dealt from a standard
52-card poker deck. Let A be the event that the sum of
the two cards is 8 (assume that aces have a numerical value
of 1). How many outcomes are in A?

2.2.5. In the lingo of craps-shooters (where two dice are
tossed and the underlying sample space is the matrix pic-
tured in Figure 2.2.1) is the phrase “making a hard eight.”
What might that mean?

2.2.6. A poker deck consists of fifty-two cards, represent-
ing thirteen denominations (2 through ace) and four suits
(diamonds, hearts, clubs, and spades). A five-card hand is
called a flush if all five cards are in the same suit but not
all five denominations are consecutive. Pictured below is
a flush in hearts. Let N be the set of five cards in hearts
that are not flushes. How many outcomes are in N? [Note:
In poker, the denominations (A, 2, 3, 4, 5) are considered
to be consecutive (in addition to sequences such as (8, 9,
10, J, Q)).]

Denominations

2 3 4 5 6 7 8 9 10 J Q K A

D

H X X X X X
Suits C

S

2.2.7. Let P be the set of right triangles with a 5′′ hy-
potenuse and whose height and length are a and b, respec-
tively. Characterize the outcomes in P.

2.2.8. Suppose a baseball player steps to the plate with
the intention of trying to “coax” a base on balls by never
swinging at a pitch. The umpire, of course, will necessar-
ily call each pitch either a ball (B) or a strike (S). What
outcomes make up the event A, that a batter walks on the
sixth pitch? (Note: A batter “walks” if the fourth ball is
called before the third strike.)

2.2.9. A telemarketer is planning to set up a phone bank
to bilk widows with a Ponzi scheme. His past experience
(prior to his most recent incarceration) suggests that each
phone will be in use half the time. For a given phone
at a given time, let 0 indicate that the phone is avail-
able and let 1 indicate that a caller is on the line. Sup-
pose that the telemarketer’s “bank” is comprised of four
telephones.
(a) Write out the outcomes in the sample space.
(b) What outcomes would make up the event that exactly
two phones are being used?
(c) Suppose the telemarketer had k phones. How many
outcomes would allow for the possibility that at most one
more call could be received? (Hint: How many lines would
have to be busy?)

2.2.10. Two darts are thrown at the following target:

2 4

1

(a) Let (u, v) denote the outcome that the first dart lands
in region u and the second dart in region v. List the sample
space of (u, v)’s.
(b) List the outcomes in the sample space of sums, u + v.

2.2.11. A woman has her purse snatched by two teenagers.
She is subsequently shown a police lineup consisting of
five suspects, including the two perpetrators. What is the
sample space associated with the experiment “Woman
picks two suspects out of lineup”? Which outcomes
are in the event A: She makes at least one incorrect
identification?

2.2.12. Consider the experiment of choosing coefficients
for the quadratic equation ax2 + bx + c = 0. Characterize
the values of a, b, and c associated with the event A: Equa-
tion has complex roots.

2.2.13. In the game of craps, the person rolling the dice
(the shooter) wins outright if his first toss is a 7 or an 11.
If his first toss is a 2, 3, or 12, he loses outright. If his first
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roll is something else, say a 9, that number becomes his
“point” and he keeps rolling the dice until he either rolls
another 9, in which case he wins, or a 7, in which case he
loses. Characterize the sample outcomes contained in the
event “Shooter wins with a point of 9.”

2.2.14. A probability-minded despot offers a convicted
murderer a final chance to gain his release. The prisoner
is given twenty chips, ten white and ten black. All twenty
are to be placed into two urns, according to any allocation
scheme the prisoner wishes, with the one proviso being
that each urn contain at least one chip. The executioner
will then pick one of the two urns at random and from that
urn, one chip at random. If the chip selected is white, the

prisoner will be set free; if it is black, he “buys the farm.”
Characterize the sample space describing the prisoner’s
possible allocation options. (Intuitively, which allocation
affords the prisoner the greatest chance of survival?)

2.2.15. Suppose that ten chips, numbered 1 through 10,
are put into an urn at one minute to midnight, and chip
number 1 is quickly removed. At one-half minute to mid-
night, chips numbered 11 through 20 are added to the urn,
and chip number 2 is quickly removed. Then at one-fourth
minute to midnight, chips numbered 21 to 30 are added to
the urn, and chip number 3 is quickly removed. If that pro-
cedure for adding chips to the urn continues, how many
chips will be in the urn at midnight (157)?

UNIONS, INTERSECTIONS, AND COMPLEMENTS

Associated with events defined on a sample space are several operations collectively
referred to as the algebra of sets. These are the rules that govern the ways in which
one event can be combined with another. Consider, for example, the game of craps
described in Question 2.2.13. The shooter wins on his initial roll if he throws either
a 7 or an 11. In the language of the algebra of sets, the event “Shooter rolls a 7 or
an 11” is the union of two simpler events, “Shooter rolls a 7” and “Shooter rolls
an 11.” If E denotes the union and if A and B denote the two events making up the
union, we write E = A∪B. The next several definitions and examples illustrate those
portions of the algebra of sets that we will find particularly useful in the chapters
ahead.

Definition 2.2.1
Let A and B be any two events defined over the same sample space S. Then

a. The intersection of A and B, written A ∩ B, is the event whose outcomes
belong to both A and B.

b. The union of A and B, written A ∪ B, is the event whose outcomes belong
to either A or B or both.

Example
2.2.6

A single card is drawn from a poker deck. Let A be the event that an ace is selected:

A = {ace of hearts, ace of diamonds, ace of clubs, ace of spades}
Let B be the event “Heart is drawn”:

B = {2 of hearts, 3 of hearts, . . . , ace of hearts}
Then

A ∩ B = {ace of hearts}
and

A ∪ B = {2 of hearts, 3 of hearts, . . . , ace of hearts, ace of diamonds,
ace of clubs, ace of spades}

(Let C be the event “Club is drawn.” Which cards are in B ∪ C? In B ∩ C?)
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Example
2.2.7

Let A be the set of x’s for which x2 + 2x = 8; let B be the set for which x2 + x = 6.
Find A ∩ B and A ∪ B.

Since the first equation factors into (x + 4)(x − 2) = 0, its solution set is A =
{−4, 2}. Similarly, the second equation can be written (x + 3)(x − 2) = 0, making
B = {−3, 2}. Therefore,

A ∩ B = {2}
and

A ∪ B = {−4,−3, 2}

Example
2.2.8

Consider the electrical circuit pictured in Figure 2.2.2. Let Ai denote the event that
switch i fails to close, i = 1, 2, 3, 4. Let A be the event “Circuit is not completed.”
Express A in terms of the Ai’s.

1 3

2 4

Figure 2.2.2

Call the ① and ② switches line a; call the ③ and ④ switches line b. By inspection,
the circuit fails only if both line a and line b fail. But line a fails only if either ① or
② (or both) fail. That is, the event that line a fails is the union A1 ∪ A2. Similarly,
the failure of line b is the union A3 ∪ A4. The event that the circuit fails, then, is an
intersection:

A = (A1 ∪ A2) ∩ (A3 ∪ A4)

Definition 2.2.2
Events A and B defined over the same sample space are said to be mutually
exclusive if they have no outcomes in common—that is, if A ∩ B = ∅, where ∅ is
the null set.

Example
2.2.9

Consider a single throw of two dice. Define A to be the event that the sum of the
faces showing is odd. Let B be the event that the two faces themselves are odd. Then
clearly, the intersection is empty, the sum of two odd numbers necessarily being even.
In symbols, A ∩ B = ∅. (Recall the event B ∩ C asked for in Example 2.2.6.)

Definition 2.2.3
Let A be any event defined on a sample space S. The complement of A, written
AC, is the event consisting of all the outcomes in S other than those contained
in A.

Example
2.2.10

Let A be the set of (x, y)’s for which x2 + y2 < 1. Sketch the region in the xy-plane
corresponding to AC.

From analytic geometry, we recognize that x2 + y2 < 1 describes the interior of
a circle of radius 1 centered at the origin. Figure 2.2.3 shows the complement—the
points on the circumference of the circle and the points outside the circle.
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AC  : x2  +y2   $ 1
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A x

Figure 2.2.3

The notions of union and intersection can easily be extended to more than
two events. For example, the expression A1 ∪ A2 ∪ · · · ∪ Ak defines the set of out-
comes belonging to any of the Ai’s (or to any combination of the Ai’s). Similarly,
A1 ∩ A2 ∩ · · · ∩ Ak is the set of outcomes belonging to all of the Ai’s.

Example
2.2.11

Suppose the events A1, A2, . . . , Ak are intervals of real numbers such that

Ai = {x : 0 ≤ x < 1/i}, i = 1, 2, . . . , k

Describe the sets A1 ∪ A2 ∪ · · · ∪ Ak = ∪k
i=1Ai and A1 ∩ A2 ∩ · · · ∩ Ak = ∩k

i=1Ai.
Notice that the Ai’s are telescoping sets. That is, A1 is the interval 0 ≤ x < 1, A2

is the interval 0 ≤ x < 1
2 , and so on. It follows, then, that the union of the k Ai’s is

simply A1 while the intersection of the Ai’s (that is, their overlap) is Ak.

Questions

2.2.16. Sketch the regions in the xy-plane corresponding
to A ∪ B and A ∩ B if

A = {(x, y): 0 < x < 3, 0 < y < 3}
and

B = {(x, y): 2 < x < 4, 2 < y < 4}
2.2.17. Referring to Example 2.2.7, find A∩B and A∪B if
the two equations were replaced by inequalities: x2 +2x ≤
8 and x2 + x ≤ 6.

2.2.18. Find A ∩ B ∩ C if A = {x: 0 ≤ x ≤ 4}, B = {x: 2 ≤
x ≤ 6}, and C = {x: x = 0, 1, 2, . . .}.
2.2.19. An electronic system has four components divided
into two pairs. The two components of each pair are wired
in parallel; the two pairs are wired in series. Let Ai j denote
the event “ith component in jth pair fails,” i = 1, 2; j =
1, 2. Let A be the event “System fails.” Write A in terms
of the Ai j’s.

j = 1 j = 2

2.2.20. Define A = {x : 0 ≤ x ≤ 1}, B = {x : 0 ≤ x ≤ 3},
and C = {x : −1 ≤ x ≤ 2}. Draw diagrams showing each
of the following sets of points:
(a) AC ∩ B ∩ C

(b) AC ∪ (B ∩ C)
(c) A ∩ B ∩ CC

(d) [(A ∪ B) ∩ CC]C

2.2.21. Let A be the set of five-card hands dealt from
a fifty-two-card poker deck, where the denominations
of the five cards are all consecutive—for example, (7 of
hearts, 8 of spades, 9 of spades, 10 of hearts, jack of dia-
monds). Let B be the set of five-card hands where the suits
of the five cards are all the same. How many outcomes are
in the event A ∩ B?

2.2.22. Suppose that each of the twelve letters in the word

T E S S E L L A T I O N

is written on a chip. Define the events F, R, and C as follows:

F : letters in first half of alphabet
R: letters that are repeated
V : letters that are vowels

Which chips make up the following events?
(a) F ∩ R ∩ V

(b) FC ∩ R ∩ VC

(c) F ∩ RC ∩ V
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2.2.23. Let A, B, and C be any three events defined on a
sample space S. Show that
(a) the outcomes in A ∪ (B ∩ C) are the same as the out-
comes in (A ∪ B) ∩ (A ∪ C).
(b) the outcomes in A ∩ (B ∪ C) are the same as the out-
comes in (A ∩ B) ∪ (A ∩ C).

2.2.24. Let A1, A2, . . . , Ak be any set of events defined on
a sample space S. What outcomes belong to the event

(A1 ∪ A2 ∪ · · · ∪ Ak) ∪ (
AC

1 ∩ AC
2 ∩ · · · ∩ AC

k

)
2.2.25. Let A, B, and C be any three events defined on a
sample space S. Show that the operations of union and
intersection are associative by proving that
(a) A ∪ (B ∪ C) = (A ∪ B) ∪ C = A ∪ B ∪ C

(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C = A ∩ B ∩ C

2.2.26. Suppose that three events—A, B, and C—are de-
fined on a sample space S. Use the union, intersection, and
complement operations to represent each of the following
events:
(a) none of the three events occurs
(b) all three of the events occur
(c) only event A occurs
(d) exactly one event occurs
(e) exactly two events occur

2.2.27. What must be true of events A and B if
(a) A ∪ B = B

(b) A ∩ B = A

2.2.28. Let events A and B and sample space S be defined
as the following intervals:

S = {x : 0 ≤ x ≤ 10}
A = {x : 0 < x < 5}
B = {x : 3 ≤ x ≤ 7}

Characterize the following events:
(a) AC

(b) A ∩ B

(c) A ∪ B

(d) A ∩ BC

(e) AC ∪ B

(f) AC ∩ BC

2.2.29. A coin is tossed four times and the resulting se-
quence of heads and/or tails is recorded. Define the events
A, B, and C as follows:

A: exactly two heads appear
B: heads and tails alternate
C: first two tosses are heads

(a) Which events, if any, are mutually exclusive?
(b) Which events, if any, are subsets of other sets?

2.2.30. Pictured below are two organizational charts de-
scribing the way upper management vets new proposals.
For both models, three vice presidents—1, 2, and 3—each
voice an opinion.

1

1

2

2

3

3

(a)

(b)

For (a), all three must concur if the proposal is to pass; if
any one of the three favors the proposal in (b), it passes.
Let Ai denote the event that vice president i favors the
proposal, i = 1, 2, 3, and let A denote the event that the
proposal passes. Express A in terms of the Ai’s for the two
office protocols. Under what sorts of situations might one
system be preferable to the other?

EXPRESSING EVENTS GRAPHICALLY: VENN DIAGRAMS

Relationships based on two or more events can sometimes be difficult to express us-
ing only equations or verbal descriptions. An alternative approach that can be highly
effective is to represent the underlying events graphically in a format known as a
Venn diagram. Figure 2.2.4 shows Venn diagrams for an intersection, a union, a com-
plement, and two events that are mutually exclusive. In each case, the shaded interior
of a region corresponds to the desired event.

Example
2.2.12

When two events A and B are defined on a sample space, we will frequently need
to consider

a. the event that exactly one (of the two) occurs.

b. the event that at most one (of the two) occurs.

Getting expressions for each of these is easy if we visualize the corresponding Venn
diagrams.
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Venn diagrams

A
A >  B

B
S

A
A < B

B
S

S

A

A > B = ø

B
S

AC

A

Figure 2.2.4

The shaded area in Figure 2.2.5 represents the event E that either A or B, but
not both, occurs (that is, exactly one occurs).

S

A B

Figure 2.2.5

Just by looking at the diagram we can formulate an expression for E. The portion
of A, for example, included in E is A ∩ BC. Similarly, the portion of B included in E
is B ∩ AC. It follows that E can be written as a union:

E = (A ∩ BC) ∪ (B ∩ AC)

(Convince yourself that an equivalent expression for E is (A ∩ B)C ∩ (A ∪ B).)
Figure 2.2.6 shows the event F that at most one (of the two events) occurs. Since

the latter includes every outcome except those belonging to both A and B, we can
write

F = (A ∩ B)C

A B

S

Figure 2.2.6

The final example in this section shows two ways of “verifying” identities involv-
ing events. The first is nonrigorous and uses Venn diagrams; the second is a formal
approach in which every outcome in the left-hand side of the presumed identity is
shown to belong to the right-hand side, and vice versa. The particular identity being
established is a very useful distributive property for intersections.

Example
2.2.13

Let A, B, and C be any three events defined over the same sample space S. Show
that

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (2.2.1)

Figure 2.2.7 pictures the set formed by intersecting A with the union of B and C. Simi-
larly, Figure 2.2.8 shows the union of the intersection of A and B with the intersection
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of A and C. It would appear at this point that the identity is true: The rightmost
diagrams in Figures 2.2.7 and 2.2.8 do show the same shaded region. Still, this is not
a proof. How the events were initially drawn may not do justice to the problem in
general. Can we be certain, for example, that Equation 2.2.1 remains true if C, for
example, is mutually exclusive of A or B? Or if B is a proper subset of A?

A

S S

B

B <  C
A >  (B < C)

C

A B

C

Figure 2.2.7

A

S S

B

A >  C

A >  B
(A > B) < (A > C)

C

A B

C

Figure 2.2.8

For a rigorous solution, we need to take the algebraic approach of showing that

(1) A ∩ (B ∪ C) is contained in (A ∩ B) ∪ (A ∩ C)

and

(2) (A ∩ B) ∪ (A ∩ C) is contained in A ∩ (B ∪ C).

To that end, let s ∈ A∩ (B ∪ C). Then, s ∈ A and s ∈ B∪C. But if s ∈ B∪C, then
either s ∈ B or s ∈ C. If s ∈ B, then s ∈ A ∩ B and s ∈ (A ∩ B) ∪ (A ∩ C). Likewise,
if s ∈ C, it follows that s ∈ (A ∩ B) ∪ (A ∩ C). Therefore, every sample outcome in
A ∩ (B ∪ C) is also contained in (A ∩ B) ∪ (A ∩ C). Going the other way, assume
that s ∈ (A ∩ B) ∪ (A ∩ C). Therefore, either s ∈ (A ∩ B) or s ∈ (A ∩ C) (or both).
Suppose s ∈ A ∩ B. Then s ∈ A and s ∈ B, in which case s ∈ A ∩ (B ∪ C). The
same conclusion holds if s ∈ (A ∩ C). Thus, every sample outcome in (A ∩ B) ∪
(A ∩ C) is in A ∩ (B ∪ C). It follows that A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are
identical.

Questions

2.2.31. During orientation week, the latest Spiderman
movie was shown twice at State University. Among the
entering class of 6000 freshmen, 850 went to see it the first
time, 690 the second time, while 4700 failed to see it either
time. How many saw it twice?

2.2.32. Let A and B be any two events. Use Venn dia-
grams to show that
(a) the complement of their intersection is the union of
their complements:

(A ∩ B)C = AC ∪ BC

(b) the complement of their union is the intersection of
their complements:

(A ∪ B)C = AC ∩ BC

(These two results are known as DeMorgan’s laws.)

2.2.33. Let A, B, and C be any three events. Use Venn
diagrams to show that

(a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

2.2.34. Let A, B, and C be any three events. Use Venn
diagrams to show that
(a) A ∪ (B ∪ C) = (A ∪ B) ∪ C

(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C

2.2.35. Let A and B be any two events defined on a sam-
ple space S. Which of the following sets are necessarily
subsets of which other sets?

A B A ∪ B A ∩ B AC ∩ B

A ∩ BC (AC ∪ BC)C

2.2.36. Use Venn diagrams to suggest an equivalent way
of representing the following events:
(a) (A ∩ BC)C

(b) B ∪ (A ∪ B)C

(c) A ∩ (A ∩ B)C
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2.2.37. A total of twelve hundred graduates of State Tech
have gotten into medical school in the past several years. Of
that number, one thousand earned scores of twenty-seven
or higher on the MCAT and four hundred had GPAs that
were 3.5 or higher. Moreover, three hundred had MCATs
that were twenty-seven or higher and GPAs that were
3.5 or higher. What proportion of those twelve hundred
graduates got into medical school with an MCAT lower
than twenty-seven and a GPA below 3.5?

2.2.38. Let A, B, and C be any three events defined on
a sample space S. Let N(A), N(B), N(C), N(A ∩ B),
N(A ∩ C), N(B ∩ C), and N(A ∩ B ∩ C) denote the
numbers of outcomes in all the different intersections in
which A, B, and C are involved. Use a Venn diagram to
suggest a formula for N(A ∪ B ∪ C). [Hint: Start with the
sum N(A) + N(B) + N(C) and use the Venn diagram to
identify the “adjustments” that need to be made to that
sum before it can equal N(A ∪ B ∪ C).] As a precedent,

note that N(A ∪ B) = N(A) + N(B) − N(A ∩ B). There,
in the case of two events, subtracting N(A ∩ B) is the
“adjustment.”

2.2.39. A poll conducted by a potential presidential
candidate asked two questions: (1) Do you support the
candidate’s position on taxes? and (2) Do you support
the candidate’s position on homeland security? A total of
twelve hundred responses were received; six hundred said
“yes” to the first question and four hundred said “yes” to
the second. If three hundred respondents said “no” to the
taxes question and “yes” to the homeland security ques-
tion, how many said “yes” to the taxes question but “no”
to the homeland security question?

2.2.40. For two events A and B defined on a sample space
S, N(A ∩ BC) = 15, N(AC ∩ B) = 50, and N(A ∩ B) = 2.
Given that N(S) = 120, how many outcomes belong to
neither A nor B?

2.3 The Probability Function
Having introduced in Section 2.2 the twin concepts of ‘‘experiment’’ and ‘‘sample
space,’’ we are now ready to pursue in a formal way the all-important problem of
assigning a probability to an experiment’s outcome—and, more generally, to an event.
Specifically, if A is any event defined on a sample space S, the symbol P(A) will denote
the probability of A, and we will refer to P as the probability function. It is, in effect, a
mapping from a set (i.e., an event) to a number. The backdrop for our discussion will
be the unions, intersections, and complements of set theory; the starting point will be
the axioms referred to in Section 2.1 that were originally set forth by Kolmogorov.

If S has a finite number of members, Kolmogorov showed that as few as three
axioms are necessary and sufficient for characterizing the probability function P:

Axiom 1. Let A be any event defined over S. Then P(A) ≥ 0.

Axiom 2. P(S) = 1.

Axiom 3. Let A and B be any two mutually exclusive events defined over S. Then

P(A ∪ B) = P(A) + P(B)

When S has an infinite number of members, a fourth axiom is needed:

Axiom 4. Let A1, A2, . . . , be events defined over S. If Ai ∩Aj = ∅ for each i 
= j, then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai)

From these simple statements come the general rules for manipulating probability
functions—rules that apply no matter what specific mathematical forms the functions
may happen to take.

SOME BASIC PROPERTIES OF P

Some of the immediate consequences of Kolmogorov’s axioms are the results given
in Theorems 2.3.1 through 2.3.6. Despite their simplicity, these properties prove to
be extraordinarily useful in solving all sorts of problems.
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Theorem
2.3.1

P(AC) = 1 − P(A).

Proof By Axiom 2 and Definition 2.2.3,

P(S) = 1 = P(A ∪ AC)

But A and AC are mutually exclusive, so

P(A ∪ AC) = P(A) + P(AC)

and the result follows.

Theorem
2.3.2

P(∅) = 0.

Proof Since ∅ = SC, P(∅) = P(SC) = 1 − P(S) = 0.

Theorem
2.3.3

If A ⊂ B, then P(A) ≤ P(B).

Proof Note that the event B may be written in the form

B = A ∪ (B ∩ AC)

where A and (B ∩ AC) are mutually exclusive. Therefore,

P(B) = P(A) + P(B ∩ AC)

which implies that P(B) ≥ P(A) since P(B ∩ AC) ≥ 0.

Theorem
2.3.4

For any event A, P(A) ≤ 1.

Proof The proof follows immediately from Theorem 2.3.3 because A ⊂ S and
P(S) = 1.

Theorem
2.3.5

Let A1, A2, . . . , An be events defined over S. If Ai ∩ Aj = ∅ for i 
= j, then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)

Proof The proof is a straightforward induction argument with Axiom 3 being the
starting point.

Theorem
2.3.6

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Proof The Venn diagram for A ∪ B certainly suggests that the statement of the
theorem is true (recall Figure 2.2.4). More formally, we have from Axiom 3 that

P(A) = P(A ∩ BC) + P(A ∩ B)

and

P(B) = P(B ∩ AC) + P(A ∩ B)

Adding these two equations gives

P(A) + P(B) = [P(A ∩ BC) + P(B ∩ AC) + P(A ∩ B)] + P(A ∩ B)

By Theorem 2.3.5, the sum in the brackets is P(A ∪ B). If we subtract P(A ∩ B)
from both sides of the equation, the result follows.
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The next result is a generalization of Theorem 2.3.6 that considers the probability
of the union of n events. We have elected to retain the two-event case, P (A ∪ B), as
a separate theorem simply for pedagogical reasons.

Theorem
2.3.7

Let A1, A2, . . . An be any n events defined on S. Then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai) −
∑
i< j

P
(
Ai ∩ Aj

)
+

∑
i< j<k

P
(
Ai ∩ Aj ∩ Ak

) −
∑

i< j<k<l

P
(
Ai ∩ Aj ∩ Ak ∩ Al

)
+ · · · + (−1)n+1 · P (A1 ∩ A2 ∩ · · · ∩ An)

Proof The proof of Theorem 2.3.7 is basically an exercise in bookkeeping. By
definition, A1 ∪ A2 ∪ · · · ∪ An is the set of outcomes belonging to any of the
Ai’s individually or to any intersections of the Ai’s. The right-hand side of Theo-
rem 2.3.7 is a counting scheme that alternately includes and excludes subsets of
outcomes in such a way that each outcome in A1 ∪ A2 ∪ · · · ∪ An is included once
and only once in the calculation of P (A1 ∪ A2 ∪ · · · ∪ An).

Consider, for example, the union of three events, A1, A2, and A3 as shown in
Figure 2.3.1.

A1 A3

A2

Figure 2.3.1

Notice that simply adding P(A1), P(A2), and P(A3) results in adding
P (A1 ∩ A2) twice, P (A1 ∩ A3) twice, and P (A2 ∩ A3) twice. It also results in
P (A1 ∩ A2 ∩ A3) being added three times. The obvious “correction” is to subtract
the probabilities associated with A1 ∩ A2, A1 ∩ A3, and A2 ∩ A3 and to add back
the probability associated with A1 ∩ A2 ∩ A3 since those latter outcomes have pre-
viously been added three times and subtracted three times. Therefore,

P (A1 ∪ A2 ∪ A3) =
3∑

i=1

P (Ai) −
∑
i< j

P
(
Ai ∩ Aj

) + (−1)3+1 P (A1 ∩ A2 ∩ A3)

= P (A1) + P (A2) + P (A3) − P (A1 ∩ A2) − P (A1 ∩ A3)

− P (A2 ∩ A3) + P (A1 ∩ A2 ∩ A3) .

A formal proof of the theorem requires a knowledge of combinatorics and will be
deferred until Section 2.6.

Example
2.3.1

Let A and B be two events defined on a sample space S such that P(A) = 0.3, P(B) =
0.5, and P(A ∪ B) = 0.7. Find (a) P(A ∩ B), (b) P(AC ∪ BC), and (c) P(AC ∩ B).

a. Transposing the terms in Theorem 2.3.6 yields a general formula for the proba-
bility of an intersection:

P(A ∩ B) = P(A) + P(B) − P(A ∪ B)
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Here

P(A ∩ B) = 0.3 + 0.5 − 0.7

= 0.1

b. The two cross-hatched regions in Figure 2.3.2 correspond to AC and BC. The
union of AC and BC consists of those regions that have cross-hatching in either
or both directions. By inspection, the only portion of S not included in AC ∪ BC

is the intersection, A ∩ B. By Theorem 2.3.1, then

P(AC ∪ BC) = 1 − P(A ∩ B)

= 1 − 0.1

= 0.9

S

AC

BC

A

B

Figure 2.3.2

S

AC

B

A

B

Figure 2.3.3

c. The event AC ∩ B corresponds to the region in Figure 2.3.3 where the cross-
hatching extends in both directions—that is, everywhere in B except the inter-
section with A. Therefore,

P(AC ∩ B) = P(B) − P(A ∩ B)

= 0.5 − 0.1

= 0.4

Example
2.3.2

Show that

P(A ∩ B) ≥ 1 − P(AC) − P(BC)

for any two events A and B defined on a sample space S.
From Example 2.3.1a and Theorem 2.3.1,

P(A ∩ B) = P(A) + P(B) − P(A ∪ B)

= 1 − P(AC) + 1 − P(BC) − P(A ∪ B)

But P(A ∪ B) ≤ 1 from Theorem 2.3.4, so

P(A ∩ B) ≥ 1 − P(AC) − P(BC)
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Example
2.3.3

Two cards are drawn from a poker deck without replacement. What is the probability
that the second is higher in rank than the first?

Let A1, A2, and A3 be the events “First card is lower in rank,” “First card is
higher in rank,” and “Both cards have same rank,” respectively. Clearly, the three
Ai’s are mutually exclusive and they account for all possible outcomes, so from
Theorem 2.3.5,

P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3) = P(S) = 1

Once the first card is drawn, there are three choices for the second that would have
the same rank—that is, P(A3) = 3

51 . Moreover, symmetry demands that P(A1) =
P(A2), so

2P(A2) + 3
51

= 1

implying that P(A2) = 8
17 .

Example
2.3.4

Having endured (and survived) the mental trauma that comes from taking two years
of chemistry, a year of physics, and a year of biology, Biff decides to test the medi-
cal school waters and sends his MCATs to two colleges, X and Y . Based on how his
friends have fared, he estimates that his probability of being accepted at X is 0.7, and
at Y it is 0.4. He also suspects there is a 75% chance that at least one of his applica-
tions will be rejected. What is the probability that he gets at least one acceptance?

Let A be the event “School X accepts him” and B the event “School Y accepts
him.” We are given that P(A) = 0.7, P(B) = 0.4, and P(AC ∪ BC) = 0.75. The
question is asking for P(A ∪ B).

From Theorem 2.3.6,

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Recall from Question 2.2.32 that AC ∪ BC = (A ∩ B)C, so

P(A ∩ B) = 1 − P[(A ∩ B)C] = 1 − 0.75 = 0.25

It follows that Biff’s prospects are not all that bleak—he has an 85% chance of getting
in somewhere:

P(A ∪ B) = 0.7 + 0.4 − 0.25

= 0.85

Comment Notice that P(A ∪ B) varies directly with P(AC ∪ BC):

P(A ∪ B) = P(A) + P(B) − [1 − P(AC ∪ BC)]

= P(A) + P(B) − 1 + P(AC ∪ BC)

If P(A) and P(B), then, are fixed, we get the curious result that Biff’s chances
of getting at least one acceptance increase if his chances of at least one rejection
increase.

Questions

2.3.1. According to a family-oriented lobbying group,
there is too much crude language and violence on tele-
vision. Forty-two percent of the programs they screened
had language they found offensive, 27% were too violent,
and 10% were considered excessive in both language and

violence. What percentage of programs did comply with
the group’s standards?

2.3.2. Let A and B be any two events defined on S. Sup-
pose that P(A) = 0.4, P(B) = 0.5, and P(A ∩ B) = 0.1.
What is the probability that A or B but not both occur?
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2.3.3. Express the following probabilities in terms of
P(A), P(B), and P(A ∩ B).

(a) P(AC ∪ BC)
(b) P(AC ∩ (A ∪ B))

2.3.4. Let A and B be two events defined on S. If the prob-
ability that at least one of them occurs is 0.3 and the prob-
ability that A occurs but B does not occur is 0.1, what
is P(B)?

2.3.5. Suppose that three fair dice are tossed. Let Ai be
the event that a 6 shows on the ith die, i = 1, 2, 3. Does
P(A1 ∪ A2 ∪ A3) = 1

2 ? Explain.

2.3.6. Events A and B are defined on a sample space S
such that P((A ∪ B)C) = 0.5 and P(A ∩ B) = 0.2. What is
the probability that either A or B but not both will occur?

2.3.7. Let A1, A2, . . . , An be a series of events for which
Ai ∩ Aj = ∅ if i 
= j and A1 ∪ A2 ∪ · · · ∪ An = S. Let
B be any event defined on S. Express B as a union of
intersections.

2.3.8. Draw the Venn diagrams that would correspond to
the equations (a) P(A ∩ B) = P(B) and (b) P(A ∪ B) =
P(B).

2.3.9. In the game of “odd man out” each player tosses
a fair coin. If all the coins turn up the same except for
one, the player tossing the different coin is declared the
odd man out and is eliminated from the contest. Suppose
that three people are playing. What is the probability that
someone will be eliminated on the first toss? (Hint: Use
Theorem 2.3.1.)

2.3.10. An urn contains twenty-four chips, numbered 1
through 24. One is drawn at random. Let A be the event
that the number is divisible by 2 and let B be the event
that the number is divisible by 3. Find P(A ∪ B).

2.3.11. If State’s football team has a 10% chance of win-
ning Saturday’s game, a 30% chance of winning two weeks
from now, and a 65% chance of losing both games, what
are their chances of winning exactly once?

2.3.12. Events A1 and A2 are such that A1 ∪ A2 = S and
A1 ∩ A2 = ∅. Find p2 if P(A1) = p1, P(A2) = p2, and
3p1 − p2 = 1

2 .

2.3.13. Consolidated Industries has come under consid-
erable pressure to eliminate its seemingly discriminatory
hiring practices. Company officials have agreed that dur-
ing the next five years, 60% of their new employees will be
females and 30% will be minorities. One out of four new
employees, though, will be a white male. What percentage
of their new hires will be minority females?

2.3.14. Three events—A, B, and C—are defined on a sam-
ple space, S. Given that P(A) = 0.2, P(B) = 0.1, and
P(C) = 0.3, what is the smallest possible value for P[(A ∪
B ∪ C)C]?

2.3.15. A coin is to be tossed four times. Define events X
and Y such that

X : first and last coins have opposite faces
Y : exactly two heads appear

Assume that each of the sixteen head/tail sequences has
the same probability. Evaluate
(a) P(XC ∩ Y)
(b) P(X ∩ YC)

2.3.16. Two dice are tossed. Assume that each possible
outcome has a 1

36 probability. Let A be the event that the
sum of the faces showing is 6, and let B be the event that
the face showing on one die is twice the face showing on
the other. Calculate P(A ∩ BC).

2.3.17. Let A, B, and C be three events defined on a sam-
ple space, S. Arrange the probabilities of the following
events from smallest to largest:
(a) A ∪ B

(b) A ∩ B

(c) A

(d) S

(e) (A ∩ B) ∪ (A ∩ C)

2.3.18. Lucy is currently running two dot-com scams out
of a bogus chatroom. She estimates that the chances of
the first one leading to her arrest are one in ten; the “risk”
associated with the second is more on the order of one
in thirty. She considers the likelihood that she gets busted
for both to be 0.0025. What are Lucy’s chances of avoiding
incarceration?

2.4 Conditional Probability
In Section 2.3, we calculated probabilities of certain events by manipulating other
probabilities whose values we were given. Knowing P(A), P(B), and P(A ∩ B), for
example, allows us to calculate P(A∪B) (recall Theorem 2.3.6). For many real-world
situations, though, the “given” in a probability problem goes beyond simply knowing
a set of other probabilities. Sometimes, we know for a fact that certain events have
already occurred, and those occurrences may have a bearing on the probability we
are trying to find. In short, the probability of an event A may have to be “adjusted” if
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we know for certain that some related event B has already occurred. Any probability
that is revised to take into account the (known) occurrence of other events is said to
be a conditional probability.

Consider a fair die being tossed, with A defined as the event “6 appears.” Clearly,
P(A) = 1

6 . But suppose that the die has already been tossed—by someone who re-
fuses to tell us whether or not A occurred but does enlighten us to the extent of
confirming that B occurred, where B is the event “Even number appears.” What are
the chances of A now? Here, common sense can help us: There are three equally
likely even numbers making up the event B—one of which satisfies the event A, so
the “updated” probability is 1

3 .
Notice that the effect of additional information, such as the knowledge that B has

occurred, is to revise—indeed, to shrink—the original sample space S to a new set of
outcomes S′. In this example, the original S contained six outcomes, the conditional
sample space, three (see Figure 2.4.1).

1
B

P (6, relative to S) = 1/6

3

5

6

4

2

S
S' (= B)

P (6, relative to S') = 1/3

6

4

2

Figure 2.4.1

The symbol P(A|B)—read “the probability of A given B”—is used to denote
a conditional probability. Specifically, P(A|B) refers to the probability that A will
occur given that B has already occurred.

It will be convenient to have a formula for P(A|B) that can be evaluated in terms
of the original S, rather than the revised S′. Suppose that S is a finite sample space
with n outcomes, all equally likely. Assume that A and B are two events contain-
ing a and b outcomes, respectively, and let c denote the number of outcomes in the
intersection of A and B (see Figure 2.4.2). Based on the argument suggested in Fig-
ure 2.4.1, the conditional probability of A given B is the ratio of c to b. But c/b can be
written as the quotient of two other ratios,

S
BA

ca b

Figure 2.4.2

c
b

= c/n
b/n

so, for this particular case,

P(A|B) = P(A ∩ B)
P(B)

(2.4.1)

The same underlying reasoning that leads to Equation 2.4.1, though, holds true even
when the outcomes are not equally likely or when S is uncountably infinite.
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Definition 2.4.1
Let A and B be any two events defined on S such that P(B) > 0. The conditional
probability of A, assuming that B has already occurred, is written P(A|B) and is
given by

P(A|B) = P(A ∩ B)
P(B)

Comment Definition 2.4.1 can be cross multiplied to give a frequently useful ex-
pression for the probability of an intersection. If P(A|B) = P(A ∩ B)/P(B), then

P(A ∩ B) = P(A|B)P(B) (2.4.2)

Example
2.4.1

A card is drawn from a poker deck. What is the probability that the card is a club,
given that the card is a king?

Intuitively, the answer is 1
4 : The king is equally likely to be a heart, diamond,

club, or spade. More formally, let C be the event “Card is a club”; let K be the event
“Card is a king.” By Definition 2.4.1,

P(C|K) = P(C ∩ K)
P(K)

But P(K) = 4
52 and P(C ∩ K) = P(Card is a king of clubs) = 1

52 . Therefore, confirm-
ing our intuition,

P(C|K) = 1/52
4/52

= 1
4

[Notice in this example that the conditional probability P(C|K) is numerically the
same as the unconditional probability P(C)—they both equal 1

4 . This means that our
knowledge that K has occurred gives us no additional insight about the chances of C
occurring. Two events having this property are said to be independent. We will examine
the notion of independence and its consequences in detail in Section 2.5.]

Example
2.4.2

Our intuitions can often be fooled by probability problems, even ones that appear to
be simple and straightforward. The “two boys” problem described here is an often-
cited case in point.

Consider the set of families having two children. Assume that the four possible
birth sequences—(younger child is a boy, older child is a boy), (younger child is a
boy, older child is a girl), and so on—are equally likely. What is the probability that
both children are boys given that at least one is a boy?

The answer is not 1
2 . The correct answer can be deduced from Definition 2.4.1.

By assumption, each of the four possible birth sequences—(b, b), (b, g), (g, b), and
(g, g)—has a 1

4 probability of occurring. Let A be the event that both children are
boys, and let B be the event that at least one child is a boy. Then

P(A|B) = P(A ∩ B)/P(B) = P(A)/P(B)

since A is a subset of B (so the overlap between A and B is just A). But A has one
outcome {(b, b)} and B has three outcomes {(b, g), (g, b), (b, b)}. Applying Defini-
tion 2.4.1, then, gives

P(A|B) = (1/4)/(3/4) = 1
3

Another correct approach is to go back to the sample space and deduce the value
of P(A|B) from first principles. Figure 2.4.3 shows events A and B defined on the four
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family types that comprise the sample space S. Knowing that B has occurred rede-
fines the sample space to include three outcomes, each now having a 1

3 probability. Of
those three possible outcomes, one—namely, (b, b)—satisfies the event A. It follows
that P(A|B) = 1

3 .

A

B

(b, b)

(g, b)

(b, g)

(g, g)

S = sample space of two-child families
[outcomes written as (first born, second born)]

Figure 2.4.3

Example
2.4.3

Two events A and B are defined such that (1) the probability that A occurs but B
does not occur is 0.2, (2) the probability that B occurs but A does not occur is 0.1,
and (3) the probability that neither occurs is 0.6. What is P(A|B)?

The three events whose probabilities are given are indicated on the Venn dia-
gram shown in Figure 2.4.4. Since

P(Neither occurs) = 0.6 = P((A ∪ B)C)

it follows that

P(A ∪ B) = 1 − 0.6 = 0.4 = P(A ∩ BC) + P(A ∩ B) + P(B ∩ AC)

so

P(A ∩ B) = 0.4 − 0.2 − 0.1

= 0.1

S

A

B

Neither A nor B

B     ACA    BC
>

>

Figure 2.4.4

From Definition 2.4.1, then,

P(A|B) = P(A ∩ B)
P(B)

= P(A ∩ B)
P(A ∩ B) + P(B ∩ AC)

= 0.1
0.1 + 0.1

= 0.5
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Example
2.4.4

The possibility of importing liquified natural gas (LNG) from Algeria has been sug-
gested as one way of coping with a future energy crunch. Complicating matters,
though, is the fact that LNG is highly volatile and poses an enormous safety haz-
ard. Any major spill occurring near a U.S. port could result in a fire of catastrophic
proportions. The question, therefore, of the likelihood of a spill becomes critical in-
put for future policymakers who may have to decide whether or not to implement
the proposal.

Two numbers need to be taken into account: (1) the probability that a tanker will
have an accident near a port, and (2) the probability that a major spill will develop
given that an accident has happened. Although no significant spills of LNG have
yet occurred anywhere in the world, these probabilities can be approximated from
records kept on similar tankers transporting less dangerous cargo. On the basis of
such data, it has been estimated (47) that the probability is 8/50,000 that an LNG
tanker will have an accident on any one trip. Given that an accident has occurred, it
is suspected that only three times in fifteen thousand will the damage be sufficiently
severe that a major spill would develop. What are the chances that a given LNG
shipment would precipitate a catastrophic disaster?

Let A denote the event “Spill develops” and let B denote the event “Accident
occurs.” Past experience is suggesting that P(B) = 8/50,000 and P(A|B) = 3/15,000.
Of primary concern is the probability that an accident will occur and a spill will
ensue—that is, P(A ∩ B). Using Equation 2.4.2, we find that the chances of a catas-
trophic accident are on the order of three in one hundred million:

P(Accident occurs and spill develops) = P(A ∩ B)

= P(A|B)P(B)

= 3
15,000

· 8
50,000

= 0.000000032

Example
2.4.5

Max and Muffy are two myopic deer hunters who shoot simultaneously at a nearby
sheepdog that they have mistaken for a 10-point buck. Based on years of well-
documented ineptitude, it can be assumed that Max has a 20% chance of hitting
a stationary target at close range, Muffy has a 30% chance, and the probability is
0.06 that they will both be on target. Suppose that the sheepdog is hit and killed by
exactly one bullet. What is the probability that Muffy fired the fatal shot?

Let A be the event that Max hit the dog, and let B be the event that Muffy hit
the dog. Then P(A) = 0.2, P(B) = 0.3, and P(A ∩ B) = 0.06. We are trying to find

P(B|(AC ∩ B) ∪ (A ∩ BC))

where the event (AC ∩ B) ∪ (A ∩ BC) is the union of A and B minus the
intersection—that is, it represents the event that either A or B but not both occur
(recall Figure 2.4.4).

Notice, also, from Figure 2.4.4 that the intersection of B and (AC ∩ B) ∪
(A ∩ BC) is the event AC ∩ B. Therefore, from Definition 2.4.1,

P(B|(AC ∩ B) ∪ (A ∩ BC)) = [P(AC ∩ B)]/[P{(AC ∩ B) ∪ (A ∩ BC)}]
= [P(B) − P(A ∩ B)]/[P(A ∪ B) − P(A ∩ B)]

= [0.3 − 0.06]/[0.2 + 0.3 − 0.06 − 0.06]

= 0.63



36 Chapter 2 Probability

CASE STUDY 2.4.1

Several years ago, a television program (inadvertently) spawned a conditional
probability problem that led to more than a few heated discussions, even in the
national media. The show was Let’s Make a Deal, and the question involved
the strategy that contestants should take to maximize their chances of winning
prizes.

On the program, a contestant would be presented with three doors, behind
one of which was the prize. After the contestant had selected a door, the host,
Monty Hall, would open one of the other two doors, showing that the prize
was not there. Then he would give the contestant a choice—either stay with
the door initially selected or switch to the “third” door, which had not been
opened.

For many viewers, common sense seemed to suggest that switching doors
would make no difference. By assumption, the prize had a one-third chance
of being behind each of the doors when the game began. Once a door was
opened, it was argued that each of the remaining doors now had a one-half
probability of hiding the prize, so contestants gained nothing by switching their
bets.

Not so. An application of Definition 2.4.1 shows that it did make a
difference—contestants, in fact, doubled their chances of winning by switching
doors. To see why, consider a specific (but typical) case: The contestant has bet
on Door #2 and Monty Hall has opened Door #3. Given that sequence of events,
we need to calculate and compare the conditional probability of the prize being
behind Door #1 and Door #2, respectively. If the former is larger (and we will
prove that it is), the contestant should switch doors.

Table 2.4.1 shows the sample space associated with the scenario just de-
scribed. If the prize is actually behind Door #1, the host has no choice but to
open Door #3; similarly, if the prize is behind Door #3, the host has no choice
but to open Door #1. In the event that the prize is behind Door #2, though,
the host would (theoretically) open Door #1 half the time and Door #3 half the
time.

Table 2.4.1

(Prize Location, Door Opened) Probability

(1, 3) 1/3

(2, 1) 1/6

(2, 3) 1/6

(3, 1) 1/3

Notice that the four outcomes in S are not equally likely. There is neces-
sarily a one-third probability that the prize is behind each of the three doors.
However, the two choices that the host has when the prize is behind Door #2
necessitate that the two outcomes (2, 1) and (2, 3) share the one-third probabil-
ity that represents the chances of the prize being behind Door #2. Each, then,
has the one-sixth probability listed in Table 2.4.1.
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Let A be the event that the prize is behind Door #2, and let B be the event
that the host opened Door #3. Then

P(A|B) = P(Contestant wins by not switching) = [P(A ∩ B)]/P(B)

= [ 1
6

] /[ 1
3 + 1

6

]
= 1

3

Now, let A∗ be the event that the prize is behind Door #1, and let B (as before)
be the event that the host opens Door #3. In this case,

P(A∗|B) = P(Contestant wins by switching) = [P(A∗ ∩ B)]/P(B)

= [ 1
3

] /[ 1
3 + 1

6

]
= 2

3

Common sense would have led us astray again! If given the choice, contestants
should have always switched doors. Doing so upped their chances of winning
from one-third to two-thirds.

Questions

2.4.1. Suppose that two fair dice are tossed. What is the
probability that the sum equals 10 given that it exceeds 8?

2.4.2. Find P(A ∩ B) if P(A) = 0.2, P(B) = 0.4, and
P(A|B) + P(B|A) = 0.75.

2.4.3. If P(A|B) < P(A), show that P(B|A) < P(B).

2.4.4. Let A and B be two events such that P((A ∪ B)C) =
0.6 and P(A ∩ B) = 0.1. Let E be the event that either A
or B but not both will occur. Find P(E|A ∪ B).

2.4.5. Suppose that in Example 2.4.2 we ignored the ages
of the children and distinguished only three family types:
(boy, boy), (girl, boy), and (girl, girl). Would the condi-
tional probability of both children being boys given that
at least one is a boy be different from the answer found
on pp. 33–34? Explain.

2.4.6. Two events, A and B, are defined on a sample space
S such that P(A|B) = 0.6, P(At least one of the events oc-
curs) = 0.8, and P(Exactly one of the events occurs) = 0.6.
Find P(A) and P(B).

2.4.7. An urn contains one red chip and one white chip.
One chip is drawn at random. If the chip selected is red,
that chip together with two additional red chips are put
back into the urn. If a white chip is drawn, the chip is re-
turned to the urn. Then a second chip is drawn. What is
the probability that both selections are red?

2.4.8. Given that P(A) = a and P(B) = b, show that

P(A|B) ≥ a + b − 1
b

2.4.9. An urn contains one white chip and a second chip
that is equally likely to be white or black. A chip is drawn

at random and returned to the urn. Then a second chip
is drawn. What is the probability that a white appears on
the second draw given that a white appeared on the first
draw? (Hint: Let Wi be the event that a white chip is se-
lected on the ith draw, i = 1, 2. Then P(W2|W1) = P(W1∩W2)

P(W1) .
If both chips in the urn are white, P(W1) = 1; otherwise,
P(W1) = 1

2 .)

2.4.10. Suppose events A and B are such that P(A ∩
B) = 0.1 and P((A ∪ B)C) = 0.3. If P(A) = 0.2, what
does P[(A ∩ B)|(A ∪ B)C] equal? (Hint: Draw the Venn
diagram.)

2.4.11. One hundred voters were asked their opinions of
two candidates, A and B, running for mayor. Their re-
sponses to three questions are summarized below:

Number Saying “Yes”

Do you like A? 65
Do you like B? 55
Do you like both? 25

(a) What is the probability that someone likes neither?
(b) What is the probability that someone likes exactly
one?
(c) What is the probability that someone likes at least
one?
(d) What is the probability that someone likes at most
one?
(e) What is the probability that someone likes exactly one
given that he or she likes at least one?



38 Chapter 2 Probability

(f) Of those who like at least one, what proportion like
both?
(g) Of those who do not like A, what proportion like B?

2.4.12. A fair coin is tossed three times. What is the prob-
ability that at least two heads will occur given that at most
two heads have occurred?

2.4.13. Two fair dice are rolled. What is the probability
that the number on the first die was at least as large as 4
given that the sum of the two dice was 8?

2.4.14. Four cards are dealt from a standard fifty-two-card
poker deck. What is the probability that all four are aces
given that at least three are aces? (Note: There are 270,725
different sets of four cards that can be dealt. Assume
that the probability associated with each of those hands
is 1/270,725.)

2.4.15. Given that P(A ∩ BC) = 0.3, P((A ∪ B)C) = 0.2,
and P(A ∩ B) = 0.1, find P(A|B).

2.4.16. Given that P(A) + P(B) = 0.9, P(A|B) = 0.5, and
P(B|A) = 0.4, find P(A).

2.4.17. Let A and B be two events defined on a sample
space S such that P(A ∩ BC) = 0.1, P(AC ∩ B) = 0.3, and
P((A ∪ B)C) = 0.2. Find the probability that at least one
of the two events occurs given that at most one occurs.

2.4.18. Suppose two dice are rolled. Assume that each
possible outcome has probability 1/36. Let A be the event
that the sum of the two dice is greater than or equal to 8,
and let B be the event that at least one of the dice shows
a 5. Find P(A|B).

2.4.19. According to your neighborhood bookie, five
horses are scheduled to run in the third race at the local
track, and handicappers have assigned them the following
probabilities of winning:

Horse Probability of Winning

Scorpion 0.10
Starry Avenger 0.25
Australian Doll 0.15
Dusty Stake 0.30
Outandout 0.20

Suppose that Australian Doll and Dusty Stake are
scratched from the race at the last minute. What are the
chances that Outandout will prevail over the reduced
field?

2.4.20. Andy, Bob, and Charley have all been serving time
for grand theft auto. According to prison scuttlebutt, the
warden plans to release two of the three next week. They
all have identical records, so the two to be released will
be chosen at random, meaning that each has a two-thirds
probability of being included in the two to be set free.
Andy, however, is friends with a guard who will know
ahead of time which two will leave. He offers to tell Andy
the name of one prisoner other than himself who will be
released. Andy, however, declines the offer, believing that
if he learns the name of one prisoner scheduled to be re-
leased, then his chances of being the other person set free
will drop to one-half (since only two prisoners will be left
at that point). Is his concern justified?

APPLYING CONDITIONAL PROBABILITY TO HIGHER-ORDER
INTERSECTIONS

We have seen that conditional probabilities can be useful in evaluating intersection
probabilities—that is, P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A). A similar result
holds for higher-order intersections. Consider P(A ∩ B ∩C). By thinking of A ∩ B as
a single event—say, D—we can write

P(A ∩ B ∩ C) = P(D ∩ C)

= P(C|D)P(D)

= P(C|A ∩ B)P(A ∩ B)

= P(C|A ∩ B)P(B|A)P(A)

Repeating this same argument for n events, A1, A2, . . . , An, gives a formula for the
general case:

P(A1 ∩ A2 ∩ · · · ∩ An) = P(An|A1 ∩ A2 ∩ · · · ∩ An−1)

· P(An−1|A1 ∩ A2 ∩ · · · ∩ An−2) · · · P(A2|A1) · P(A1)

(2.4.3)
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Example
2.4.6

An urn contains five white chips, four black chips, and three red chips. Four chips are
drawn sequentially and without replacement. What is the probability of obtaining
the sequence (white, red, white, black)?

Figure 2.4.5. shows the evolution of the urn’s composition as the desired
sequence is assembled. Define the following four events:

W5 W

4 B

3 R

R4 W

4 B

3 R

W4 W

4 B

2 R

3 W

3 B

2 R

B3 W

4 B

2 R

Figure 2.4.5

A: white chip is drawn on first selection
B: red chip is drawn on second selection
C: white chip is drawn on third selection
D: black chip is drawn on fourth selection

Our objective is to find P(A ∩ B ∩ C ∩ D).
From Equation 2.4.3,

P(A ∩ B ∩ C ∩ D) = P(D|A ∩ B ∩ C) · P(C|A ∩ B) · P(B|A) · P(A)

Each of the probabilities on the right-hand side of the equation here can be gotten by
just looking at the urns pictured in Figure 2.4.5: P(D|A ∩ B∩ C) = 4

9 , P(C|A ∩ B) =
4

10 , P(B|A) = 3
11 , and P(A) = 5

12 . Therefore, the probability of drawing a (white, red,
white, black) sequence is 0.02:

P(A ∩ B ∩ C ∩ D) = 4
9

· 4
10

· 3
11

· 5
12

= 240
11,880

= 0.02

CASE STUDY 2.4.2

Since the late 1940s, tens of thousands of eyewitness accounts of strange lights in
the skies, unidentified flying objects, and even alleged abductions by little green
men have made headlines. None of these incidents, though, has produced any
hard evidence, any irrefutable proof that Earth has been visited by a race of
extraterrestrials. Still, the haunting question remains—are we alone in the uni-
verse? Or are there other civilizations, more advanced than ours, making the
occasional flyby?

Until, or unless, a flying saucer plops down on the White House lawn and a
strange-looking creature emerges with the proverbial “Take me to your leader”
demand, we may never know whether we have any cosmic neighbors. Equa-
tion 2.4.3, though, can help us speculate on the probability of our not being alone.

Recent discoveries suggest that planetary systems much like our own may be
quite common. If so, there are likely to be many planets whose chemical make-
ups, temperatures, pressures, and so on, are suitable for life. Let those planets
be the points in our sample space. Relative to them, we can define three events:

A: life arises
B: technical civilization arises (one capable of interstellar communication)
C: technical civilization is flourishing now

(Continued on next page)
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(Case Study 2.4.2 continued)

In terms of A, B, and C, the probability that a habitable planet is presently sup-
porting a technical civilization is the probability of an intersection—specifically,
P(A ∩ B ∩ C). Associating a number with P(A ∩ B ∩ C) is highly problematic,
but the task is simplified considerably if we work instead with the equivalent
conditional formula, P(C|B ∩ A) · P(B|A) · P(A).

Scientists speculate (163) that life of some kind may arise on one-third of
all planets having a suitable environment and that life on maybe 1% of all those
planets will evolve into a technical civilization. In our notation, P(A) = 1

3 and
P(B|A) = 1

100 .
More difficult to estimate is P(C|A ∩ B). On Earth, we have had the ca-

pability of interstellar communication (that is, radio astronomy) for only a few
decades, so P(C|A ∩ B), empirically, is on the order of 1 × 10−8. But that may
be an overly pessimistic estimate of a technical civilization’s ability to endure. It
may be true that if a civilization can avoid annihilating itself when it first devel-
ops nuclear weapons, its prospects for longevity are fairly good. If that were the
case, P(C|A ∩ B) might be as large as 1 × 10−2.

Putting these estimates into the computing formula for P(A ∩ B ∩C) yields
a range for the probability of a habitable planet currently supporting a technical
civilization. The chances may be as small as 3.3×10−11 or as “large” as 3.3×10−5:

(1 × 10−8)
(

1
100

) (
1
3

)
< P(A ∩ B ∩ C) < (1 × 10−2)

(
1

100

) (
1
3

)

or

0.000000000033 < P(A ∩ B ∩ C) < 0.000033

A better way to put these figures in some kind of perspective is to think
in terms of numbers rather than probabilities. Astronomers estimate there are
3 × 1011 habitable planets in our Milky Way galaxy. Multiplying that total by
the two limits for P(A ∩ B ∩ C) gives an indication of how many cosmic neigh-
bors we are likely to have. Specifically, 3 × 1011 · 0.000000000033 .= 10, while
3 × 1011 · 0.000033 .= 10,000,000. So, on the one hand, we may be a galactic rar-
ity. At the same time, the probabilities do not preclude the very real possibility
that the Milky Way is abuzz with activity and that our neighbors number in the
millions.

About the Data In 2009, NASA launched the spacecraft Kepler, whose sole
mission was to find other solar systems in the Milky Way galaxy. And find
them it did! By 2015 it had documented over one thousand “exoplanets,” in-
cluding more than a dozen belonging to so-called Goldilocks zones, mean-
ing the planet’s size and configuration of its orbit would allow for liquid
water to remain on its surface, thus making it a likely home for living organ-
isms. Of particular interest is the planet Kepler 186f located in the constel-
lation Cygnus, some five hundred light years away. Its size, orbit, and nature
of its sun make it remarkably similar to Earth—maybe not quite a twin, as-
tronomers say, but certainly a cousin. (So, maybe UFOs are real and maybe a
few have landed, and maybe that weird guy your sister is dating isn’t really from
Cleveland. . .)
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Questions

2.4.21. An urn contains six white chips, four black chips, and
five red chips. Five chips are drawn out, one at a time and
without replacement. What is the probability of getting the
sequence (black, black, red, white, white)? Suppose that the
chips are numbered 1 through 15. What is the probability of
getting a specific sequence—say, (2, 6, 4, 9, 13)?

2.4.22. A man has n keys on a key ring, one of which opens
the door to his apartment. Having celebrated a bit too
much one evening, he returns home only to find himself
unable to distinguish one key from another. Resourceful,
he works out a fiendishly clever plan: He will choose a key
at random and try it. If it fails to open the door, he will dis-
card it and choose at random one of the remaining n − 1
keys, and so on. Clearly, the probability that he gains en-
trance with the first key he selects is 1/n. Show that the
probability the door opens with the third key he tries is
also 1/n. (Hint: What has to happen before he even gets
to the third key?)

2.4.23. Your favorite college football team has had a good
season so far but they need to win at least two of their

last four games to qualify for a New Year’s Day bowl bid.
Oddsmakers estimate the team’s probabilities of winning
each of their last four games to be 0.60, 0.50, 0.40, and 0.70,
respectively.

(a) What are the chances that you will get to watch your
team play on Jan. 1?
(b) Is the probability that your team wins all four games
given that they have won at least three games equal to the
probability that they win the fourth game? Explain.
(c) Is the probability that your team wins all four games
given that they won the first three games equal to the
probability that they win the fourth game?

2.4.24. One chip is drawn at random from an urn that con-
tains one white chip and one black chip. If the white chip
is selected, we simply return it to the urn; if the black chip
is drawn, that chip—together with another black—are re-
turned to the urn. Then a second chip is drawn, with the
same rules for returning it to the urn. Calculate the prob-
ability of drawing two whites followed by three blacks.

CALCULATING “UNCONDITIONAL” AND “INVERSE” PROBABILITIES

We conclude this section with two very useful theorems that apply to partitioned
sample spaces. By definition, a set of events A1, A2, . . . , An “partition” S if every
outcome in the sample space belongs to one and only one of the Ai’s—that is, the
Ai’s are mutually exclusive and their union is S (see Figure 2.4.6).

S

A2

A1

An

B

Figure 2.4.6

Let B, as pictured, denote any event defined on S. The first result, Theorem 2.4.1,
gives a formula for the “unconditional” probability of B (in terms of the Ai’s). Then
Theorem 2.4.2 calculates the set of conditional probabilities, P(Aj|B), j = 1, 2, . . . , n.

Theorem
2.4.1

Let {Ai}n
i=1 be a set of events defined over S such that S = ⋃n

i=1 Ai, Ai ∩ Aj = ∅ for
i 
= j, and P(Ai) > 0 for i = 1, 2, . . . , n. For any event B,

P(B) =
n∑

i=1

P(B|Ai)P(Ai)

Proof By the conditions imposed on the Ai’s,

B = (B ∩ A1) ∪ (B ∩ A2) ∪ · · · ∪ (B ∩ An)
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and

P(B) = P(B ∩ A1) + P(B ∩ A2) + · · · + P(B ∩ An)

But each P(B ∩ Ai) can be written as the product P(B|Ai)P(Ai), and the result
follows.

Example
2.4.7

Urn I contains two red chips and four white chips; urn II, three red and one white. A
chip is drawn at random from urn I and transferred to urn II. Then a chip is drawn
from urn II. What is the probability that the chip drawn from urn II is red?

Let B be the event “Chip drawn from urn II is red”; let A1 and A2 be the events
“Chip transferred from urn I is red” and “Chip transferred from urn I is white,”
respectively. By inspection (see Figure 2.4.7), we can deduce all the probabilities
appearing in the right-hand side of the formula in Theorem 2.4.1:

Red

Transfer
one

Urn I Urn II

White Draw one

Figure 2.4.7

P(B|A1) = 4
5

P(B|A2) = 3
5

P(A1) = 2
6

P(A2) = 4
6

Putting all this information together, we see that the chances are two out of three
that a red chip will be drawn from urn II:

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)

= 4
5

· 2
6

+ 3
5

· 4
6

= 2
3

Example
2.4.8

A standard poker deck is shuffled, and the card on top is removed. What is the prob-
ability that the second card is an ace?

Define the following events:

B: second card is an ace
A1: top card was an ace
A2: top card was not an ace

Then P(B|A1) = 3
51 , P(B|A2) = 4

51 , P(A1) = 4
52 , and P(A2) = 48

52 . Since the Ai’s
partition the sample space of two-card selections, Theorem 2.4.1 applies. Substituting
into the expression for P(B) shows that 4

52 is the probability that the second card is
an ace:

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)

= 3
51

· 4
52

+ 4
51

· 48
52

= 4
52
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Comment Notice that P(B) = P(second card is an ace) is numerically the same
as P(A1) = P(first card is an ace). The analysis in Example 2.4.8 illustrates a basic
principle in probability that says, in effect, “What you don’t know, doesn’t matter.”
Here, removal of the top card is irrelevant to any subsequent probability calculations
if the identity of that card remains unknown.

Example
2.4.9

Ashley is hoping to land a summer internship with a public relations firm. If her
interview goes well, she has a 70% chance of getting an offer. If the interview is a bust,
though, her chances of getting the position drop to 20%. Unfortunately, Ashley tends
to babble incoherently when she is under stress, so the likelihood of the interview
going well is only 0.10. What is the probability that Ashley gets the internship?

Let B be the event “Ashley is offered internship,” let A1 be the event “Interview
goes well,” and let A2 be the event “Interview does not go well.” By assumption,

P(B|A1) = 0.70 P(B|A2) = 0.20
P(A1) = 0.10 P(A2) = 1 − P(A1) = 1 − 0.10 = 0.90

According to Theorem 2.4.1, Ashley has a 25% chance of landing the internship:

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2)

= (0.70)(0.10) + (0.20)(0.90)

= 0.25

Example
2.4.10

Three chips are placed in an urn. One is red on both sides, a second is blue on both
sides, and the third is red on one side and blue on the other. One chip is selected at
random and placed on a table. Suppose that the color showing on that chip is red.
What is the probability that the color underneath is also red (see Figure 2.4.8)?

R
e
d

R
e
d

R
e
d

B
l
u
e

B
l
u
e

B
l
u
e

Draw one

Red

Figure 2.4.8

At first glance, it may seem that the answer is one-half: We know that the
blue/blue chip has not been drawn, and only one of the remaining two—the red/red
chip—satisfies the event that the color underneath is red. If this game were played
over and over, though, and records were kept of the outcomes, it would be found that
the proportion of times that a red top has a red bottom is two-thirds, not the one-half
that our intuition might suggest. The correct answer follows from an application of
Theorem 2.4.1.

Define the following events:

A: bottom side of chip drawn is red
B: top side of chip drawn is red
A1: red/red chip is drawn
A2: blue/blue chip is drawn
A3: red/blue chip is drawn

From the definition of conditional probability,

P(A|B) = P(A ∩ B)
P(B)
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But P(A ∩ B) = P(Both sides are red) = P (red/red chip) = 1
3 , and Theorem 2.4.1

can be used to find the denominator, P(B):

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)

= 1 · 1
3

+ 0 · 1
3

+ 1
2

· 1
3

= 1
2

Therefore,

P(A|B) = 1/3
1/2

= 2
3

Comment The question posed in Example 2.4.10 gives rise to a simple but effective
con game. The trick is to convince a “mark” that the initial analysis given earlier is
correct, meaning that the bottom has a fifty-fifty chance of being the same color as
the top. Under that incorrect presumption that the game is “fair,” both participants
put up the same amount of money, but the gambler (knowing the correct analysis)
always bets that the bottom is the same color as the top. In the long run, then, the
con artist will be winning an even-money bet two-thirds of the time!

Questions

2.4.25. A toy manufacturer buys ball bearings from three
different suppliers—50% of her total order comes from
supplier 1, 30% from supplier 2, and the rest from supplier 3.
Past experience has shown that the quality-control standards
of the three suppliers are not all the same. Two percent of
the ball bearings produced by supplier 1 are defective, while
suppliers 2 and 3 produce defective bearings 3% and 4% of
the time, respectively. What proportion of the ball bearings
in the toy manufacturer’s inventory are defective?

2.4.26. A fair coin is tossed. If a head turns up, a fair die
is tossed; if a tail turns up, two fair dice are tossed. What
is the probability that the face (or the sum of the faces)
showing on the die (or the dice) is equal to 6?

2.4.27. Foreign policy experts estimate that the probability
is 0.65 that war will break out next year between two
Middle East countries if either side significantly escalates
its terrorist activities. Otherwise, the likelihood of war is
estimated to be 0.05. Based on what has happened this year,
the chances of terrorism reaching a critical level in the next
twelve months are thought to be three in ten. What is the
probability that the two countries will go to war?

2.4.28. A telephone solicitor is responsible for canvassing
three suburbs. In the past, 60% of the completed calls to
Belle Meade have resulted in contributions, compared to
55% for Oak Hill and 35% for Antioch. Her list of tele-
phone numbers includes one thousand households from
Belle Meade, one thousand from Oak Hill, and two thou-
sand from Antioch. Suppose that she picks a number at
random from the list and places the call. What is the prob-
ability that she gets a donation?

2.4.29. If men constitute 47% of the population and tell
the truth 78% of the time, while women tell the truth 63%
of the time, what is the probability that a person selected
at random will answer a question truthfully?

2.4.30. Urn I contains three red chips and one white chip.
Urn II contains two red chips and two white chips. One
chip is drawn from each urn and transferred to the other
urn. Then a chip is drawn from the first urn. What is the
probability that the chip ultimately drawn from urn I is red?

2.4.31. Medical records show that 0.01%of the general adult
population not belonging to a high-risk group (for example,
intravenous drug users) are HIV-positive. Blood tests for the
virus are 99.9% accurate when given to someone infected
and 99.99% accurate when given to someone not infected.
What is the probability that a random adult not in a high-
risk group will test positive for the HIV virus?

2.4.32. Recall the “survival” lottery described in Ques-
tion 2.2.14. What is the probability of release associated
with the prisoner’s optimal strategy?

2.4.33. In an upstate congressional race, the incumbent
Republican (R) is running against a field of three Democrats
(D1, D2, and D3) seeking the nomination. Political pundits
estimate that the probabilities of D1, D2, or D3 winning the
primary are 0.35, 0.40, and 0.25, respectively. Furthermore,
results from a variety of polls are suggesting that R would
have a 40% chance of defeating D1 in the general election, a
35% chance of defeating D2, and a 60% chance of defeating
D3. Assuming all these estimates to be accurate, what are the
chances that the Republican will retain his seat?
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2.4.34. An urn contains forty red chips and sixty white
chips. Six chips are drawn out and discarded, and a sev-
enth chip is drawn. What is the probability that the sev-
enth chip is red?

2.4.35. A study has shown that seven out of ten people
will say “heads” if asked to call a coin toss. Given that the
coin is fair, though, a head occurs, on the average, only
five times out of ten. Does it follow that you have the ad-
vantage if you let the other person call the toss? Explain.

2.4.36. Based on pretrial speculation, the probability that
a jury returns a guilty verdict in a certain high-profile mur-
der case is thought to be 15% if the defense can discredit
the police department and 80% if they cannot. Veteran
court observers believe that the skilled defense attorneys
have a 70% chance of convincing the jury that the po-
lice either contaminated or planted some of the key evi-
dence. What is the probability that the jury returns a guilty
verdict?

2.4.37. As an incoming freshman, Marcus believes that he
has a 25% chance of earning a GPA in the 3.5 to 4.0 range,
a 35% chance of graduating with a 3.0 to 3.5 GPA, and a
40% chance of finishing with a GPA less than 3.0. From
what the pre-med advisor has told him, Marcus has an
eight in ten chance of getting into medical school if his
GPA is above 3.5, a five in ten chance if his GPA is in the
3.0 to 3.5 range, and only a one in ten chance if his GPA

falls below 3.0. Based on those estimates, what is the prob-
ability that Marcus gets into medical school?

2.4.38. The governor of a certain state has decided to
come out strongly for prison reform and is preparing a
new early release program. Its guidelines are simple: pris-
oners related to members of the governor’s staff would
have a 90% chance of being released early; the probability
of early release for inmates not related to the governor’s
staff would be 0.01. Suppose that 40% of all inmates are
related to someone on the governor’s staff. What is the
probability that a prisoner selected at random would be
eligible for early release?

2.4.39. Following are the percentages of students of State
College enrolled in each of the school’s main divisions.
Also listed are the proportions of students in each divi-
sion who are women.

Division % % Women

Humanities 40 60
Natural science 10 15
History 30 45
Social science 20 75

100

Suppose the registrar selects one person at random. What
is the probability that the student selected will be a male?

BAYES’ THEOREM

The second result in this section that is set against the backdrop of a partitioned sam-
ple space has a curious history. The first explicit statement of Theorem 2.4.2, coming
in 1812, was due to Laplace, but it was named after the Reverend Thomas Bayes,
whose 1763 paper (published posthumously) had already outlined the result. On one
level, the theorem is a relatively minor extension of the definition of conditional
probability. When viewed from a loftier perspective, though, it takes on some rather
profound philosophical implications. The latter, in fact, have precipitated a schism
among practicing statisticians: “Bayesians” analyze data one way; “non-Bayesians”
often take a fundamentally different approach (see Section 5.8).

Our use of the result here will have nothing to do with its statistical interpreta-
tion. We will apply it simply as the Reverend Bayes originally intended, as a formula
for evaluating a certain kind of “inverse” probability. If we know P(B|Ai) for all i, the
theorem enables us to compute conditional probabilities “in the other direction”—
that is, we can deduce P(Aj|B) from the P(B|Ai)’s.

Theorem
2.4.2

(Bayes’) Let {Ai}n
i=1 be a set of n events, each with positive probability, that partition

S in such a way that ∪n
i=1Ai = S and Ai ∩ Aj = ∅ for i 
= j. For any event B (also

defined on S), where P(B) > 0,

P(Aj|B) = P(B|Aj)P(Aj)
n∑

i=1
P(B|Ai)P(Ai)

for any 1 ≤ j ≤ n.
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Proof From Definition 2.4.1,

P(Aj|B) = P(Aj ∩ B)
P(B)

= P(B|A j)P(Aj)
P(B)

But Theorem 2.4.1 allows the denominator to be written as
n∑

i=1
P(B|Ai)P(Ai), and

the result follows.

Problem-Solving Hints

(Working with Partitioned Sample Spaces)

Students sometimes have difficulty setting up problems that involve partitioned
sample spaces—in particular, ones whose solution requires an application of ei-
ther Theorem 2.4.1 or 2.4.2—because of the nature and amount of information
that need to be incorporated into the answers. The “trick” is learning to identify
which part of the “given” corresponds to B and which parts correspond to the
Ai’s. The following hints may help.

1. As you read the question, pay particular attention to the last one or two
sentences. Is the problem asking for an unconditional probability (in which
case Theorem 2.4.1 applies) or a conditional probability (in which case
Theorem 2.4.2 applies)?

2. If the question is asking for an unconditional probability, let B denote the
event whose probability you are trying to find; if the question is asking for
a conditional probability, let B denote the event that has already happened.

3. Once event B has been identified, reread the beginning of the question and
assign the Ai’s.

Example
2.4.11

A biased coin, twice as likely to come up heads as tails, is tossed once. If it shows
heads, a chip is drawn from urn I, which contains three white chips and four red
chips; if it shows tails, a chip is drawn from urn II, which contains six white chips and
three red chips. Given that a white chip was drawn, what is the probability that the
coin came up tails (see Figure 2.4.9)?

Urn I

White
is drawn

3 W

4 R

Heads Tails

Urn II

6 W

3 R

Figure 2.4.9

Since P(heads) = 2P(tails), it must be true that P(heads) = 2
3 and P(tails) = 1

3 .
Define the events

B: white chip is drawn
A1: coin came up heads (i.e., chip came from urn I)
A2: coin came up tails (i.e., chip came from urn II)
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Our objective is to find P(A2|B). From Figure 2.4.9,

P(B|A1) = 3
7

P(B|A2) = 6
9

P(A1) = 2
3

P(A2) = 1
3

so

P(A2|B) = P(B|A2)P(A2)
P(B|A1)P(A1) + P(B|A2)P(A2)

= (6/9)(1/3)
(3/7)(2/3) + (6/9)(1/3)

= 7
16

Example
2.4.12

During a power blackout, one hundred persons are arrested on suspicion of looting.
Each is given a polygraph test. From past experience it is known that the polygraph is
90% reliable when administered to a guilty suspect and 98% reliable when given to
someone who is innocent. Suppose that of the one hundred persons taken into cus-
tody, only twelve were actually involved in any wrongdoing. What is the probability
that a given suspect is innocent given that the polygraph says he is guilty?

Let B be the event “Polygraph says suspect is guilty,” and let A1 and A2 be
the events “Suspect is guilty” and “Suspect is not guilty,” respectively. To say that
the polygraph is “90% reliable when administered to a guilty suspect” means that
P(B|A1) = 0.90. Similarly, the 98% reliability for innocent suspects implies that
P(BC|A2) = 0.98, or, equivalently, P(B|A2) = 0.02.

We also know that P(A1) = 12
100 and P(A2) = 88

100 . Substituting into Theo-
rem 2.4.2, then, shows that the probability a suspect is innocent given that the poly-
graph says he is guilty is 0.14:

P(A2|B) = P(B|A2)P(A2)
P(B|A1)P(A1) + P(B|A2)P(A2)

= (0.02)(88/100)
(0.90)(12/100) + (0.02)(88/100)

= 0.14

Example
2.4.13

As medical technology advances and adults become more health conscious, the
demand for diagnostic screening tests inevitably increases. Looking for problems,
though, when no symptoms are present can have undesirable consequences that may
outweigh the intended benefits.

Suppose, for example, a woman has a medical procedure performed to see
whether she has a certain type of cancer. Let B denote the event that the test says she
has cancer, and let A1 denote the event that she actually does (and A2, the event that
she does not). Furthermore, suppose the prevalence of the disease and the precision
of the diagnostic test are such that

P(A1) = 0.0001 [and P(A2) = 0.9999]

P(B|A1) = 0.90 = P(Test says woman has cancer when, in fact, she does)

P(B|A2) = P
(
B|AC

1

) = 0.001 = P(False positive) = P(Test says woman has cancer
when, in fact, she does not)
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What is the probability that she does have cancer, given that the diagnostic procedure
says she does? That is, calculate P(A1|B).

Although the method of solution here is straightforward, the actual numerical
answer is not what we would expect. From Theorem 2.4.2,

P(A1|B) = P(B|A1)P(A1)
P(B|A1)P(A1) + P

(
B|AC

1

)
P

(
AC

1

)
= (0.9)(0.0001)

(0.9)(0.0001) + (0.001)(0.9999)

= 0.08

So, only 8% of those women identified as having cancer actually do! Table 2.4.2 shows
the strong dependence of P(A1|B) on P(A1) and P(B|AC

1 ).

Table 2.4.2

P(A1) P(B|AC
1 ) P(A1|B)

0.0001 0.001 0.08
0.0001 0.47

0.001 0.001 0.47
0.0001 0.90

0.01 0.001 0.90
0.0001 0.99

In light of these probabilities, the practicality of screening programs directed at
diseases having a low prevalence is open to question, especially when the diagnostic
procedure, itself, poses a nontrivial health risk. (For precisely those two reasons, the
use of chest X-rays to screen for tuberculosis is no longer advocated by the medical
community.)

Example
2.4.14

According to the manufacturer’s specifications, your home burglar alarm has a 95%
chance of going off if someone breaks into your house. During the two years you
have lived there, the alarm has gone off on five different nights, each time for no
apparent reason. Suppose the alarm goes off tomorrow night. What is the probability
that someone is trying to break into your house? (Note: Police statistics show that the
chances of any particular house in your neighborhood being burglarized on any given
night are two in ten thousand.)

Let B be the event “Alarm goes off tomorrow night,” and let A1 and A2 be the
events “House is being burglarized” and “House is not being burglarized,” respec-
tively. Then

P(B|A1) = 0.95

P(B|A2) = 5/730 (i.e., five nights in two years)

P(A1) = 2/10, 000

P(A2) = 1 − P(A1) = 9998/10, 000

The probability in question is P(A1|B).
Intuitively, it might seem that P(A1|B) should be close to 1 because the alarm’s

“performance” probabilities look good—P(B|A1) is close to 1 (as it should be) and



Section 2.4 Conditional Probability 49

P(B|A2) is close to 0 (as it should be). Nevertheless, P(A1|B) turns out to be surpris-
ingly small:

P(A1|B) = P(B|A1)P(A1)
P(B|A1)P(A1) + P(B|A2)P(A2)

= (0.95)(2/10,000)
(0.95)(2/10,000) + (5/730)(9998/10,000)

= 0.027

That is, if you hear the alarm going off, the probability is only 0.027 that your house
is being burglarized.

Computationally, the reason P(A1|B) is so small is that P(A2) is so large. The lat-
ter makes the denominator of P(A1|B) large and, in effect, “washes out” the numer-
ator. Even if P(B|A1) were substantially increased (by installing a more expensive
alarm), P(A1|B) would remain largely unchanged (see Table 2.4.3).

Table 2.4.3

P(B|A1)

0.95 0.97 0.99 0.999
P(A1|B)

0.027 0.028 0.028 0.028

Questions

2.4.40. Urn I contains two white chips and one red chip;
urn II has one white chip and two red chips. One chip is
drawn at random from urn I and transferred to urn II.
Then one chip is drawn from urn II. Suppose that a red
chip is selected from urn II. What is the probability that
the chip transferred was white?

2.4.41. Urn I contains three red chips and five white chips;
urn II contains four reds and four whites; urn III contains five
reds and three whites. One urn is chosen at random and one
chip is drawn from that urn. Given that the chip drawn was
red, what is the probability that III was the urn sampled?

2.4.42. A dashboard warning light is supposed to flash red
if a car’s oil pressure is too low. On a certain model, the
probability of the light flashing when it should is 0.99; 2%
of the time, though, it flashes for no apparent reason. If
there is a 10% chance that the oil pressure really is low,
what is the probability that a driver needs to be concerned
if the warning light goes on?

2.4.43. Building permits were issued last year to three
contractors starting up a new subdivision: Tara Con-
struction built two houses; Westview, three houses; and
Hearthstone, six houses. Tara’s houses have a 60% prob-
ability of developing leaky basements; homes built by
Westview and Hearthstone have that same problem 50%
of the time and 40% of the time, respectively. Yesterday,
the Better Business Bureau received a complaint from
one of the new homeowners that his basement is leaking.
Who is most likely to have been the contractor?

2.4.44. Two sections of a senior probability course are be-
ing taught. From what she has heard about the two in-
structors listed, Francesca estimates that her chances of
passing the course are 0.85 if she gets Professor X and 0.60
if she gets Professor Y . The section into which she is put is
determined by the registrar. Suppose that her chances of
being assigned to Professor X are four out of ten. Fifteen
weeks later we learn that Francesca did, indeed, pass the
course. What is the probability she was enrolled in Profes-
sor X ’s section?

2.4.45. A liquor store owner is willing to cash personal
checks for amounts up to $50, but she has become wary
of customers who wear sunglasses. Fifty percent of checks
written by persons wearing sunglasses bounce. In contrast,
98% of the checks written by persons not wearing sun-
glasses clear the bank. She estimates that 10% of her cus-
tomers wear sunglasses. If the bank returns a check and
marks it “insufficient funds,” what is the probability it was
written by someone wearing sunglasses?

2.4.46. Brett and Margo have each thought about murder-
ing their rich Uncle Basil in hopes of claiming their in-
heritance a bit early. Hoping to take advantage of Basil’s
predilection for immoderate desserts, Brett has put rat
poison into the cherries flambé; Margo, unaware of Brett’s
activities, has laced the chocolate mousse with cyanide.
Given the amounts likely to be eaten, the probability of
the rat poison being fatal is 0.60; the cyanide, 0.90. Based
on other dinners where Basil was presented with the same
dessert options, we can assume that he has a 50% chance
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of asking for the cherries flambé, a 40% chance of order-
ing the chocolate mousse, and a 10% chance of skipping
dessert altogether. No sooner are the dishes cleared away
than Basil drops dead. In the absence of any other evi-
dence, who should be considered the prime suspect?

2.4.47. Josh takes a twenty-question multiple-choice
exam where each question has five possible answers. Some
of the answers he knows, while others he gets right just by
making lucky guesses. Suppose that the conditional prob-
ability of his knowing the answer to a randomly selected
question given that he got it right is 0.92. How many of
the twenty questions was he prepared for?

2.4.48. Recently the U.S. Senate Committee on Labor and
Public Welfare investigated the feasibility of setting up a
national screening program to detect child abuse. A team
of consultants estimated the following probabilities: (1)
one child in ninety is abused, (2) a screening program can
detect an abused child 90% of the time, and (3) a screen-
ing program would incorrectly label 3% of all nonabused
children as abused. What is the probability that a child is
actually abused given that the screening program makes
that diagnosis? How does the probability change if the
incidence of abuse is one in one thousand? Or one in
fifty?

2.4.49. At State University, 30% of the students are ma-
joring in humanities, 50% in history and culture, and 20%
in science. Moreover, according to figures released by the
registrar, the percentages of women majoring in human-
ities, history and culture, and science are 75%, 45%, and
30%, respectively. Suppose Justin meets Anna at a frater-
nity party. What is the probability that Anna is a history
and culture major?

2.4.50. An “eyes-only” diplomatic message is to be trans-
mitted as a binary code of 0’s and 1’s. Past experience with
the equipment being used suggests that if a 0 is sent, it will
be (correctly) received as a 0 90% of the time (and mis-
takenly decoded as a 1 10% of the time). If a 1 is sent, it
will be received as a 1 95% of the time (and as a 0 5%

of the time). The text being sent is thought to be 70% 1’s
and 30% 0’s. Suppose the next signal sent is received as a
1. What is the probability that it was sent as a 0?

2.4.51. When Zach wants to contact his girlfriend and he
knows she is not at home, he is twice as likely to send her
an e-mail as he is to leave a message on her phone. The
probability that she responds to his e-mail within three
hours is 80%; her chances of being similarly prompt in an-
swering a phone message increase to 90%. Suppose she
responded within two hours to the message he left this
morning. What is the probability that Zach was commu-
nicating with her via e-mail?

2.4.52. A dot-com company ships products from three dif-
ferent warehouses (A, B, and C). Based on customer com-
plaints, it appears that 3% of the shipments coming from
A are somehow faulty, as are 5% of the shipments com-
ing from B, and 2% coming from C. Suppose a customer
is mailed an order and calls in a complaint the next day.
What is the probability the item came from Warehouse C?
Assume that Warehouses A, B, and C ship 30%, 20%, and
50% of the dot-com’s sales, respectively.

2.4.53. A desk has three drawers. The first contains two
gold coins, the second has two silver coins, and the third
has one gold coin and one silver coin. A coin is drawn from
a drawer selected at random. Suppose the coin selected
was silver. What is the probability that the other coin in
that drawer is gold?

2.4.54. An automobile insurance company has compiled
the information summarized below on its policy-holders.
Suppose someone calls to file a claim. To which age group
does he or she most likely belong?

% of % Involved in
Age Group Policyholders Accidents Last Year

Young (< 30) 20 35
Middle-aged (30–64) 50 15
Elderly (65+) 30 25

2.5 Independence
Section 2.4 dealt with the problem of reevaluating the probability of a given event
in light of the additional information that some other event has already occurred. It
often is the case, though, that the probability of the given event remains unchanged,
regardless of the outcome of the second event—that is, P(A|B) = P(A) = P(A|BC).
Events sharing this property are said to be independent. Definition 2.5.1 gives a nec-
essary and sufficient condition for two events to be independent.

Definition 2.5.1
Two events A and B are said to be independent if P(A ∩ B) = P(A) · P(B).



Section 2.5 Independence 51

Comment The fact that the probability of the intersection of two independent
events is equal to the product of their individual probabilities follows immediately
from our first definition of independence, that P(A|B) = P(A). Recall that the def-
inition of conditional probability holds true for any two events A and B [provided
that P(B) > 0]:

P(A|B) = P(A ∩ B)
P(B)

But P(A|B) can equal P(A) only if P(A ∩ B) factors into P(A) times P(B).

Example
2.5.1

Let A be the event of drawing a king from a standard poker deck and B, the event
of drawing a diamond. Then, by Definition 2.5.1, A and B are independent be-
cause the probability of their intersection—drawing a king of diamonds—is equal to
P(A) · P(B):

P(A ∩ B) = 1
52

= 1
4

· 1
13

= P(A) · P(B)

Example
2.5.2

Suppose that A and B are independent events. Does it follow that AC and BC are also
independent? That is, does P(A ∩ B) = P(A) · P(B) guarantee that P(AC ∩ BC) =
P(AC) · P(BC)?

Yes. The proof is accomplished by equating two different expressions for
P(AC ∪ BC). First, by Theorem 2.3.6,

P(AC ∪ BC) = P(AC) + P(BC) − P(AC ∩ BC) (2.5.1)

But the union of two complements is the complement of their intersection (recall
Question 2.2.32). Therefore,

P(AC ∪ BC) = 1 − P(A ∩ B) (2.5.2)

Combining Equations 2.5.1 and 2.5.2, we get

1 − P(A ∩ B) = 1 − P(A) + 1 − P(B) − P(AC ∩ BC)

Since A and B are independent, P(A ∩ B) = P(A) · P(B), so

P(AC ∩ BC) = 1 − P(A) + 1 − P(B) − [1 − P(A) · P(B)]

= [1 − P(A)][1 − P(B)]

= P(AC) · P(BC)

the latter factorization implying that AC and BC are, themselves, independent.

Example
2.5.3

Electronics Warehouse is responding to affirmative-action litigation by establishing
hiring goals by race and sex for its office staff. So far they have agreed to employ
the 120 people characterized in Table 2.5.1. How many black women do they need
in order for the events A: Employee is female and B: Employee is black to be
independent?

Let x denote the number of black women necessary for A and B to be indepen-
dent. Then

P(A ∩ B) = P(Black female) = x/(120 + x)

must equal

P(A)P(B) = P(female)P(black) = [(40 + x)/(120 + x)] · [(30 + x)/(120 + x)]
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Setting x/(120 + x) = [(40 + x)/(120 + x)] · [(30 + x)/(120 + x)] implies that x = 24
black women need to be on the staff in order for A and B to be independent.

Table 2.5.1

White Black

Male 50 30
Female 40

Comment Having shown that “Employee is female” and “Employee is black” are
independent, does it follow that, say, “Employee is male” and “Employee is white”
are independent? Yes. By virtue of the derivation in Example 2.5.2, the independence
of events A and B implies the independence of events AC and BC (as well as A and BC

and AC and B). It follows, then, that the x = 24 black women not only makes A and B
independent, it also implies, more generally, that “race” and “sex” are independent.

Example
2.5.4

Suppose that two events, A and B, each having nonzero probability, are mutually
exclusive. Are they also independent?

No. If A and B are mutually exclusive, then P(A ∩ B) = 0. But P(A) · P(B) > 0
(by assumption), so the equality spelled out in Definition 2.5.1 that characterizes
independence is not met.

DEDUCING INDEPENDENCE

Sometimes the physical circumstances surrounding two events make it obvious that
the occurrence (or nonoccurrence) of one has absolutely no influence or effect on
the occurrence (or nonoccurrence) of the other. If that should be the case, then the
two events will necessarily be independent in the sense of Definition 2.5.1.

Suppose a coin is tossed twice. Clearly, whatever happens on the first toss has
no physical connection or influence on the outcome of the second. If A and B, then,
are events defined on the second and first tosses, respectively, it would have to be
the case that P(A|B) = P(A|BC) = P(A). For example, let A be the event that the
second toss of a fair coin is a head, and let B be the event that the first toss of that
coin is a tail. Then

P(A|B) = P(Head on second toss | tail on first toss)

= P(Head on second toss) = 1
2

Being able to infer that certain events are independent proves to be of enor-
mous help in solving certain problems. The reason is that many events of interest
are, in fact, intersections. If those events are independent, then the probability of
that intersection reduces to a simple product (because of Definition 2.5.1)—that is,
P(A ∩ B) = P(A) · P(B). For the coin tosses just described,

P(A ∩ B) = P(head on second toss ∩ tail on first toss)

= P(A) · P(B)

= P(head on second toss) · P(tail on first toss)

= 1
2

· 1
2

= 1
4
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Example
2.5.5

Myra and Carlos are summer interns working as proofreaders for a local newspaper.
Based on aptitude tests, Myra has a 50% chance of spotting a hyphenation error,
while Carlos picks up on that same kind of mistake 80% of the time. Suppose the
copy they are proofing contains a hyphenation error. What is the probability it goes
undetected?

Let A and B be the events that Myra and Carlos, respectively, catch the mis-
take. By assumption, P(A) = 0.50 and P(B) = 0.80. What we are looking for is the
probability of the complement of a union. That is,

P(Error goes undetected) = 1 − P(Error is detected)

= 1 − P(Myra or Carlos or both see the mistake)

= 1 − P(A ∪ B)

= 1 − [P(A) + P(B) − P(A ∩ B)] (from Theorem 2.3.6)

Since proofreaders invariably work by themselves, events A and B are necessarily
independent, so P(A ∩ B) would reduce to the product P(A) · P(B). It follows that
such an error would go unnoticed 10% of the time:

P(Error goes undetected) = 1 − {0.50 + 0.80 − (0.50)(0.80)} = 1 − 0.90

= 0.10

Example
2.5.6

Suppose that one of the genes associated with the control of carbohydrate
metabolism exhibits two alleles—a dominant W and a recessive w. If the probabil-
ities of the WW, Ww, and ww genotypes in the present generation are p, q, and r,
respectively, for both males and females, what are the chances that an individual in
the next generation will be a ww?

Let A denote the event that an offspring receives a w allele from her father; let
B denote the event that she receives the recessive allele from her mother. What we
are looking for is P(A ∩ B).

According to the information given,

p = P(Parent has genotype WW) = P(WW)

q = P(Parent has genotype Ww) = P(Ww)

r = P(Parent has genotype ww) = P(ww)

If an offspring is equally likely to receive either of her parent’s alleles, the probabil-
ities of A and B can be computed using Theorem 2.4.1:

P(A) = P(A | WW)P(WW) + P(A | Ww)P(Ww) + P(A | ww)P(ww)

= 0 · p + 1
2

· q + 1 · r

= r + q
2

= P(B)

Lacking any evidence to the contrary, there is every reason here to assume that A
and B are independent events, in which case

P(A ∩ B) = P(Offspring has genotype ww)

= P(A) · P(B)

=
(

r + q
2

)2
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(This particular model for allele segregation, together with the independence
assumption, is called random Mendelian mating.)

The last two examples focused on events for which an a priori assumption of
independence was eminently reasonable. Sometimes, though, what seems eminently
reasonable turns out to be surprisingly incorrect. The next example is a case in point.

Example
2.5.7

A crooked gambler has nine dice in her coat pocket. Three are fair and six are not.
The biased ones are loaded in such a way that the probability of rolling a 6 is 1/2. She
takes out one die at random and rolls it twice. Let A be the event “6 appears on first
roll” and let B be the event “6 appears on second roll.” Are A and B independent?

Our intuition here would probably answer “yes”: How can two rolls of a die
not be independent? For every dice problem we have encountered so far, they have
been. But this is not a typical dice problem. Repeated throws of a die do qualify as
independent events if the probabilities associated with the different faces are known.
In this situation, though, those probabilities are not known and depend in a random
way on which die the gambler draws from her pocket.

To see what effect not knowing which die is being tossed has on the relationship
between A and B requires an application of Theorem 2.4.1. Let F and L denote the
events “fair die is selected” and “loaded die is selected”, respectively. Then

P (A ∩ B) = P (6 on first roll ∩ 6 on second roll)

= P (A ∩ B | F ) P (F ) + P (A ∩ B | L) P (L)

Conditional on either F or L, A and B are independent, so

P(A ∩ B) = (1/6)(1/6)(3/9) + (1/2)(1/2)(6/9) = 19/108

Similarly,

P (A) = P (A | F ) P (F ) + P (A | L) P (L)

= (1/6) (3/9) + (1/2) (6/9) = 7/18 = P (B)

But note that

P (A ∩ B) = 19/108 = 57/324 
= P (A) · P (B) = (7/18) (7/18) = 49/324

proving that A and B are not independent.

Questions

2.5.1. Suppose that P(A ∩ B) = 0.2, P(A) = 0.6, and
P(B) = 0.5.
(a) Are A and B mutually exclusive?
(b) Are A and B independent?
(c) Find P(AC ∪ BC).

2.5.2. Spike is not a terribly bright student. His chances of
passing chemistry are 0.35; mathematics, 0.40; and both,
0.12. Are the events “Spike passes chemistry” and “Spike
passes mathematics” independent? What is the probabil-
ity that he fails both subjects?

2.5.3. Two fair dice are rolled. What is the probability that
the number showing on one will be twice the number ap-
pearing on the other?

2.5.4. Emma and Josh have just gotten engaged. What
is the probability that they have different blood types?
Assume that blood types for both men and women are
distributed in the general population according to the fol-
lowing proportions:

Blood Type Proportion

A 40%
B 10%

AB 5%
O 45%

2.5.5. Dana and Cathy are playing tennis. The probabil-
ity that Dana wins at least one out of two games is 0.3.



Section 2.5 Independence 55

What is the probability that Dana wins at least one out of
four?

2.5.6. Three points, X1, X2, and X3, are chosen at random
in the interval (0, a). A second set of three points, Y1, Y2,
and Y3, are chosen at random in the interval (0, b). Let A
be the event that X2 is between X1 and X3. Let B be the
event that Y1 < Y2 < Y3. Find P(A ∩ B).

2.5.7. Suppose that P(A) = 1
4 and P(B) = 1

8 .
(a) What does P(A ∪ B) equal if

1. A and B are mutually exclusive?
2. A and B are independent?

(b) What does P(A | B) equal if
1. A and B are mutually exclusive?
2. A and B are independent?

2.5.8. Suppose that events A, B, and C are independent.
(a) Use a Venn diagram to find an expression for P(A ∪
B ∪ C) that does not make use of a complement.
(b) Find an expression for P(A ∪ B ∪ C) that does make
use of a complement.

2.5.9. A fair coin is tossed four times. What is the proba-
bility that the number of heads appearing on the first two
tosses is equal to the number of heads appearing on the
second two tosses?

2.5.10. Suppose that two cards are drawn simultaneously
from a standard fifty-two-card poker deck. Let A be the
event that both are either a jack, queen, king, or ace of
hearts, and let B be the event that both are aces. Are A
and B independent? (Note: There are 1326 equally likely
ways to draw two cards from a poker deck.)

DEFINING THE INDEPENDENCE OF MORE THAN TWO EVENTS

It is not immediately obvious how to extend Definition 2.5.1 to, say, three events. To
call A, B, and C independent, should we require that the probability of the three-way
intersection factors into the product of the three original probabilities,

P(A ∩ B ∩ C) = P(A) · P(B) · P(C) (2.5.3)

or should we impose the definition we already have on the three pairs of events:

P(A ∩ B) = P(A) · P(B)

P(B ∩ C) = P(B) · P(C) (2.5.4)

P(A ∩ C) = P(A) · P(C)

Actually, neither condition by itself is sufficient. If three events satisfy Equa-
tions 2.5.3 and 2.5.4, we will call them independent (or mutually independent), but
Equation 2.5.3 does not imply Equation 2.5.4, nor does Equation 2.5.4 imply Equa-
tion 2.5.3 (see Questions 2.5.11 and 2.5.12).

More generally, the independence of n events requires that the probabilities of
all possible intersections equal the products of all the corresponding individual prob-
abilities. Definition 2.5.2 states the result formally. Analogous to what was true in the
case of two events, the practical applications of Definition 2.5.2 arise when n events
are mutually independent, and we can calculate P(A1 ∩ A2 ∩ · · · ∩ An) by computing
the product P(A1) · P(A2) · · · P(An).

Definition 2.5.2
Events A1, A2, . . ., An are said to be independent if for every set of indices i1,
i2, . . ., ik between 1 and n, inclusive,

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P(Ai1 ) · P(Ai2 ) · · · · · P(Aik )

Example
2.5.8

An insurance company plans to assess its future liabilities by sampling the records
of its current policyholders. A pilot study has turned up three clients—one living in
Alaska, one in Missouri, and one in Vermont—whose estimated chances of surviving
to the year 2020 are 0.7, 0.9, and 0.3, respectively. What is the probability that by the
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end of 2019 the company will have had to pay death benefits to exactly one of the
three?

Let A1 be the event “Alaska client survives through 2019.” Define A2 and A3

analogously for the Missouri client and Vermont client, respectively. Then the event
E: “Exactly one dies” can be written as the union of three intersections:

E = (
A1 ∩ A2 ∩ AC

3

) ∪ (
A1 ∩ AC

2 ∩ A3
) ∪ (

AC
1 ∩ A2 ∩ A3

)

Since each of the intersections is mutually exclusive of the other two,

P(E) = P
(
A1 ∩ A2 ∩ AC

3

) + P
(
A1 ∩ AC

2 ∩ A3
) + P

(
AC

1 ∩ A2 ∩ A3
)

Furthermore, there is no reason to believe that for all practical purposes the fates of
the three are not independent. That being the case, each of the intersection proba-
bilities reduces to a product, and we can write

P(E) = P(A1) · P(A2)·P(
AC

3

) + P(A1)·P(
AC

2

)·P(A3) + P
(
AC

1

)·P(A2)·P(A3)

= (0.7)(0.9)(0.7) + (0.7)(0.1)(0.3) + (0.3)(0.9)(0.3)

= 0.543

Example
2.5.9

Protocol for making financial decisions in a certain corporation follows the “circuit”
pictured in Figure 2.5.1. Any budget is first screened by 1. If he approves it, the plan is
forwarded to 2, 3, and 5. If either 2 or 3 concurs, it goes to 4. If either 4 or 5 says “yes,”
it moves on to 6 for a final reading. Only if 6 is also in agreement does the proposal
pass. Suppose that 1, 5, and 6 each has a 50% chance of saying “yes,” whereas 2, 3,
and 4 will each concur with a probability of 0.70. If everyone comes to a decision
independently, what is the probability that a budget will pass?

2

3

4

6

5

1

Figure 2.5.1

Probabilities of this sort are calculated by reducing the circuit to its component
unions and intersections. Moreover, if all decisions are made independently, which
is the case here, then every intersection becomes a product.
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Let Ai be the event that person i approves the budget, i = 1, 2, . . . , 6. Looking
at Figure 2.5.1, we see that

P(Budget passes) = P(A1 ∩ {[(A2 ∪ A3) ∩ A4] ∪ A5} ∩ A6)

= P(A1)P{[(A2 ∪ A3) ∩ A4] ∪ A5}P(A6)

By assumption, P(A1) = 0.5, P(A2) = 0.7, P(A3) = 0.7, P(A4) = 0.7, P(A5) = 0.5,
and P(A6) = 0.5, so

P{[(A2 ∪ A3) ∩ A4]} = [P(A2) + P(A3) − P(A2)P(A3)]P(A4)

= [0.7 + 0.7 − (0.7)(0.7)](0.7)

= 0.637
Therefore,

P(Budget passes) = (0.5){0.637 + 0.5 − (0.637)(0.5)}(0.5)

= 0.205

REPEATED INDEPENDENT EVENTS

We have already seen several examples where the event of interest was actually an
intersection of independent simpler events (in which case the probability of the in-
tersection reduced to a product). There is a special case of that basic scenario that
deserves special mention because it applies to numerous real-world situations. If the
events making up the intersection all arise from the same physical circumstances
and assumptions (i.e., they represent repetitions of the same experiment), they are
referred to as repeated independent trials. The number of such trials may be finite or
infinite.

Example
2.5.10

Suppose the string of Christmas tree lights you just bought has twenty-four bulbs
wired in series. If each bulb has a 99.9% chance of “working” the first time current
is applied, what is the probability that the string itself will not work?

Let Ai be the event that the ith bulb fails, i = 1, 2, . . . , 24. Then

P(String fails) = P(At least one bulb fails)

= P(A1 ∪ A2 ∪ · · · ∪ A24)

= 1 − P(String works)

= 1 − P(All twenty-four bulbs work)

= 1 − P
(
AC

1 ∩ AC
2 ∩ · · · ∩ AC

24

)
If we assume that bulb failures are independent events,

P(String fails) = 1 − P
(
AC

1

)
P

(
AC

2

) · · · P
(
AC

24

)
Moreover, since all the bulbs are presumably manufactured the same way, P(AC

i ) is
the same for all i, so

P(String fails) = 1 − [
P

(
AC

i

)]24

= 1 − (0.999)24

= 1 − 0.98

= 0.02
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The chances are one in fifty, in other words, that the string will not work the first time
current is applied.

Example
2.5.11

During the 1978 baseball season, Pete Rose of the Cincinnati Reds set a National
League record by hitting safely in forty-four consecutive games. Assume that Rose
was a .300 hitter and that he came to bat four times each game. If each at-bat is as-
sumed to be an independent event, what probability might reasonably be associated
with a hitting streak of that length?

For this problem we need to invoke the repeated independent trials model
twice—once for the four at-bats making up a game and a second time for the forty-
four games making up the streak. Let Ai denote the event “Rose hit safely in ith
game,” i = 1, 2, . . . , 44. Then

P(Rose hit safely in forty-four consecutive games) = P(A1 ∩ A2 ∩ · · · ∩ A44)

= P(A1) · P(A2) · · · · · P(A44)

(2.5.5)

Since all the P(Ai)’s are equal, we can further simplify Equation 2.5.5 by writing

P(Rose hit safely in forty-four consecutive games) = [P(A1)]44

To calculate P(A1) we should focus on the complement of A1. Specifically,

P(A1) = 1 − P
(
AC

1

)
= 1 − P(Rose did not hit safely in game 1)

= 1 − P(Rose made four outs)

= 1 − (0.700)4 (Why?)

= 0.76

Therefore, the probability of a .300 hitter putting together a forty-four-game streak
(during a given set of forty-four games) is 0.0000057:

P(Rose hit safely in forty-four consecutive games) = (0.76)44

= 0.0000057

Comment The analysis described here has the basic “structure” of a repeated in-
dependent trials problem, but the assumptions that the latter makes are not entirely
satisfied by the data. Each at-bat, for example, is not really a repetition of the same
experiment, nor is P(Ai) the same for all i. Rose would obviously have had dif-
ferent probabilities of getting a hit against different pitchers. Moreover, although
“four” was probably the typical number of official at-bats that he had during a game,
there would certainly have been many instances where he had either fewer or more.
Clearly, the day-to-day deviations from the assumed model would have sometimes
been in Rose’s favor, sometimes not. Over the course of the hitting streak, the net ef-
fect of those deviations would not be expected to have much effect on the 0.0000057
probability.

Example
2.5.12

In the game of craps, one of the ways a player can win is by rolling (with two dice)
one of the sums 4, 5, 6, 8, 9, or 10, and then rolling that sum again before rolling a sum
of 7. For example, the sequence of sums 6, 5, 8, 8, 6 would result in the player winning
on his fifth roll. In gambling parlance, “6” is the player’s “point,” and he “made his
point.” On the other hand, the sequence of sums 8, 4, 10, 7 would result in the player
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losing on his fourth roll: his point was an 8, but he rolled a sum of 7 before he rolled
a second 8. What is the probability that a player wins with a point of 10?

Table 2.5.2 shows some of the ways a player can make a point of 10. Each se-
quence, of course, is an intersection of independent events, so its probability becomes

Table 2.5.2

Sequence of Rolls Probability

(10, 10) (3/36)(3/36)
(10, no 10 or 7, 10) (3/36)(27/36)(3/36)

(10, no 10 or 7, no 10 or 7, 10) (3/36)(27/36)(27/36)(3/36)
...

...

a product. The event “Player wins with a point of 10” is then the union of all the
sequences that could have been listed in the first column. Since all those sequences
are mutually exclusive, the probability of winning with a point of 10 reduces to the
sum of an infinite number of products:

P(Player wins with a point of 10) = 3
36

· 3
36

+ 3
36

· 27
36

· 3
36

+ 3
36

· 27
36

· 27
36

· 3
36

+ · · ·

= 3
36

· 3
36

∞∑
k=0

(
27
36

)k

(2.5.6)

Recall from algebra that if 0 < r < 1,
∞∑

k=0

rk = 1/(1 − r)

Applying the formula for the sum of a geometric series to Equation 2.5.6 shows that
the probability of winning at craps with a point of 10 is 1

36 :

P(Player wins with a point of 10) = 3
36

· 3
36

· 1(
1 − 27

36

)
= 1

36

Table 2.5.3 shows the probabilities of a person “making” each of the possible six
points—4, 5, 6, 8, 9, and 10. According to the rules of craps, a player wins by either

Table 2.5.3

Point P (makes point)

4 1/36
5 16/360
6 25/396
8 25/396
9 16/360

10 1/36
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(1) getting a sum of 7 or 11 on the first roll or (2) getting a 4, 5, 6, 8, 9, or 10 on the
first roll and making the point. But P(sum = 7) = 6/36 and P(sum = 11) = 2/36, so

P(Player wins) = 6
36

+ 2
36

+ 1
36

+ 16
360

+ 25
396

+ 25
396

+ 16
360

+ 1
36

= 0.493

As even-money games go, craps is relatively fair—the probability of the shooter win-
ning is not much less than 0.500.

Example
2.5.13

A transmitter is sending a binary code (+ and − signals) that must pass through
three relay signals before being sent on to the receiver (see Figure 2.5.2). At each
relay station, there is a 25% chance that the signal will be reversed—that is

P(+ is sent by relay i|− is received by relay i)

= P(− is sent by relay i|+ is received by relay i)

= 1/4, i = 1, 2, 3

Suppose + symbols make up 60% of the message being sent. If the signal + is re-
ceived, what is the probability a + was sent?

1 2 3
(+ ?) (+)

Receiver

Figure 2.5.2

This is basically a Bayes’ theorem (Theorem 2.4.2) problem, but the three relay
stations introduce a complex mechanism for transmission error. Let A be the event
“+ is transmitted from tower” and B be the event “+ is received from relay 3.” Then

P(A|B) = P(B|A)P(A)
P(B|A)P(A) + P(B|AC)P(AC)

Notice that a + can be received from relay 3 given that a + was initially sent from
the tower if either (1) all relay stations function properly or (2) any two of the sta-
tions make transmission errors. Table 2.5.4 shows the four mutually exclusive ways
(1) and (2) can happen. The probabilities associated with the message transmissions
at each relay station are shown in parentheses. Assuming the relay station outputs
are independent events, the probability of an entire transmission sequence is simply
the product of the probabilities in parentheses in any given row. These overall proba-
bilities are listed in the last column; their sum, 36/64, is P(B|A). By a similar analysis,
we can show that

P(B|AC) = P(+ is received from relay 3|− is transmitted from tower) = 28/64

Finally, since P(A) = 0.6 and P(AC) = 0.4, the conditional probability we are
looking for is 0.66:

P(A|B) =
( 36

64

)
(0.6)( 36

64

)
(0.6) + ( 28

64

)
(0.4)

= 0.66
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Table 2.5.4

Signal Transmitted by

Tower Relay 1 Relay 2 Relay 3 Probability

+ +(3/4) −(1/4) +(1/4) 3/64
+ −(1/4) −(3/4) +(1/4) 3/64
+ −(1/4) +(1/4) +(3/4) 3/64
+ +(3/4) +(3/4) +(3/4) 27/64

36/64

Example
2.5.14

Andy, Bob, and Charley have gotten into a disagreement over a female acquaintance,
Donna, and decide to settle their dispute with a three-cornered pistol duel. Of the
three, Andy is the worst shot, hitting his target only 30% of the time. Charley, a
little better, is on-target 50% of the time, while Bob never misses (see Figure 2.5.3).
The rules they agree to are simple: They are to fire at the targets of their choice in
succession, and cyclically, in the order Andy, Bob, Charley, and so on, until only one
of them is left standing. On each “turn,” they get only one shot. If a combatant is hit,
he no longer participates, either as a target or as a shooter.

Andy

P (Hits target) 0.3

CharleyBob

P (Hits target) 1.0 P (Hits target) 0.5

Figure 2.5.3

As Andy loads his revolver, he mulls over his options (his objective is clear—to max-
imize his probability of survival). According to the rule he can shoot either Bob or
Charley, but he quickly rules out shooting at the latter because it would be counter-
productive to his future well-being: If he shot at Charley and had the misfortune of
hitting him, it would be Bob’s turn, and Bob would have no recourse but to shoot
at Andy. From Andy’s point of view, this would be a decidedly grim turn of events,
since Bob never misses. Clearly, Andy’s only option is to shoot at Bob. This leaves
two scenarios: (1) He shoots at Bob and hits him, or (2) he shoots at Bob and misses.

Consider the first possibility. If Andy hits Bob, Charley will proceed to shoot at
Andy, Andy will shoot back at Charley, and so on, until one of them hits the other. Let
CHi and CMi denote the events “Charley hits Andy with the ith shot” and “Charley
misses Andy with the ith shot,” respectively. Define AHi and AMi analogously. Then
Andy’s chances of survival (given that he has killed Bob) reduce to a countably infi-
nite union of intersections:

P(Andy survives) = P[(CM1 ∩ AH1) ∪ (CM1 ∩ AM1 ∩ CM2 ∩ AH2)

∪ (CM1 ∩ AM1 ∩ CM2 ∩ AM2 ∩ CM3 ∩ AH3) ∪ · · · ]
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Note that each intersection is mutually exclusive of all of the others and that its com-
ponent events are independent. Therefore,

P(Andy survives) = P(CM1)P(AH1) + P(CM1)P(AM1)P(CM2)P(AH2)

+ P(CM1)P(AM1)P(CM2)P(AM2)P(CM3)P(AH3) + · · ·
= (0.5)(0.3) + (0.5)(0.7)(0.5)(0.3) + (0.5)(0.7)(0.5)(0.7)(0.5)(0.3) + · · ·

= (0.5)(0.3)
∞∑

k=0

(0.35)k

= (0.15)
(

1
1 − 0.35

)
= 3

13

Now consider the second scenario. If Andy shoots at Bob and misses, Bob will
undoubtedly shoot and hit Charley, since Charley is the more dangerous adversary.
Then it will be Andy’s turn again. Whether he would see another tomorrow would
depend on his ability to make that very next shot count. Specifically,

P(Andy survives) = P(Andy hits Bob on second turn) = 3/10

But 3
10 > 3

13 , so Andy is better off not hitting Bob with his first shot. And because we
have already argued that it would be foolhardy for Andy to shoot at Charley, Andy’s
optimal strategy is clear—deliberately miss both Bob and Charley with the first
shot.

Example
2.5.15

Scientists estimate that the Earth’s atmosphere contains on the order of
1044 molecules of which roughly 78% are Nitrogen (N2), 21% Oxygen (O2), and 1%
Argon (A). Some 2 × 1022 of those molecules make up each and every breath you
take. Rooted in those not particularly interesting facts is a bizarre question, one that
has an equally bizarre answer.

On March 15, 44 b.c., Julius Caesar was assassinated by a group of Roman sen-
ators, a mutiny led by one of his dearest friends, Marcus Brutus. In Shakespeare’s
play describing the attack, the dying Caesar calls out his friend’s treachery with
the famous lament, “Et tu, Brute.” In that final breath, Caesar presumably exhaled
2 × 1022 molecules.

So, here is the question, framed in the context of a typical balls-in-boxes problem.
Suppose those last 2 × 1022 molecules that Caesar exhaled could all be colored red;
and suppose the remaining 1044 − 2×1022 molecules in the atmosphere could all be
colored blue. Furthermore, suppose the entire set of red and blue molecules remains
unchanged over time, but the box (that is, the atmosphere) is stirred and shaken every
day for the next 2060 years. By 2016, then, we can assume that Caesar’s last breath
(of red molecules) has become randomly scattered throughout Earth’s atmosphere
(of blue molecules). Given those assumptions, what is the probability that in your
next breath there will be at least one molecule from Caesar’s last breath?

At first blush, everyone’s intuition would dismiss the question as absurd—using
a sample as small as a single breath to “recapture” something from another breath
that could be anywhere in the atmosphere would seem to be analogous to a blind
person searching for an infinitesimally small needle in a Godzilla-sized haystack. For
all practical purposes, the answer surely must be 0. Not so.

Imagine taking a random sample of 2 × 1022 molecules (your next breath) one-
at-a-time from the 1044 molecules in the atmosphere (see Figure 2.5.4). Let Ai, i =
1, 2, . . . , 2×1022 be the event that the ith molecule taken in your next breath is not a
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Molecules from
Caesar’s last
breath
(2 3 1022)

Molecules not
from Caesar’s
last breath
(1044 – 2 3 1022)

Figure 2.5.4

“Caesar” molecule, and let A denote the event that your last breath ultimately does
contain something from Caesar’s last breath. Then

P (A) = 1 − P (A1 ∩ A2 ∩ A3 ∩ · · · ∩ A2 ×1022 )

Clearly,

P (A1) = (
1044 − 2 × 1022) /1044

P (A2|A1) = (
1044 − 2 × 1022 − 1

)
/
(
1044 − 1

)
P (A3|A1 ∩ A2) = (

1044 − 2 × 1022 − 2
)
/
(
1044 − 2

)
, and so on.

Also, from Equation 2.4.3,

P (A) = 1 − P (A1) P (A2|A1) P (A3|A1 ∩ A2) . . . P (A2 ×1022 |A1 ∩ A2 ∩ . . . A2 ×1022−1)

Because of the huge disparity, though, between 1044 and 2 × 1022, all the condi-
tional probabilities are essentially equal to P(A1), which implies that

P (A) =̇ 1 − [P (A1)]2×1022 = 1 − [
(1044 − 2 × 1022)/1044]2×1022

= 1 − [
(1 − 2/1022)

]2×1022

Recall from calculus that if x is a very small number, 1 − x =̇ e−x. Therefore,

P (A) =̇ 1 − (e−2/1022
)2×1022 = 1 − e−4 = 0.98 (2.5.7)

Equation 2.5.7 is a shocker to say the least: Given the assumptions that were
made, it shows that the probability your next breath contains something from
Caesar’s last breath is almost a certainty. How can something so unbelievable have
such a high probability of happening? The answer in a word is persistence. Think of
your next breath as a raffle with anything from Caesar’s last breath being the top
prize. What makes this “game” different than a weekly LOTTO drawing where you
might have purchased a half-dozen tickets is that here your next breath, in effect,
has purchased 20,000,000,000,000,000,000,000 tickets. Moreover, there is not just
one jackpot, there are 20,000,000,000,000,000,000,000 jackpots.

The great Roman poet and philosopher Ovid was born a year before Caesar
was murdered. Among his voluminous writings was an interesting reflection on the
nature of probability, one suggesting that he might not have been surprised by the
answer given in Equation 2.5.7. “Chance,” he wrote, “is always powerful. Let your
hook be always cast; in the pool where you least expect it, there will be a fish.”
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Questions

2.5.11. Suppose that two fair dice (one red and one green)
are rolled. Define the events

A: a 1 or a 2 shows on the red die
B: a 3, 4, or 5 shows on the green die
C: the dice total is 4, 11, or 12

Show that these events satisfy Equation 2.5.3 but not
Equation 2.5.4.

2.5.12. A roulette wheel has thirty-six numbers colored
red or black according to the pattern indicated below:

Roulette wheel pattern
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R R R R R B B B B R R R R B B B B B

36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

Define the events

A: red number appears
B: even number appears
C: number is less than or equal to 18

Show that these events satisfy Equation 2.5.4 but not
Equation 2.5.3.

2.5.13. How many probability equations need to be veri-
fied to establish the mutual independence of four events?

2.5.14. In a roll of a pair of fair dice (one red and one
green), let A be the event the red die shows a 3, 4, or 5;
let B be the event the green die shows a 1 or a 2; and let C
be the event the dice total is 7. Show that A, B, and C are
independent.

2.5.15. In a roll of a pair of fair dice (one red and one
green), let A be the event of an odd number on the red
die, let B be the event of an odd number on the green die,
and let C be the event that the sum is odd. Show that any
pair of these events is independent but that A, B, and C
are not mutually independent.

2.5.16. On her way to work, a commuter encounters four
traffic signals. Assume that the distance between each of
the four is sufficiently great that her probability of getting
a green light at any intersection is independent of what
happened at any previous intersection. The first two lights
are green for forty seconds of each minute; the last two,
for thirty seconds of each minute. What is the probability
that the commuter has to stop at least three times?

2.5.17. School board officials are debating whether to re-
quire all high school seniors to take a proficiency exam
before graduating. A student passing all three parts
(mathematics, language skills, and general knowledge)
would be awarded a diploma; otherwise, he or she would
receive only a certificate of attendance. A practice test
given to this year’s ninety-five hundred seniors resulted
in the following numbers of failures:

Subject Area Number of Students Failing

Mathematics 3325

Language skills 1900

General knowledge 1425

If “Student fails mathematics,” “Student fails language
skills,” and “Student fails general knowledge” are inde-
pendent events, what proportion of next year’s seniors can
be expected to fail to qualify for a diploma? Does inde-
pendence seem a reasonable assumption in this situation?

2.5.18. Consider the following four-switch circuit:

A

In

1 A2

A3 A4

Out

If all switches operate independently and P(Switch
closes) = p, what is the probability the circuit is com-
pleted?

2.5.19. A fast-food chain is running a new promotion. For
each purchase, a customer is given a game card that may
win $10. The company claims that the probability of a per-
son winning at least once in five tries is 0.32. What is the
probability that a customer wins $10 on his or her first
purchase?

2.5.20. Players A, B, and C toss a fair coin in order.
The first to throw a head wins. What are their respective
chances of winning?

2.5.21. In a certain developing nation, statistics show that
only two out of ten children born in the early 1980s
reached the age of twenty-one. If the same mortality rate
is operative over the next generation, how many children
does a woman need to bear if she wants to have at least a
75% probability that at least one of her offspring survives
to adulthood?

2.5.22. According to an advertising study, 15% of televi-
sion viewers who have seen a certain automobile commer-
cial can correctly identify the actor who does the voice-
over. Suppose that ten such people are watching TV and
the commercial comes on. What is the probability that at
least one of them will be able to name the actor? What is
the probability that exactly one will be able to name the
actor?

2.5.23. A fair die is rolled and then n fair coins are tossed,
where n is the number showing on the die. What is the
probability that no heads appear?

2.5.24. Each of m urns contains three red chips and four
white chips. A total of r samples with replacement are
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taken from each urn. What is the probability that at least
one red chip is drawn from at least one urn?

2.5.25. If two fair dice are tossed, what is the smallest
number of throws, n, for which the probability of getting
at least one double 6 exceeds 0.5? (Note: This was one of
the first problems that de Méré communicated to Pascal
in 1654.)

2.5.26. A pair of fair dice are rolled until the first sum of
8 appears. What is the probability that a sum of 7 does not
precede that first sum of 8?

2.5.27. An urn contains w white chips, b black chips, and
r red chips. The chips are drawn out at random, one at
a time, with replacement. What is the probability that a
white appears before a red?

2.5.28. A Coast Guard dispatcher receives an SOS from
a ship that has run aground off the shore of a small island.
Before the captain can relay her exact position, though,
her radio goes dead. The dispatcher has n helicopter crews
he can send out to conduct a search. He suspects the ship
is somewhere either south in area I (with probability p)
or north in area II (with probability 1 − p). Each of the
n rescue parties is equally competent and has probabil-
ity r of locating the ship given it has run aground in the
sector being searched. How should the dispatcher deploy
the helicopter crews to maximize the probability that one
of them will find the missing ship? (Hint: Assume that m
search crews are sent to area I and n − m are sent to area
II. Let B denote the event that the ship is found, let A1 be

the event that the ship is in area I, and let A2 be the event
that the ship is in area II. Use Theorem 2.4.1 to get an
expression for P(B); then differentiate with respect to m.)

2.5.29. A computer is instructed to generate a random
sequence using the digits 0 through 9; repetitions are per-
missible. What is the shortest length the sequence can be
and still have at least a 70% probability of containing at
least one 4?

2.5.30. A box contains a two-headed coin and eight fair
coins. One coin is drawn at random and tossed n times.
Suppose all n tosses come up heads. Show that the limit of
the probability that the coin is fair is 0 as n goes to infinity.

2.5.31. Stanley’s statistics seminar is graded on a Pass/Fail
basis. At the end of the semester each student is given
the option of taking either a two-question exam (Final A)
or a three-question exam (Final B). To pass the course,
students must answer at least one question correctly on
whichever exam they choose. The professor estimates that
a typical student has a 45% chance of correctly answering
each of the two questions on Final A and a 30% chance
of correctly answering each of the three questions on
Final B. Which exam should Stanley choose? Answer the
question two different ways.

2.5.32. What is the smallest number of switches wired in
parallel that will give a probability of at least 0.98 that a
circuit will be completed? Assume that each switch op-
erates independently and will function properly 60% of
the time.

2.6 Combinatorics
Combinatorics is a time-honored branch of mathematics concerned with counting,
arranging, and ordering. While blessed with a wealth of early contributors (there
are references to combinatorial problems in the Old Testament), its emergence as
a separate discipline is often credited to the German mathematician and philoso-
pher Gottfried Wilhelm Leibniz (1646–1716), whose 1666 treatise, Dissertatio de arte
combinatoria, was perhaps the first monograph written on the subject (114).

Applications of combinatorics are rich in both diversity and number. Users range
from the molecular biologist trying to determine how many ways genes can be po-
sitioned along a chromosome, to a computer scientist studying queuing priorities, to
a psychologist modeling the way we learn, to a weekend poker player wondering
whether he should draw to a straight, or a flush, or a full house. Surprisingly enough,
despite the considerable differences that seem to distinguish one question from an-
other, solutions to all of these questions are rooted in the same set of four basic
theorems and rules.

COUNTING ORDERED SEQUENCES: THE MULTIPLICATION RULE

More often than not, the relevant “outcomes” in a combinatorial problem are or-
dered sequences. If two dice are rolled, for example, the outcome (4, 5)—that is, the
first die comes up 4 and the second die comes up 5—is an ordered sequence of length
two. The number of such sequences is calculated by using the most fundamental
result in combinatorics, the multiplication rule.
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Multiplication Rule If operation A can be performed in m different ways and oper-
ation B in n different ways, the sequence (operation A, operation B) can be performed
in m · n different ways.

Proof At the risk of belaboring the obvious, we can verify the multiplication rule by
considering a tree diagram (see Figure 2.6.1). Since each version of A can be followed
by any of n versions of B, and there are m of the former, the total number of “A, B”
sequences that can be pieced together is obviously the product m · n.

1

1

Operation BOperation A

2

1

2

n

2
n

1

m
2

n

Figure 2.6.1

Corollary
2.6.1

If operation Ai, i = 1, 2, . . . , k, can be performed in ni ways, i = 1, 2, . . . , k, respec-
tively, then the ordered sequence (operation A1, operation A2, . . ., operation Ak) can
be performed in n1 · n2 · · · · · nk ways.

Example
2.6.1

The combination lock on a briefcase has two dials, each marked off with sixteen
notches (see Figure 2.6.2). To open the case, a person first turns the left dial in a
certain direction for two revolutions and then stops on a particular mark. The right
dial is set in a similar fashion, after having been turned in a certain direction for two
revolutions. How many different settings are possible?

A

C

D B

A

C

D B

Figure 2.6.2

In the terminology of the multiplication rule, opening the briefcase corresponds
to the four-step sequence (A1, A2, A3, A4) detailed in Table 2.6.1. Applying the pre-
vious corollary, we see that one thousand twenty-four different settings are possible:

number of different settings = n1 · n2 · n3 · n4

= 2 · 16 · 2 · 16

= 1024
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Table 2.6.1

Operation Purpose Number of Options

A1 Rotating the left dial in a
particular direction 2

A2 Choosing an endpoint for the
left dial 16

A3 Rotating the right dial in a
particular direction 2

A4 Choosing an endpoint for the
right dial 16

Comment The number of dials, as opposed to the number of notches on each dial, is
the critical factor in determining how many different settings are possible. A two-dial
lock, for example, where each dial has twenty notches, gives rise to only 2 ·20 ·2 ·20 =
1600 settings. If those forty notches, though, are distributed among four dials (ten
to each dial), the number of different settings increases a hundredfold to 160,000
(= 2 · 10 · 2 · 10 · 2 · 10 · 2 · 10).

Example
2.6.2

Alphonse Bertillon, a nineteenth-century French criminologist, developed an identi-
fication system based on eleven anatomical variables (height, head width, ear length,
etc.) that presumably remain essentially unchanged during an individual’s adult life.
The range of each variable was divided into three subintervals: small, medium, and
large. A person’s Bertillon configuration is an ordered sequence of eleven letters, say,

s, s, m, m, l, s, l, s, s, m, s

where a letter indicates the individual’s “size” relative to a particular variable. How
populated does a city have to be before it can be guaranteed that at least two citizens
will have the same Bertillon configuration?

Viewed as an ordered sequence, a Bertillon configuration is an eleven-step classi-
fication system, where three options are available at each step. By the multiplication
rule, a total of 311, or 177,147, distinct sequences are possible. Therefore, any city with
at least 177,148 adults would necessarily have at least two residents with the same
pattern. (The limited number of possibilities generated by the configuration’s vari-
ables proved to be one of its major weaknesses. Still, it was widely used in Europe
for criminal identification before the development of fingerprinting.)

Example
2.6.3

In 1824 Louis Braille invented what would eventually become the standard alphabet
for the blind. Based on an earlier form of “night writing” used by the French army for
reading battlefield communiqués in the dark, Braille’s system replaced each written
character with a six-dot matrix:

• •
• •
• •

where certain dots were raised, the choice depending on the character being tran-
scribed. The letter e, for example, has two raised dots and is written

• •

• •
• •
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Punctuation marks, common words, suffixes, and so on, also have specified dot pat-
terns. In all, how many different characters can be enciphered in Braille?

Think of the dots as six distinct operations, numbered 1 to 6 (see Figure 2.6.3). In
forming a Braille letter, we have two options for each dot: We can raise it or not raise
it. The letter e, for example, corresponds to the six-step sequence (raise, do not raise,
do not raise, do not raise, raise, do not raise). The number of such sequences, with
k = 6 and n1 = n2 = · · · = n6 = 2, is 26, or 64. One of those sixty-four configurations,
though, has no raised dots, making it of no use to a blind person. Figure 2.6.4 shows
the entire sixty-three-character Braille alphabet.

1 • 4 •

2 • 5 •

3 • 6 •

2   Sequences
(2)

1

(2)

2

(2)

3

(2)

4

(2)

5

(2)

6

Options

Dot number

6

Figure 2.6.3

a

1

b

2

c

3

d

4

e

5

f

6

g

7

h

8

i

9

j

0

k l m n o p q r s t

u v x y z and for of the with

ch gh sh th wh ed er ou ow w

, ; : . en ! () "/? in ..

st ing # ar ' -

General

accent

sign

Used for

two-celled

contractions

Italic

sign;

decimal

point

Letter

sign

Capital

sign

Figure 2.6.4
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Example
2.6.4

The annual NCAA (“March Madness”) basketball tournament starts with a field
of sixty-four teams. After six rounds of play, the squad that remains unbeaten is
declared the national champion. How many different configurations of winners and
losers are possible, starting with the first round? Assume that the initial pairing of the
sixty-four invited teams into thirty-two first-round matches has already been done.

Counting the number of ways a tournament of this sort can play out is an exer-
cise in applying the multiplication rule twice. Notice, first, that the thirty-two first-
round games can be decided in 232 ways. Similarly, the resulting sixteen second-round
games can generate 216 different winners, and so on. Overall, the tournament can be
pictured as a six-step sequence, where the number of possible outcomes at the six
steps are 232, 216, 28, 24, 22, and 21, respectively. It follows that the number of possi-
ble tournaments (not all of which, of course, would be equally likely!) is the product
232 · 216 · 28 · 24 · 22 · 21, or 263.

Example
2.6.5

When they were first introduced, postal zip codes were five-digit numbers, theoreti-
cally ranging from 00000 to 99999. (In reality, the lowest zip code was 00601 for San
Juan, Puerto Rico; the highest was 99950 for Ketchikan, Alaska.) An additional four
digits have since been added, so each zip code is now a nine-digit number: an initial
five digits, followed by a hyphen, followed by a final four digits.

Let N(A) denote the number of zip codes in the set A, which contains all possible
zip codes having at least one 7 among the first five digits; let N(B) denote the number
of zip codes in the set B, which contains all possible zip codes having at least one 7
among the final four digits; and let N(T) denote the number of all possible nine-digit
zip codes.

Find N(T), N(A), N(B), N(A ∩ B), and N(A ∪ B). Assume that any digit from
0 to 9 can appear any number of times in a zip code.

Since each of the nine positions in a zip code can be occupied by any of ten digits,
N(T) = 109. Figure 2.6.5 shows examples of zip codes belonging to A, B, A ∩ B, and
A ∪ B.

3 7 2 1 7 − 4 4 1 6 ∈ A
1 6 7 9 4 − 0 7 2 1 ∈ B
7 0 6 2 1 − 7 7 3 7 ∈ A ∩ B
2 9 7 5 5 − 6 6 7 4 ∈ A ∪ B

Figure 2.6.5

Notice that the number of zip codes in the set A is necessarily equal to the total
number of zip codes minus all the zip codes that have no 7’s in the first five positions.
That is,

N(A) = N(T) − 95 · 104 = 109 − 95 · 104

Likewise,

N(B) = N(T) − 105 · 94 = 109 − 105 · 94

By definition, A ∩ B is the set of outcomes having at least one 7 in the first five
positions and at least one 7 in the last four positions (see Figure 2.6.6). By the

at leastone 7︷ ︸︸ ︷
1 2 3 4 5

at leastone 7︷ ︸︸ ︷
6 7 8 9

No. of ways: 105− 95 104− 94

Figure 2.6.6
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Multiplication rule, then,

N(A ∩ B) = (105 − 95) · (104 − 94)

Finally,

N(A ∪ B) = N(A) + N(B) − N(A ∩ B)

= 109 − 95 · 104 + 109 − 105 · 94 − (105 − 95)(104 − 94)

= 612,579,511

As a partial check, N (A ∪ B) should be equal to the total number of zip codes minus
the number of zip codes with no 7’s. But 109 − 99 = 612,579,511.

Problem-Solving Hints

(Doing combinatorial problems)

Combinatorial questions sometimes call for problem-solving techniques that are
not routinely used in other areas of mathematics. The three listed below are
especially helpful.

1. Draw a diagram that shows the structure of the outcomes that are being
counted. Be sure to include (or indicate) all relevant variations. A case in
point is Figure 2.6.3. Almost invariably, diagrams such as these will suggest
the formula, or combination of formulas, that should be applied.

2. Use enumerations to “test” the appropriateness of a formula. Typically,
the answer to a combinatorial problem—that is, the number of ways to do
something—will be so large that listing all possible outcomes is not feasible.
It often is feasible, though, to construct a simple, but analogous, problem for
which the entire set of outcomes can be identified (and counted). If the pro-
posed formula does not agree with the simple-case enumeration, we know
that our analysis of the original question is incorrect.

3. If the outcomes to be counted fall into structurally different categories, the
total number of outcomes will be the sum (not the product) of the number
of outcomes in each category.

Questions

2.6.1. A chemical engineer wishes to observe the effects of
temperature, pressure, and catalyst concentration on the
yield resulting from a certain reaction. If she intends to in-
clude two different temperatures, three pressures, and two
levels of catalyst, how many different runs must she make
in order to observe each temperature-pressure-catalyst
combination exactly twice?

2.6.2. A coded message from a CIA operative to his
Russian KGB counterpart is to be sent in the form Q4ET,
where the first and last entries must be consonants; the
second, an integer 1 through 9; and the third, one of the six
vowels. How many different ciphers can be transmitted?

2.6.3. How many terms will be included in the expansion
of

(a + b + c)(d + e + f )(x + y + u + v + w)

Which of the following will be included in that number:
aeu, cdx, bef, xvw?

2.6.4. Suppose that the format for license plates in a cer-
tain state is two letters followed by four numbers.
(a) How many different plates can be made?
(b) How many different plates are there if the letters can
be repeated but no two numbers can be the same?
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(c) How many different plates can be made if repetitions
of numbers and letters are allowed except that no plate
can have four zeros?

2.6.5. How many integers between 100 and 999 have dis-
tinct digits, and how many of those are odd numbers?

2.6.6. A fast-food restaurant offers customers a choice of
eight toppings that can be added to a hamburger. How
many different hamburgers can be ordered?

2.6.7. In baseball there are twenty-four different “base-
out” configurations (runner on first—two outs, bases
loaded—none out, and so on). Suppose that a new game,
sleazeball, is played where there are seven bases (exclud-
ing home plate) and each team gets five outs an inning.
How many base-out configurations would be possible in
sleazeball?

2.6.8. Recall the postal zip codes described in Example
2.6.5.
(a) If viewed as nine-digit numbers, how many zip codes
are greater than 700,000,000?
(b) How many zip codes will the digits in the nine posi-
tions alternate between even and odd?
(c) How many zip codes will have the first five digits be
all different odd numbers and the last four digits be two
2’s and two 4’s?

2.6.9. A restaurant offers a choice of four appetizers, four-
teen entrees, six desserts, and five beverages. How many
different meals are possible if a diner intends to order only
three courses? (Consider the beverage to be a “course.”)

2.6.10. An octave contains twelve distinct notes (on a pi-
ano, five black keys and seven white keys). How many
different eight-note melodies within a single octave can
be written if the black keys and white keys need to
alternate?

2.6.11. Residents of a condominium have an automatic
garage door opener that has a row of eight buttons. Each
garage door has been programmed to respond to a par-
ticular set of buttons being pushed. If the condominium

houses 250 families, can residents be assured that no two
garage doors will open on the same signal? If so, how
many additional families can be added before the eight-
button code becomes inadequate? (Note: The order in
which the buttons are pushed is irrelevant.)

2.6.12. In international Morse code, each letter in the al-
phabet is symbolized by a series of dots and dashes: the
letter a, for example, is encoded as “· –”. What is the min-
imum number of dots and/or dashes needed to represent
any letter in the English alphabet?

2.6.13. The decimal number corresponding to a sequence
of n binary digits a0, a1, . . . , an−1, where each ai is either
0 or 1, is defined to be

a020 + a121 + · · · + an−12n−1

For example, the sequence 0 1 1 0 is equal to 6
(= 0 · 20 + 1 · 21 + 1 · 22 + 0 · 23). Suppose a fair coin
is tossed nine times. Replace the resulting sequence of
H’s and T’s with a binary sequence of 1’s and 0’s (1 for H,
0 for T). For how many sequences of tosses will the deci-
mal corresponding to the observed set of heads and tails
exceed 256?

2.6.14. Given the letters in the word

Z O M B I E S

in how many ways can two of the letters be arranged such
that one is a vowel and one is a consonant?

2.6.15. Suppose that two cards are drawn—in order—
from a standard 52-card poker deck. In how many ways
can the first card be a club and the second card be an ace?

2.6.16. Monica’s vacation plans require that she fly from
Nashville to Chicago to Seattle to Anchorage. Accord-
ing to her travel agent, there are three available flights
from Nashville to Chicago, five from Chicago to Seat-
tle, and two from Seattle to Anchorage. Assume that
the numbers of options she has for return flights are
the same. How many round-trip itineraries can she
schedule?

COUNTING PERMUTATIONS (WHEN THE OBJECTS
ARE ALL DISTINCT)

Ordered sequences arise in two fundamentally different ways. The first is the scenario
addressed by the multiplication rule—a process is comprised of k operations, each
allowing ni options, i = 1, 2, . . . , k; choosing one version of each operation leads to
n1n2 . . . nk possibilities.

The second occurs when an ordered arrangement of some specified length k is
formed from a finite collection of objects. Any such arrangement is referred to as a
permutation of length k. For example, given the three objects A, B, and C, there are
six different permutations of length two that can be formed if the objects cannot be
repeated: AB, AC, BC, BA, CA, and CB.
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Theorem
2.6.1

The number of permutations of length k that can be formed from a set of n distinct
elements, repetitions not allowed, is denoted by the symbol nPk, where

nPk = n(n − 1)(n − 2) · · · (n − k + 1) = n!
(n − k)!

Proof Any of the n objects may occupy the first position in the arrangement, any
of n − 1 the second, and so on—the number of choices available for filling the kth
position will be n − k + 1 (see Figure 2.6.7). The theorem follows, then, from the
multiplication rule: There will be n(n − 1) · · · (n − k + 1) ordered arrangements.

n
1

n – 1

2

n – (k – 2)

k – 1

n – (k – 1)

k
Choices:

Position in sequence

Figure 2.6.7

Corollary
2.6.2

The number of ways to permute an entire set of n distinct objects is
nPn = n(n − 1)(n − 2) · · · 1 = n!.

Example
2.6.6

How many permutations of length k = 3 can be formed from the set of n = 4 distinct
elements, A, B,C, and D?

According to Theorem 2.6.1, the number should be 24:

n!
(n − k)!

= 4!
(4 − 3)!

= 4 · 3 · 2 · 1
1

= 24

Confirming that figure, Table 2.6.2 lists the entire set of twenty-four permutations
and illustrates the argument used in the proof of the theorem.

Table 2.6.2

B
C 1. (ABC)

D 2. (ABD)

A C
B 3. (ACB)

D 4. (ACD)

D
B 5. (ADB)

C 6. (ADC)

A
C 7. (BAC)

D 8. (BAD)

B C
A 9. (BCA)

D 10. (BCD)

D
A 11. (BDA)

C 12. (BDC)

A
B 13. (CAB)

D 14. (CAD)

C B
A 15. (CBA)

D 16. (CBD)

D
A 17. (CDA)

B 18. (CDB)

A
B 19. (DAB)

C 20. (DAC)

D B
A 21. (DBA)

C 22. (DBC)

C
A 23. (DCA)

B 24. (DCB)
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Example
2.6.7

In her sonnet with the famous first line, “How do I love thee? Let me count the
ways,” Elizabeth Barrett Browning listed eight. Suppose Ms. Browning had decided
that writing greeting cards afforded her a better format for expressing her feelings.
For how many years could she have corresponded with her favorite beau on a daily
basis and never sent the same card twice? Assume that each card contains exactly
four of the eight “ways” and that order matters.

In selecting the verse for a card, Ms. Browning would be creating a permutation
of length k = 4 from a set of n = 8 distinct objects. According to Theorem 2.6.1,

number of different cards = 8P4 = 8!
(8 − 4)!

= 8 · 7 · 6 · 5

= 1680

At the rate of a card a day, she could have kept the correspondence going for more
than four and one-half years.

Example
2.6.8

Years ago—long before Rubik’s Cubes and electronic games had become
epidemic—puzzles were much simpler. One of the more popular combinatorial-
related diversions was a four-by-four grid consisting of fifteen movable squares and
one empty space. The object was to maneuver as quickly as possible an arbitrary con-
figuration (Figure 2.6.8a) into a specific pattern (Figure 2.6.8b). How many different
ways could the puzzle be arranged?

Take the empty space to be square number 16 and imagine the four rows of
the grid laid end to end to make a sixteen-digit sequence. Each permutation of that
sequence corresponds to a different pattern for the grid. By the corollary to Theo-
rem 2.6.1, the number of ways to position the tiles is 16!, or more than twenty trillion
(20,922,789,888,000, to be exact). (Note: Not all of the 16! permutations can be gener-
ated without physically removing some of the tiles. Think of the two-by-two version
of Figure 2.6.8 with tiles numbered 1 through 3. How many of the 4! theoretical con-
figurations can actually be formed?)

13 1 8 7

6 9 3 11

2 10 4

5 12 15 14

(a)

1 2 3 4

5 6 7 8

9 10 12

13 14 15

11

(b)

Figure 2.6.8

Example
2.6.9

A deck of fifty-two cards is shuffled and dealt face up in a row. For how many
arrangements will the four aces be adjacent?

This is a good example illustrating the problem-solving benefits that come from
drawing diagrams, as mentioned earlier. Figure 2.6.9 shows the basic structure that
needs to be considered: The four aces are positioned as a “clump” somewhere
between or around the forty-eight non-aces.

Clearly, there are forty-nine “spaces” that could be occupied by the four aces (in
front of the first non-ace, between the first and second non-aces, and so on). Further-
more, by the corollary to Theorem 2.6.1, once the four aces are assigned to one of
those forty-nine positions, they can still be permuted in 4P4 = 4! ways. Similarly, the
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Non-aces

1 2 3 4 48

4 aces

Figure 2.6.9

forty-eight non-aces can be arranged in 48P48 = 48! ways. It follows from the multi-
plication rule, then, that the number of arrangements having consecutive aces is the
product 49 · 4! · 48!, or, approximately, 1.46 × 1064.

Comment Computing n! can be quite cumbersome, even for n’s that are fairly
small: We saw in Example 2.6.8, for instance, that 16! is already in the trillions. For-
tunately, an easy-to-use approximation is available. According to Stirling’s formula,

n! .=
√

2πnn+1/2e−n

In practice, we apply Stirling’s formula by writing

log10(n!) .= log10

(√
2π

) +
(

n + 1
2

)
log10(n) − n log10(e)

and then exponentiating the right-hand side.
In Example 2.6.9, the number of arrangements was calculated to be 49 · 4! · 48!,

or 24 · 49!. Substituting into Stirling’s formula, we can write

log10(49!) .= log10

(√
2π

) +
(

49 + 1
2

)
log10(49) − 49 log10(e)

≈ 62.783366

Therefore,

24 · 49! .= 24 · 1062.78337

= 1.46 × 1064

Example
2.6.10

In chess a rook can move vertically and horizontally (see Figure 2.6.10). It can cap-
ture any unobstructed piece located anywhere in its own row or column. In how many
ways can eight distinct rooks be placed on a chessboard (having eight rows and eight
columns) so that no two can capture one another?

Figure 2.6.10
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To start with a simpler problem, suppose that the eight rooks are all identical.
Since no two rooks can be in the same row or same column (why?), it follows that
each row must contain exactly one. The rook in the first row, however, can be in any
of eight columns; the rook in the second row is then limited to being in one of seven
columns, and so on. By the multiplication rule, then, the number of noncapturing
configurations for eight identical rooks is 8P8, or 8! (see Figure 2.6.11).

Choices

8

7

6

5

4

3

2

1

Total number =
8   7   6   5   4   3   2   1

Figure 2.6.11
Now imagine the eight rooks to be distinct—they might be numbered, for ex-

ample, 1 through 8. The rook in the first row could be marked with any of eight
numbers; the rook in the second row with any of the remaining seven numbers; and
so on. Altogether, there would be 8! numbering patterns for each configuration. The
total number of ways to position eight distinct, noncapturing rooks, then, is 8! · 8!, or
1,625,702,400.

Example
2.6.11

A group of n families, each having m members, are to be lined up in a row for a pho-
tograph at a family reunion. In how many ways can those nm individuals be arranged
if members of a family must stay together?

Figure 2.6.12 shows one such arrangement. Notice, first of all, that the families—
as n distinct groups—can be positioned in n! ways. Also, the individual members

Family 1

1 2 m

Family 2

1 2 m

Family n

1 2 m

Figure 2.6.12

of each family can be rearranged in m! ways. By the multiplication rule, then, the
total number of different pictures the photographer could take would be n!(m!)n.
Is the latter a big number? Yes, indeed. If only n = 5 families attended, each hav-
ing only m = 4 members, the photographer would have almost a billion different
arrangements to choose from:

5! (4!)5 = 955,514,880

Even more amazing, though, is how the number of different arrangements would
increase if members of different families were allowed to intermingle. Under those
rules, each possible photograph would simply be a permutation of nm people—
where in this case nm = 5(4) = 20. But the number of permutations of 20 distinct
objects is 20!, or 2.4329 × 1018.

Currently, the total world population is approximately eight billion people, or
8.0 × 109. Since

2.4329 × 1018/8.0 × 109 = 3.04 × 108
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it would be cheaper—in terms of film costs—to take 300,000,000 pictures of every
person living on the planet than it would be to take the picture of all possible ways
for twenty people to be lined up in a row.

Example
2.6.12

Consider the set of nine-digit numbers that can be formed by rearranging without
repetition the integers 1 through 9. For how many of those permutations will the 1
and the 2 precede the 3 and the 4? That is, we want to count sequences like 7 2 5 1 3
6 9 4 8 but not like 6 8 1 5 4 2 7 3 9.

At first glance, this seems to be a problem well beyond the scope of Theo-
rem 2.6.1. With the help of a symmetry argument, though, its solution is surprisingly
simple.

Think of just the digits 1 through 4. By the corollary on p. 72, those four numbers
give rise to 4!(= 24) permutations. Of those twenty-four, only four—(1, 2, 3, 4), (2, 1,
3, 4), (1, 2, 4, 3), and (2, 1, 4, 3)—have the property that the 1 and the 2 come before
the 3 and the 4. It follows that 4

24 of the total number of nine-digit permutations
should satisfy the condition being imposed on 1, 2, 3, and 4. Therefore,

number of permutations where 1 and 2 precede 3 and 4 = 4
24

· 9!

= 60,480

Questions

2.6.17. The board of a large corporation has six members
willing to be nominated for office. How many different
“president/vice president/treasurer” slates could be sub-
mitted to the stockholders?

2.6.18. How many ways can a set of four tires be put on
a car if all the tires are interchangeable? How many ways
are possible if two of the four are snow tires?

2.6.19. Use Stirling’s formula to approximate 30!.
(Note: The exact answer is 265,252,859,812,191,058,636,
308,480,000,000.)

2.6.20. The nine members of the music faculty baseball
team, the Mahler Maulers, are all incompetent, and each
can play any position equally poorly. In how many differ-
ent ways can the Maulers take the field?

2.6.21. A three-digit number is to be formed from the dig-
its 1 through 7, with no digit being used more than once.
How many such numbers would be less than 289?

2.6.22. Four men and four women are to be seated in a
row of chairs numbered 1 through 8.
(a) How many total arrangements are possible?
(b) How many arrangements are possible if the men are
required to sit in alternate chairs?

2.6.23. An engineer needs to take three technical elec-
tives sometime during his final four semesters. The three
are to be selected from a list of ten. In how many ways can
he schedule those classes, assuming that he never wants
to take more than one technical elective in any given
term?

2.6.24. How many ways can a twelve-member cheerlead-
ing squad (six men and six women) pair up to form
six male-female teams? How many ways can six male-
female teams be positioned along a sideline? What might
the number 6!6!26 represent? What might the number
6!6!26212 represent?

2.6.25. Suppose that a seemingly interminable German
opera is recorded on all six sides of a three-record album.
In how many ways can the six sides be played so that at
least one is out of order?

2.6.26. A new horror movie, Friday the 13th, Part X, will
star Jason’s great-grandson (also named Jason) as a psy-
chotic trying to dispatch (as gruesomely as possible) eight
camp counselors, four men and four women. (a) How
many scenarios (i.e., victim orders) can the screenwriters
devise, assuming they want Jason to do away with all the
men before going after any of the women? (b) How many
scripts are possible if the only restriction imposed on
Jason is that he save Muffy for last?

2.6.27. Suppose that ten people, including you and a
friend, line up for a group picture. How many ways can
the photographer rearrange the line if she wants to keep
exactly three people between you and your friend?

2.6.28. Use an induction argument to prove Theo-
rem 2.6.1. (Note: This was the first mathematical result
known to have been proved by induction. It was done in
1321 by Levi ben Gerson.)

2.6.29. In how many ways can a pack of fifty-two cards be
dealt to thirteen players, four to each, so that every player
has one card of each suit?



Section 2.6 Combinatorics 77

2.6.30. If the definition of n! is to hold for all nonnegative
integers n, show that it follows that 0! must equal 1.

2.6.31. The crew of Apollo 17 consisted of a pilot, a copi-
lot, and a geologist. Suppose that NASA had actually
trained nine aviators and four geologists as candidates
for the flight. How many different crews could they have
assembled?

2.6.32. Uncle Harry and Aunt Minnie will both be attend-
ing your next family reunion. Unfortunately, they hate
each other. Unless they are seated with at least two people
between them, they are likely to get into a shouting match.
The side of the table at which they will be seated has seven

chairs. How many seating arrangements are available for
those seven people if a safe distance is to be maintained
between your aunt and your uncle?

2.6.33. In how many ways can the digits 1 through 9 be
arranged such that
(a) all the even digits precede all the odd digits?
(b) all the even digits are adjacent to each other?
(c) two even digits begin the sequence and two even digits
end the sequence?
(d) the even digits appear in either ascending or descend-
ing order?

COUNTING PERMUTATIONS (WHEN THE OBJECTS
ARE NOT ALL DISTINCT)

The corollary to Theorem 2.6.1 gives a formula for the number of ways an entire set
of n objects can be permuted if the objects are all distinct. Fewer than n! permutations
are possible, though, if some of the objects are identical. For example, there are 3! = 6
ways to permute the three distinct objects A, B, and C:

ABC
ACB
BAC
BCA
CAB
CBA

If the three objects to permute, though, are A, A, and B—that is, if two of the three
are identical—the number of permutations decreases to three:

AAB
ABA
BAA

As we will see, there are many real-world applications where the n objects to be
permuted belong to r different categories, each category containing one or more
identical objects.

Theorem
2.6.2

The number of ways to arrange n objects, n1 being of one kind, n2 of a second
kind, . . . , and nr of an rth kind, is

n!
n1! n2! · · · nr!

where
r∑

i=1
ni = n.

Proof Let N denote the total number of such arrangements. For any one of
those N, the similar objects (if they were actually different) could be arranged
in n1! n2! · · · nr! ways. (Why?) It follows that N · n1! n2! · · · nr! is the total number
of ways to arrange n (distinct) objects. But n! equals that same number. Setting
N · n1! n2! · · · nr! equal to n! gives the result.
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Comment Ratios like n!/(n1! n2! · · · nr!) are called multinomial coefficients because
the general term in the expansion of

(x1 + x2 + · · · + xr)n

is
n!

n1!n2! · · · nr!
xn1

1 xn2
2 · · · xnr

r

Example
2.6.13

A pastry in a vending machine costs 85¢. In how many ways can a customer put in
two quarters, three dimes, and one nickel?

Order in which coins are deposited

1 2 3 5 64

Figure 2.6.13

If all coins of a given value are considered identical, then a typical deposit se-
quence, say, QDDQND (see Figure 2.6.13), can be thought of as a permutation of
n = 6 objects belonging to r = 3 categories, where

n1 = number of nickels = 1

n2 = number of dimes = 3

n3 = number of quarters = 2

By Theorem 2.6.2, there are sixty such sequences:

n!
n1!n2!n3!

= 6!
1!3!2!

= 60

Of course, had we assumed the coins were distinct (having been minted at different
places and different times), the number of distinct permutations would have been 6!,
or 720.

Example
2.6.14

Prior to the seventeenth century there were no scientific journals, a state of affairs
that made it difficult for researchers to document discoveries. If a scientist sent a copy
of his work to a colleague, there was always a risk that the colleague might claim it as
his own. The obvious alternative—wait to get enough material to publish a book—
invariably resulted in lengthy delays. So, as a sort of interim documentation, scien-
tists would sometimes send each other anagrams—letter puzzles that, when properly
unscrambled, summarized in a sentence or two what had been discovered.

When Christiaan Huygens (1629–1695) looked through his telescope and saw
the ring around Saturn, he composed the following anagram (203):

aaaaaaa, ccccc, d, eeeee, g, h, iiiiiii, llll, mm,

nnnnnnnnn, oooo, pp, q, rr, s, ttttt, uuuuu

How many ways can the sixty-two letters in Huygens’s anagram be arranged?
Let n1(= 7) denote the number of a’s, n2(= 5) the number of c’s, and so on.

Substituting into the appropriate multinomial coefficient, we find

N = 62!
7!5!1!5!1!1!7!4!2!9!4!2!1!2!1!5!5!
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as the total number of arrangements. To get a feeling for the magnitude of N, we
need to apply Stirling’s formula to the numerator. Since

62! .=
√

2πe−626262.5

then

log(62!) .= log
(√

2π
) − 62 · log(e) + 62.5 · log(62)

.= 85.49731

The antilog of 85.49731 is 3.143 × 1085, so

N .= 3.143 × 1085

7!5!1!5!1!1!7!4!2!9!4!2!1!2!1!5!5!

is a number on the order of 3.6 × 1060. Huygens was clearly taking no chances!
(Note: When appropriately rearranged, the anagram becomes “Annulo cingitur
tenui, plano, nusquam cohaerente, ad eclipticam inclinato,” which translates to
“Surrounded by a thin ring, flat, suspended nowhere, inclined to the ecliptic.”)

Example
2.6.15

What is the coefficient of x23 in the expansion of (1 + x5 + x9)100?
To understand how this question relates to permutations, consider the simpler

problem of expanding (a + b)2:

(a + b)2 = (a + b)(a + b)

= a · a + a · b + b · a + b · b

= a2 + 2ab + b2

Notice that each term in the first (a + b) is multiplied by each term in the second
(a+b). Moreover, the coefficient that appears in front of each term in the expansion
corresponds to the number of ways that term can be formed. For example, the 2
in the term 2ab reflects the fact that the product ab can result from two different
multiplications:

(a + b)(a + b︸ ︷︷ ︸
ab

) or (a + b) (a︸︷︷︸
ab

+ b)

By analogy, the coefficient of x23 in the expansion of (1 + x5 + x9)100 will be the
number of ways that one term from each of the one hundred factors (1+x5 +x9) can
be multiplied together to form x23. The only factors that will produce x23, though,
are the set of two x9’s, one x5, and ninety-seven 1’s:

x23 = x9 · x9 · x5 · 1 · 1 · · · 1

It follows that the coefficient of x23 is the number of ways to permute two x9’s, one
x5, and ninety-seven 1’s. So, from Theorem 2.6.2,

coefficient of x23 = 100!
2!1!97!

= 485,100

Example
2.6.16

A palindrome is a phrase whose letters are in the same order whether they are read
backward or forward, such as Napoleon’s lament

Able was I ere I saw Elba.
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or the often-cited

Madam, I’m Adam.

Words themselves can become the units in a palindrome, as in the sentence

Girl, bathing on Bikini, eyeing boy,

finds boy eyeing bikini on bathing girl.

Suppose the members of a set consisting of four objects of one type, six of a sec-
ond type, and two of a third type are to be lined up in a row. How many of those
permutations are palindromes?

Think of the twelve objects to arrange as being four A’s, six B’s, and two C’s. If
the arrangement is to be a palindrome, then half of the A’s, half of the B’s, and half of
the C’s must occupy the first six positions in the permutation. Moreover, the final six
members of the sequence must be in the reverse order of the first six. For example,
if the objects comprising the first half of the permutation were

C A B A B B

then the last six would need to be in the order

B B A B A C

It follows that the number of palindromes is the number of ways to permute the
first six objects in the sequence, because once the first six are positioned, there is only
one arrangement of the last six that will complete the palindrome. By Theorem 2.6.2,
then,

number of palindromes = 6!/(2!3!1!) = 60

Example
2.6.17

A deliveryman is currently at Point X and needs to stop at Point 0 before driving
through to Point Y (see Figure 2.6.14). How many different routes can he take with-
out ever going out of his way?

X

O

Y

Figure 2.6.14

Notice that any admissible path from, say, X to 0 is an ordered sequence of 11
“moves”—nine east and two north. Pictured in Figure 2.6.14, for example, is the
particular X to 0 route

E E N E E E E N E E E

Similarly, any acceptable path from 0 to Y will necessarily consist of five moves east
and three moves north (the one indicated is E E N N E N E E).

Since each path from X to 0 corresponds to a unique permutation of nine E’s
and two N’s, the number of such paths (from Theorem 2.6.2) is the quotient

11!/(9!2!) = 55
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For the same reasons, the number of different paths from 0 to Y is

8!/(5!3!) = 56

By the multiplication rule, then, the total number of admissible routes from X to Y
that pass through 0 is the product of 55 and 56, or 3080.

Example
2.6.18

Stacy is worried that her recently-released-from-prison stalker-out-for-revenge ex-
boyfriend Psycho Bob is trying to hack into her e-mail account. Crazy, but not stupid,
Bob has programmed an algorithm capable of checking three billion passwords a
second, which he intends to run 24/7. Suppose Stacy intends to change her password
every month. What is the probability her e-mail gets broken into at least once in the
next six months?

Stacy’s e-mail provider requires 10-digit passwords—four letters (each having
two options, lower case or upper case), four numbers, and two symbols (chosen from
a list of eight). Figure 2.6.15 shows one such admissible sequence.

7 3 B * Q a # 6 a 1

Figure 2.6.15

Counting the number of admissible passwords is an exercise in using the mul-
tiplication rule. Clearly, the identities of the four numbers and two symbols can be
chosen in 10 · 10 · 10 · 10 and 8 · 8 ways, respectively, while the letters can be cho-
sen in 26 · 26 · 26 · 26 · 24 ways. Moreover, by Theorem 2.6.2 the positions for the
four numbers, two symbols, and four letters can be assigned in 10!/(4!4!2!) ways. The
total number of different passwords, then, is the product

104 · 82 · (26)4 · 24 · (10!/(4!4!2!)), or 1.474 × 1016

The probability that Bob’s cyberattack identifies whatever password Stacy is using
in a given month is simply equal to the number of passwords his algorithm can check in
thirty days divided by the total number of passwords admissible. The former is equal to

3,000,000,000 passwords/sec × 60 sec/min × 60 min /hr × 24 hrs/day

× 30 days/mo. = 7.776 × 1015 passwords/mo

so the probability that Stacy’s e-mail privacy is compromised in any given month is
the quotient

7.776 × 1015/1.474 × 1016, or 0.53

Of course, Bob’s success (or failure) in one month is independent of what hap-
pens in any other month, so

P(e-mail is hacked into at least once in six months) =
1 − P(e-mail is not hacked into for any of the six months)

= 1 − (0.47)6 = 0.989

CIRCULAR PERMUTATIONS

Thus far the enumeration results we have seen have dealt with what might be called
linear permutations—objects being lined up in a row. This is the typical context in
which permutation problems arise, but sometimes nonlinear arrangements of one
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sort or another need to be counted. The next theorem gives the basic result associated
with circular permutations.

Theorem
2.6.3

There are (n − 1)! ways to arrange n distinct objects in a circle.

Proof Fix any object at the “top” of the circle. The remaining n – 1 objects can
then be permuted in (n – 1)! ways. Since any arrangement with a different object
at the top can be reproduced by simply rotating one of the original (n − 1)! per-
mutations, the statement of the theorem holds.

Example
2.6.19

How many different firing orders are theoretically possible in a six-cylinder engine?
(If the cylinders are numbered from 1 to 6, a firing order is a list such as 1, 4, 2, 5, 3, 6
giving the sequence in which fuel is ignited in the six cylinders.)

By a direct application of Theorem 2.6.3, the number of distinct firing orders is
(6 – 1)!, or 120.

Comment According to legend (84), perhaps the first person for whom the problem
of arranging objects in a circle took on life or death significance was Flavius Josephus,
an early Jewish scholar and historian. In 66 a.d., Josephus found himself a somewhat
reluctant leader of an attempt to overthrow the Roman administration in the town of
Judea. But the coup failed, and Josephus and forty of his comrades ended up trapped
in a cave, surrounded by an angry Roman army.

Faced with the prospect of imminent capture, others in the group were intent
on committing mass suicide, but Josephus’s devotion to the cause did not extend
quite that far. Still, he did not want to appear cowardly, so he proposed an alternate
plan: All forty one would arrange themselves in a circle; then, one by one, the group
would go around the circle and kill every seventh remaining person, starting with
whoever was seated at the head of the circle. That way, only one of them would
have to commit suicide, and the entire action would make more of an impact on the
Romans.

To his relief, the group accepted his suggestion and began forming a circle. Jose-
phus, who was reputed to have had some genuine mathematical ability, quickly made
his way to the twenty-fifth position. Forty murders later, he was the only person
left alive!

Is the story true? Maybe yes, maybe no. Any conclusion would be little more
than idle speculation. It is known, though, that Josephus was the sole survivor of the
siege, and that he surrendered and eventually rose to a position of considerable in-
fluence in the Roman government. And, whether true or not, the legend has given
rise to some mathematical terminology: Cyclic cancellations of a fixed set of num-
bers having the property that a specified number is left at the end are referred to as
Josephus permutations.

Questions

2.6.34. Which state name can generate more permuta-
tions, TENNESSEE or FLORIDA?

2.6.35. How many numbers greater than four million can
be formed from the digits 2, 3, 4, 4, 5, 5, 5?

2.6.36. An interior decorator is trying to arrange a shelf
containing eight books, three with red covers, three with
blue covers, and two with brown covers.
(a) Assuming the titles and the sizes of the books are irrel-
evant, in how many ways can she arrange the eight books?
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(b) In how many ways could the books be arranged if they
were all considered distinct?
(c) In how many ways could the books be arranged if
the red books were considered indistinguishable, but the
other five were considered distinct?

2.6.37. Four Nigerians (A, B, C, D), three Chinese (#, ∗,
&), and three Greeks (α, β, γ) are lined up at the box of-
fice, waiting to buy tickets for the World’s Fair.
(a) How many ways can they position themselves if the
Nigerians are to hold the first four places in line; the
Chinese, the next three; and the Greeks, the last three?
(b) How many arrangements are possible if members of
the same nationality must stay together?
(c) How many different queues can be formed?
(d) Suppose a vacationing Martian strolls by and wants
to photograph the ten for her scrapbook. A bit myopic,
the Martian is quite capable of discerning the more ob-
vious differences in human anatomy but is unable to dis-
tinguish one Nigerian (N) from another, one Chinese (C)
from another, or one Greek (G) from another. Instead of
perceiving a line to be B∗βAD#&Cαγ, for example, she
would see NCGNNCCNGG. From the Martian’s perspec-
tive, in how many different ways can the ten funny-looking
Earthlings line themselves up?

2.6.38. How many ways can the letters in the word

S LU M GU L L I O N

be arranged so that the three L’s precede all the other
consonants?

2.6.39. A tennis tournament has a field of 2n entrants, all
of whom need to be scheduled to play in the first round.
How many different pairings are possible?

2.6.40. What is the coefficient of x12 in the expansion of
(1 + x3 + x6)18?

2.6.41. In how many ways can the letters of the word

E L E E M O SY N A RY

be arranged so that the S is always immediately followed
by a Y?

2.6.42. In how many ways can the word ABRA-
CADABRA be formed in the array pictured above?
Assume that the word must begin with the top A and
progress diagonally downward to the bottom A.

      A

     B  B

    R  R  R

   A  A  A  A

  C  C  C  C  C

 A  A  A  A  A  A

  D  D  D  D  D

   A  A  A  A

    B  B  B

     R  R

      A

2.6.43. Suppose a pitcher faces a batter who never swings.
For how many different ball/strike sequences will the bat-
ter be called out on the fifth pitch?

2.6.44. What is the coefficient of w2x3yz3 in the expansion
of (w + x + y + z)9?

2.6.45. Imagine six points in a plane, no three of which lie
on a straight line. In how many ways can the six points
be used as vertices to form two triangles? (Hint: Number
the points 1 through 6. Call one of the triangles A and the
other B. What does the permutation

A A B B A B
1 2 3 4 5 6

represent?)

2.6.46. Show that (k!)! is divisible by k!(k−1)!. (Hint: Think
of a related permutation problem whose solution would
require Theorem 2.6.2.)

2.6.47. In how many ways can the letters of the word

B R O B D I N G N A G I A N

be arranged without changing the order of the vowels?

2.6.48. Make an anagram out of the familiar expression
STATISTICS IS FUN. In how many ways can the letters
in the anagram be permuted?

2.6.49. Linda is taking a five-course load her first
semester: English, math, French, psychology, and history.
In how many different ways can she earn three A’s and
two B’s? Enumerate the entire set of possibilities. Use
Theorem 2.6.2 to verify your answer.

COUNTING COMBINATIONS

Order is not always a meaningful characteristic of a collection of elements. Consider
a poker player being dealt a five-card hand. Whether he receives a 2 of hearts, 4 of
clubs, 9 of clubs, jack of hearts, and ace of diamonds in that order, or in any one of the
other 5! − 1 permutations of those particular five cards is irrelevant, the hand is still
the same. As the last set of examples in this section bears out, there are many such
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situations—problems where our only legitimate concern is with the composition of
a set of elements, not with any particular arrangement of them.

We call a collection of k unordered elements a combination of size k. For exam-
ple, given a set of n = 4 distinct elements—A, B, C, and D—there are six ways to
form combinations of size 2:

A and B B and C
A and C B and D
A and D C and D

A general formula for counting combinations can be derived quite easily from what
we already know about counting permutations.

Theorem
2.6.4

The number of ways to form combinations of size k from a set of n distinct objects,
repetitions not allowed, is denoted by the symbols

( n
k

)
or nCk, where(n

k

)
= nCk = n!

k!(n − k)!

Proof Let the symbol
( n

k

)
denote the number of combinations satisfying the con-

ditions of the theorem. Since each of those combinations can be ordered in k! ways,
the product k!

( n
k

)
must equal the number of permutations of length k that can be

formed from n distinct elements. But n distinct elements can be formed into per-
mutations of length k in n(n − 1) · · · (n − k + 1) = n!/(n − k)! ways. Therefore,

k!
(n

k

)
= n!

(n − k)!

Solving for
( n

k

)
gives the result.

Comment It often helps to think of combinations in the context of drawing ob-
jects out of an urn. If an urn contains n chips labeled 1 through n, the number of
ways we can reach in and draw out different samples of size k is

( n
k

)
. In deference

to this sampling interpretation for the formation of combinations,
( n

k

)
is usually read

“n things taken k at a time” or “n choose k.”

Comment The symbol
( n

k

)
appears in the statement of a familiar theorem from

algebra,

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k

Since the expression being raised to a power involves two terms, x and y, the con-
stants

( n
k

)
, k = 0, 1, . . ., n, are commonly referred to as binomial coefficients.

Example
2.6.20

Eight politicians meet at a fund-raising dinner. How many greetings can be ex-
changed if each politician shakes hands with every other politician exactly once?

Imagine the politicians to be eight chips—1 through 8—in an urn. A handshake
corresponds to an unordered sample of size 2 chosen from that urn. Since repeti-
tions are not allowed (even the most obsequious and overzealous of campaigners
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would not shake hands with himself!), Theorem 2.6.4 applies, and the total number
of handshakes is (

8
2

)
= 8!

2!6!

or 28.

Example
2.6.21

A chemist is trying to synthesize a part of a straight-chain aliphatic hydrocarbon polymer
that consists of twenty-one radicals—ten ethyls (E), six methyls (M), and five propyls
(P). Assuming all arrangements of radicals are physically possible, how many different
polymers can be formed if no two of the methyl radicals are to be adjacent?

Imagine arranging the E’s and the P’s without the M’s. Figure 2.6.16 shows one
such possibility. Consider the sixteen “spaces” between and outside the E’s and P’s
as indicated by the arrows in Figure 2.6.16. In order for the M’s to be nonadjacent,
they must occupy any six of these locations. But those six spaces can be chosen in(

16
6

)
ways. And for each of the

(
16
6

)
positionings of the M’s, the E’s and P’s can be

permuted in 15!
10!5! ways (Theorem 2.6.2).

E E P P P P PE E E E E E E E

Figure 2.6.16

So, by the multiplication rule, the total number of polymers having nonadjacent
methyl radicals is 24,048,024:(

16
6

)
· 15!

10!5!
= 16!

10!6!
15!

10!5!
= (8008)(3003) = 24, 048, 024

Example
2.6.22

Binomial coefficients have many interesting properties. Perhaps the most familiar is
Pascal’s triangle,1 a numerical array where each entry is equal to the sum of the two
numbers appearing diagonally above it (see Figure 2.6.17). Notice that each entry in
Pascal’s triangle can be expressed as a binomial coefficient, and the relationship just
described appears to reduce to a simple equation involving those coefficients:(

n + 1
k

)
=

(n
k

)
+

(
n

k − 1

)
(2.6.1)

Prove that Equation 2.6.1 holds for all positive integers n and k.

     1

    1  1

   1  2  1

  1  3  3  1

 1  4  6  4  1

0

1

2

3

4

Row
0
0(    )

1
0(    ) 1

1(    )

2
0(    ) 2

1(    ) 2
2(    )

3
0(    ) 3

1(    )(    )

4
0(    ) 4

1(    ) 4
2(    )

3
2(    ) 3

3(    )(    )

4
3(    ) 4

4(    )

Figure 2.6.17
1 Despite its name, Pascal’s triangle was not discovered by Pascal. Its basic structure had been known hundreds
of years before the French mathematician was born. It was Pascal, though, who first made extensive use of its
properties.
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Consider a set of n + 1 distinct objects A1, A2, . . ., An+1. We can obviously draw
samples of size k from that set in

(n+1
k

)
different ways. Now, consider any particular

object—for example, A1. Relative to A1, each of those
(n+1

k

)
samples belongs to one

of two categories: those containing A1 and those not containing A1. To form samples
containing A1, we need to select k − 1 additional objects from the remaining n. This
can be done in

( n
k−1

)
ways. Similarly, there are

(n
k

)
ways to form samples not containing

A1. Therefore,
(n+1

k

)
must equal

( n
k

) + ( n
k−1

)
.

Example
2.6.23

The answers to combinatorial questions can sometimes be obtained using quite dif-
ferent approaches. What invariably distinguishes one solution from another is the
way in which outcomes are characterized.

For example, suppose you have just ordered a roast beef sub at a sandwich shop,
and now you need to decide which, if any, of the available toppings (lettuce, tomato,
onions, etc.) to add. If the shop has eight “extras” to choose from, how many different
subs can you order?

One way to answer this question is to think of each sub as an ordered sequence
of length eight, where each position in the sequence corresponds to one of the top-
pings. At each of those positions, you have two choices—“add” or “do not add” that
particular topping. Pictured in Figure 2.6.18 is the sequence corresponding to the sub
that has lettuce, tomato, and onion but no other toppings. Since two choices (“add”
or “do not add”) are available for each of the eight toppings, the multiplication rule
tells us that the number of different roast beef subs that could be requested is 28,
or 256.

Add?
Y Y Y N N N N N

Lettuce Tomato Onion Mustard Relish Mayo Pickles Peppers

Figure 2.6.18

An ordered sequence of length 8, though, is not the only model capable of char-
acterizing a roast beef sandwich. We can also distinguish one roast beef sub from
another by the particular combination of toppings that each one has. For example,

there are
(

8
4

)
= 70 different subs having exactly four toppings. It follows that the

total number of different sandwiches is the total number of different combinations
of size k, where k ranges from 0 to 8. Reassuringly, that sum agrees with the ordered
sequence answer:

total number of different roast beef subs =
(

8
0

)
+

(
8
1

)
+

(
8
2

)
+ · · · +

(
8
8

)
= 1 + 8 + 28 + · · · + 1

= 256

What we have just illustrated here is another property of binomial coefficients,
namely, that

n∑
k=0

(n
k

)
= 2n (2.6.2)

The proof of Equation 2.6.2 is a direct consequence of Newton’s binomial expansion
(see the second comment following Theorem 2.6.4).
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Example
2.6.24

Recall Theorem 2.3.7, the formula for the probability of the union of n events,
P(A1 ∪ A2 ∪ · · · ∪ An). As the special-case discussion on p. 28 indicated, it needs
to be proved in general that the formula adds—once and only once—the probability
of every outcome represented in the Venn diagram for A1 ∪ A2 ∪ · · · ∪ An.

To that end, consider the set of outcomes in A1 ∪ A2 ∪ · · · ∪ An that belong to a
specified k of the Ai’s and to no others. If it can be established that the right-hand-
side of Theorem 2.3.7 counts that particular set of outcomes one time, the theorem
is proved since k was arbitrary.

Consider such a set of outcomes. Relative to the summations making up
the right-hand side of Theorem 2.3.7, those outcomes get counted ( k

1 ) times in
n∑

i=1
P(Ai), ( k

2 ) times in
∑
i< j

P(Ai ∩ Aj), (k
3) times in

∑
i< j<k

P(Ai ∩ Aj ∩ Ak), and so on.

According to the theorem, then, they will be counted a total of(
k
1

)
−

(
k
2

)
+

(
k
3

)
− · · · + (−1)k+1

(
k
k

)
times.

Expressing that sum as a binomial expansion, we can write

(−1 + 1)k = 0k =
k∑

j=0

(
k
j

)
(−1) j(1)k− j

=
(

k
0

)
−

(
k
1

)
+

(
k
2

)
− · · · + (−1)k

(
k
k

)
or, equivalently, (

k
1

)
−

(
k
2

)
+ · · · + (−1)k+1

(
k
k

)
=

(
k
0

)
= 1

and the theorem is proved.

Example
2.6.25

In Example 2.6.23, the fact that
n∑

k=0
(n

k) is equal to 2n was established by showing that

both expressions count the number of ways to complete the same task. Analytically,
Equation 2.6.2 could have been derived by simplifying the expansion of (x + y)n.
That is,

(x + y)n =
n∑

k=0

(n
k

)
xkyn−k

Letting x = y = 1 gives

(1 + 1)n = 2n =
n∑

k=0

(n
k

)
1k · 1n–k =

n∑
k=0

(n
k

)
Concluding this section are two other examples of binomial coefficient identi-

ties. The first is proven analytically; the second is done by appealing to a sampling
experiment.

a. Prove that (n
1

)
+ 2

(n
2

)
+ · · · + n

(n
n

)
= n2n−1

Consider the expansion of (1 + x)n:

(1 + x)n =
n∑

k=0

(n
k

)
xk(1)n−k (2.6.3)
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Differentiating both sides of Equation 2.6.3 with respect to x gives

n(1 + x)n−1 =
n∑

x=0

(n
k

)
kxk−1 (2.6.4)

Let x = 1. Then Equation 2.6.4 reduces to

n · 2n−1 = 1
(n

1

)
+ 2

(n
2

)
+ · · · + n

(n
n

)
b. Prove that (n

0

)2
+

(n
1

)2
+ · · · +

(n
n

)2
=

(
2n
n

)
Imagine drawing a sample of size n from a population of 2n objects, divided into
a first set of n objects and a second set of n objects. The desired sample could be
formed by drawing zero objects from the first set and n objects from the second
set or one object from the first set and n − 1 objects from the second set, and so
on. Clearly(n

0

)(n
n

)
+

(n
1

)(
n

n − 1

)
+

(n
2

)(
n

n − 2

)
+ · · · +

(n
n

)(n
0

)
=

(
2n
n

)
But ( n

k ) = ( n
n − k ) for all k, so(n

0

)2
+

(n
1

)2
+ · · · +

(n
n

)2
=

(
2n
n

)

Questions

2.6.50. How many straight lines can be drawn between
five points (A, B, C, D, and E), no three of which are
collinear?

2.6.51. The Alpha Beta Zeta sorority is trying to fill a
pledge class of nine new members during fall rush. Among
the twenty-five available candidates, fifteen have been
judged marginally acceptable and ten highly desirable.
How many ways can the pledge class be chosen to give a
two-to-one ratio of highly desirable to marginally accept-
able candidates?

2.6.52. A boat has a crew of eight: Two of those eight can
row only on the stroke side, while three can row only on
the bow side. In how many ways can the two sides of the
boat be manned?

2.6.53. Nine students, five men and four women, interview
for four summer internships sponsored by a city newspaper.
(a) In how many ways can the newspaper choose a set of
four interns?
(b) In how many ways can the newspaper choose a set of
four interns if it must include two men and two women in
each set?
(c) How many sets of four can be picked such that not ev-
eryone in a set is of the same sex?

2.6.54. The final exam in History 101 consists of five essay
questions that the professor chooses from a pool of seven
that are given to the students a week in advance. For how

many possible sets of questions does a student need to be
prepared? In this situation, does order matter?

2.6.55. Ten basketball players meet in the school gym for
a pickup game. How many ways can they form two teams
of five each?

2.6.56. Your statistics teacher announces a twenty-page
reading assignment on Monday that is to be finished by
Thursday morning. You intend to read the first x1 pages
Monday, the next x2 pages Tuesday, and the final x3 pages
Wednesday, where x1 + x2 + x3 = 20, and each xi ≥ 1. In
how many ways can you complete the assignment? That
is, how many different sets of values can be chosen for x1,
x2, and x3?

2.6.57. In how many ways can the letters in

M I S S I S S I P P I

be arranged so that no two I’s are adjacent?

2.6.58. Prove that(
n + 1

k

)
=

(n
k

)
+

(
n

k − 1

)
directly without appealing to any combinatorial argu-
ments.

2.6.59. Find a recursion formula for ( n
k+1 ) in terms of (n

k).

2.6.60. Show that n(n − 1)2n−2 =
n∑

k=2
k(k − 1)(n

k).
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2.6.61. Prove that successive terms in the sequence
( n

0

)
,( n

1

)
, . . .,

( n
n

)
first increase and then decrease. [Hint: Exam-

ine the ratio of two successive terms,
(

n
j+1

)/(
n
j

)
.]

2.6.62. Mitch is trying to add a little zing to his cabaret
act by telling four jokes at the beginning of each show.
His current engagement is booked to run four months.
If he gives one performance a night and never wants to

repeat the same set of jokes on any two nights, what is the
minimum number of jokes he needs in his repertoire?

2.6.63. Compare the coefficients of tk in (1 + t)d(1 + t)e =
(1 + t)d+e to prove that

k∑
j=0

(
d
j

)(
e

k − j

)
=

(
d + e

k

)

2.7 Combinatorial Probability
In Section 2.6 our concern focused on counting the number of ways a given opera-
tion, or sequence of operations, could be performed. In Section 2.7 we want to couple
those enumeration results with the notion of probability. Putting the two together
makes a lot of sense—there are many combinatorial problems where an enumera-
tion, by itself, is not particularly relevant. A poker player, for example, is not inter-
ested in knowing the total number of ways he can draw to a straight; he is interested,
though, in his probability of drawing to a straight.

In a combinatorial setting, making the transition from an enumeration to a prob-
ability is easy. If there are n ways to perform a certain operation and a total of m of
those satisfy some stated condition—call it A—then P(A) is defined to be the ratio
m/n. This assumes, of course, that all possible outcomes are equally likely.

Historically, the “m over n” idea is what motivated the early work of Pascal,
Fermat, and Huygens (recall Section 1.3). Today we recognize that not all probabil-
ities are so easily characterized. Nevertheless, the m/n model—the so-called classi-
cal definition of probability—is entirely appropriate for describing a wide variety of
phenomena.

Example
2.7.1

An urn contains eight chips, numbered 1 through 8. A sample of three is drawn with-
out replacement. What is the probability that the largest chip in the sample is a 5?

Let A be the event “Largest chip in sample is a 5.” Figure 2.7.1 shows what must
happen in order for A to occur: (1) the 5 chip must be selected, and (2) two chips
must be drawn from the subpopulation of chips numbered 1 through 4. By the mul-
tiplication rule, the number of samples satisfying event A is the product

(1
1

) · (4
2

)
.

6 8

Choose 1

1

5

34 2

7

Choose 2

Figure 2.7.1

The sample space S for the experiment of drawing three chips from the urn con-

tains
(

8
3

)
outcomes, all equally likely. In this situation, then, m =

(
1
1

)
·
(

4
2

)
, n =

(
8
3

)
,

and

P(A) =
(1

1

) · (4
2

)
(8

3

)
= 0.11
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Example
2.7.2

An urn contains n red chips numbered 1 through n, n white chips numbered 1 through
n, and n blue chips numbered 1 through n (see Figure 2.7.2). Two chips are drawn at
random and without replacement. What is the probability that the two drawn are
either the same color or the same number?

Draw two

without
replacement

r
1

rn

r
2

w
1

wn

w
2

b
1

bn

b
2

Figure 2.7.2

Let A be the event that the two chips drawn are the same color; let B be the
event that they have the same number. We are looking for P(A ∪ B).

Since A and B here are mutually exclusive,

P(A ∪ B) = P(A) + P(B)

With 3n chips in the urn, the total number of ways to draw an unordered sample of

size 2 is
(

3n
2

)
. Moreover,

P(A) = P(2 reds ∪ 2 whites ∪ 2 blues)

= P(2 reds) + P(2 whites) + P(2 blues)

= 3
(n

2

) /(
3n
2

)
and

P(B) = P(two 1’s ∪ two 2’s ∪ · · · ∪ two n’s)

= n
(

3
2

) / (
3n
2

)
Therefore,

P(A ∪ B) =
3

(n
2

)
+ n

(
3
2

)
(

3n
2

)

= n + 1
3n − 1

Example
2.7.3

Twelve fair dice are rolled. What is the probability that

a. the first six dice all show one face and the last six dice all show a second face?

b. not all the faces are the same?

c. each face appears exactly twice?

a. The sample space that corresponds to the “experiment” of rolling twelve dice
is the set of ordered sequences of length twelve, where the outcome at every
position in the sequence is one of the integers 1 through 6. If the dice are fair, all
612 such sequences are equally likely.
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Let A be the set of rolls where the first six dice show one face and the second
six show another face. Figure 2.7.3 shows one of the sequences in the event A.
Clearly, the face that appears for the first half of the sequence could be any of
the six integers from 1 through 6.

Faces
2 2 2 2 2 2 4 4 4 4 4 4

1 2 3 4 5 6 7 8 9 10 11 12
Position in sequence

Figure 2.7.3

Five choices would be available for the last half of the sequence (since the two
faces cannot be the same). The number of sequences in the event A, then, is
6P2 = 6 · 5 = 30. Applying the “m/n” rule gives

P(A) = 30/612 = 1.4 × 10−8

b. Let B be the event that not all the faces are the same. Then

P(B) = 1 − P(BC)

= 1 − 6/126

since there are six sequences—(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,), . . ., (6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6,)—where the twelve faces are all the same.

c. Let C be the event that each face appears exactly twice. From Theorem 2.6.2, the
number of ways each face can appear exactly twice is 12!/(2! · 2! · 2! · 2! · 2! · 2!).
Therefore,

P(C) = 12!/(2! · 2! · 2! · 2! · 2! · 2!)
612

= 0.0034

Example
2.7.4

A fair die is tossed n times. What is the probability that the sum of the faces showing
is n + 2?

The sample space associated with rolling a die n times has 6n outcomes, all of
which in this case are equally likely because the die is presumed fair. There are two
“types” of outcomes that will produce a sum of n + 2: (a) n − 1 1’s and one 3 and (b)
n − 2 1’s and two 2’s (see Figure 2.7.4). By Theorem 2.6.2 the number of sequences
having n − 1 1’s and one 3 is n!

1!(n−1)! = n; likewise, there are n!
2!(n−2)! = ( n

2

)
outcomes

having n − 2 1’s and two 2’s. Therefore,

P(sum = n + 2) = n + (n
2

)
6n

1

1

1

2

1

3

1

n – 1

3

n

Sum = n + 2

1

1

1

2

1

3

1

n – 2

2

n – 1

2

n

Sum = n + 2

Figure 2.7.4
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Example
2.7.5

Two monkeys, Mickey and Marian, are strolling along a moonlit beach when Mickey
sees an abandoned Scrabble set. Investigating, he notices that some of the letters are
missing, and what remain are the following fifty-nine tiles:

A B C D E F G H I J K L M
4 1 2 2 7 1 1 3 5 0 3 5 1

N O P Q R S T U V W X Y Z
3 2 0 0 2 8 4 2 0 1 0 2 0

Mickey, being of a romantic bent, would like to impress Marian, so he rearranges the
letters hoping to spell something endearing. For some unknown reason, Marian can
read, but Mickey is dumb as dirt, so all he can do is scramble the fifty-nine tiles at
random and hope for the best. What is the probability he gets lucky and spells out

She walks in beauty, like the night
Of cloudless climes and starry skies

As we might imagine, Mickey would have to get very lucky. The total number of
ways to permute fifty-nine letters—four A’s, one B, two C’s, and so on—is a direct
application of Theorem 2.6.2:

59!
4!1!2! . . . 2!0!

But of that number of ways, only one is the couplet he is hoping for. So, since he is ar-
ranging the letters randomly, making all permutations equally likely, the probability
of his spelling out Byron’s lines is

1
59!

4!1!2! . . . 2!0!

or, using Stirling’s formula, about 1.7×10−61. Love may conquer all, but it won’t beat
those odds: Mickey would be well advised to start working on Plan B.

Example
2.7.6

Suppose k people are selected at random. What are the chances that at least two of
those k were born on the same day of the year? Known as the birthday problem, this is
a particularly intriguing example of combinatorial probability because its statement is so
simple, its analysis is straightforward, yet its solution is strongly contrary to our intuition.

Picture the k individuals lined up in a row to form an ordered sequence. If leap year
is omitted, each person might have any of 365 birthdays. By the multiplication rule, the
group as a whole generates a sample space of 365k birthday sequences (see Figure 2.7.5).

(365)

1

(365)

2

(365)

k

Person

Possible
birthdays: 365 k different

sequences

Figure 2.7.5

Define A to be the event “At least two people have the same birthday.” If each
person is assumed to have the same chance of being born on any given day, the 365k

sequences in Figure 2.7.5 are equally likely, and

P(A) = number of sequences in A
365k
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Counting the number of sequences in the numerator here is prohibitively diffi-
cult because of the complexity of the event A; fortunately, counting the number of
sequences in Ac is quite easy. Notice that each birthday sequence in the sample space
belongs to exactly one of two categories (see Figure 2.7.6):

1. At least two people have the same birthday.

2. All k people have different birthdays.

(July 13, Sept. 2, , July 13) •

(April 4, April 4, , Aug. 17) •

Sequences where at least
two people have the same
birthday

(June 14, Jan. 10, , Oct. 28) •

(Aug. 10, March 1, , Sept. 8) •

A

Ac

Sequences where all k
people have different
birthdays

Sample space: all birthday sequences of 
length k (contains 365k outcomes).

Figure 2.7.6

It follows that

number of sequences in A = 365k − number of sequences where all k people

have different birthdays

The number of ways to form birthday sequences for k people subject to the re-
striction that all k birthdays must be different is simply the number of ways to form
permutations of length k from a set of 365 distinct objects:

365Pk = 365(364) · · · (365 − k + 1)

Therefore,

P(A) = P(At least two people have the same birthday)

= 365k − 365(364) · · · (365 − k + 1)
365k

Table 2.7.1 shows P(A) for k values of 15, 22, 23, 40, 50, and 70. Notice how the P(A)’s
greatly exceed what our intuition would suggest.

Table 2.7.1

k P(A) = P (At least two have same birthday)

15 0.253
22 0.476
23 0.507
40 0.891
50 0.970
70 0.999

Comment The values for P(A) in Table 2.7.1 are actually slight underestimates for
the true probabilities that at least two of k people will be born on the same day. The
assumption made earlier that all 365k birthday sequences are equally likely is not
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entirely correct: Births are somewhat more common during the summer than they
are during the winter. It has been proven, though, that any sort of deviation from the
equally likely model will serve only to increase the chances that two or more people
will share the same birthday. So, if k = 40, for example, the probability is slightly
greater than 0.891 that at least two were born on the same day.

Comment Presidential biographies offer one opportunity to “confirm” the unex-
pectedly large values that Table 2.7.1 gives for P(A). Among our first k = 40 presi-
dents, two did have the same birthday: Harding and Polk were both born on Novem-
ber 2. More surprising, though, are the death dates of the presidents: John Adams,
Jefferson, and Monroe all died on July 4, and Fillmore and Taft both died on March 8.

Example
2.7.7

One of the more instructive—and to some, one of the more useful—applications of
combinatorics is the calculation of probabilities associated with various poker hands.
It will be assumed in what follows that five cards are dealt from a poker deck and
that no other cards are showing, although some may already have been dealt. The
sample space is the set of

(52
5

) = 2,598,960 different hands, each having probability
1/2,598,960. What are the chances of being dealt (a) a full house, (b) one pair, and
(c) a straight? [Probabilities for the various other kinds of poker hands (two pairs,
three-of-a-kind, flush, and so on) are gotten in much the same way.]

a. Full house. A full house consists of three cards of one denomination and two of
another. Figure 2.7.7 shows a full house consisting of three 7’s and two queens.
Denominations for the three-of-a-kind can be chosen in

(13
1

)
ways. Then, given that

a denomination has been decided on, the three requisite suits can be selected in
(4

3

)
ways. Applying the same reasoning to the pair gives

(12
1

)
available denominations,

each having
(4

2

)
possible choices of suits. Thus, by the multiplication rule,

P(full house) =

(
13
1

)(
4
3

)(
12
1

)(
4
2

)
(

52
5

) = 0.00144

2 3 4 5 6 7 8 9 10 J Q K A

D
H × ×
C ×
S × ×

Figure 2.7.7

b. One pair. To qualify as a one-pair hand, the five cards must include two of
the same denomination and three “single” cards—cards whose denominations
match neither the pair nor each other. Figure 2.7.8 shows a pair of 6’s. For
the pair, there are

(13
1

)
possible denominations and, once selected,

(4
2

)
possible

suits. Denominations for the three single cards can be chosen
(12

3

)
ways (see

Question 2.7.16), and each card can have any of
(4

1

)
suits. Multiplying these fac-

tors together and dividing by
(52

2

)
gives a probability of 0.42:

P(one pair) =

(
13
1

)(
4
2

)(
12
3

)(
4
1

)(
4
1

)(
4
1

)
(

52
5

) = 0.42
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2 3 4 5 6 7 8 9 10 J Q K A

D × ×
H × ×
C ×
S

Figure 2.7.8

c. Straight. A straight is five cards having consecutive denominations but not all in
the same suit—for example, a 4 of diamonds, 5 of hearts, 6 of hearts, 7 of clubs, and
8 of diamonds (see Figure 2.7.9). An ace may be counted “high” or “low,” which
means that (10, jack, queen, king, ace) is a straight and so is (ace, 2, 3, 4, 5). (If
five consecutive cards are all in the same suit, the hand is called a straight flush.
The latter is considered a fundamentally different type of hand in the sense that
a straight flush “beats” a straight.) To get the numerator for P(straight), we will
first ignore the condition that all five cards not be in the same suit and simply
count the number of hands having consecutive denominations. Note there are
ten sets of consecutive denominations of length five: (ace, 2, 3, 4, 5), (2, 3, 4, 5,
6), . . ., (10, jack, queen, king, ace). With no restrictions on the suits, each card can
be either a diamond, heart, club, or spade. It follows, then, that the number of

five-card hands having consecutive denominations is 10 · (4
1

)5
. But forty (= 10 ·4)

of those hands are straight flushes. Therefore,

P(straight) =
10 ·

(
4
1

)5

− 40(
52
5

) = 0.00392

Table 2.7.2 shows the probabilities associated with all the different poker hands.
Hand i beats hand j if P(hand i) < P(hand j).

2 3 4 5 6 7 8 9 10 J Q K A

D × ×
H × ×
C ×
S

Figure 2.7.9

Table 2.7.2

Hand Probability

One pair 0.42
Two pairs 0.048
Three-of-a-kind 0.021
Straight 0.0039
Flush 0.0020
Full house 0.0014
Four-of-a-kind 0.00024
Straight flush 0.000014
Royal flush 0.0000015
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Example
2.7.8

A somewhat inebriated conventioneer finds himself in the embarrassing position of
being unable to discern whether he is walking forward or backward—or, what is
worst, to predict in which of those directions his next step will be. If he is equally
likely to walk forward or backward, what is the probability that after hazarding n
such maneuvers, he will have moved forward a distance of r steps?

Let x denote the number of steps he takes forward and y denote the number
backward. Then

x + y = n

and

x − y = r

Solving these equations simultaneously, we get x = (n+r)/2 and y = (n−r)/2. Thus,
out of the 2n total ways he can take n steps, the number of permutations for which he
ends up r steps forward is n!

/[( n+r
2

)
!
( n−r

2

)
!
]

(recall Theorem 2.6.2). The probability
that he shows a net advance of r steps is the quotient(

n
n + r

2

)

2n

Comment Example 2.7.8 is describing a one-dimensional random walk problem.
Over the years, the mathematical properties of random walks in various numbers
of dimensions have been a useful tool for modeling such disparate phenomena as
Brownian motion, the movements of individual animals and populations of animals,
and daily fluctuations in the stock market. The term random walk was coined in 1905
by the renowned British statistician, Karl Pearson.

Example
2.7.9

To a purist, buying a LOTTO ticket at your local supermarket is not quite the gam-
bling equivalent of playing a round of Texas Hold’Em in some smoke-filled road-
house, but there is no denying that the amount of money spent on lotteries each year
(estimated to be upwards of $50 billion in the United States alone) is major-league.
And to be fair, lotteries do have an interesting history that goes back thousands of
years, long before the first poker game was ever played. Evidence suggests that lot-
teries helped finance the building of the Great Wall of China. Closer to home, the
first permanent English settlement on the North American continent–Jamestown,
founded in 1607–was funded by the Virginia Company of London, a group of in-
vestors who acquired the rights to sponsor the expedition by winning a lottery.

In recent years, one of the most popular versions of “drawing lots” has been
Powerball. For the price of a ticket, a player gets to pick five (distinct) numbers from
the integers 1 through 59 and one additional number from the integers 1 through 35.
Then at a regularly-scheduled time, five white balls are drawn from a drum containing
fifty-nine balls, numbered 1 through 59, and a sixth selection (the Powerball) is drawn
from a second drum containing thirty-five balls, numbered 1 through 35. If and how
much a player wins depends on the nature of the matches between the ticket numbers
picked and the balls actually drawn.

For example, the fourth prize is worth $100 and awarded to anyone whose ticket
correctly matches four of the five white balls but not the Powerball. Calculating the
probability of that happening is a straightforward exercise in applying the multipli-
cation rule to the numbers of ways to form various combinations. Since(

59
5

)
= number of ways to choose five white balls from the first drum
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and (
35
1

)
= number of ways to choose a Powerball from the second drum

the product ( 59
5 )( 35

1 ) = 175, 223, 510 is the total number of (equally-likely) outcomes
possible in a LOTTO drawing. Your particular ticket has the potential to (1) match
exactly four of the white balls drawn in ( 5

4 ) = 5 different ways, (2) not match the fifth
white ball in ( 54

1 ) = 54 different ways and (3) not match the Powerball in ( 34
1 ) = 34

different ways. The probability, then, that your ticket will win the $100 prize is the
ratio (

5
4

) (
54
1

) (
34
1

) [(
59
5

) (
35
1

)]
= 9180/175,223,510 = 0.00005239/

The entire set of winning combinations, associated probabilities, and payoffs are
listed in Table 2.7.3. Adding the entries in the middle column would show that your
probability of winning something is 0.0314.

Table 2.7.3

Winning Pick Probability Payoff

1. Match all five white balls and Powerball [( 5
5 )( 1

1 )]/[( 59
5 )( 35

1 )] Depends on the
number of winners

2. Match all five white balls but not Powerball [( 5
5 )( 34

1 )]/[( 59
5 )( 35

1 )] $1,000,000

3. Match four white balls and Powerball [( 5
4 )( 54

1 )( 1
1 )]/[( 59

5 )( 35
1 )] $10,000

4. Match four white balls but not Powerball [( 5
4 )( 54

1 )( 34
1 )]/[( 59

5 )( 35
1 )] $100

5. Match three white balls and Powerball [( 5
3 )( 54

2 )( 1
1 )]/[( 59

5 )( 35
1 )] $100

6. Match three white balls but not Powerball [( 5
3 )( 54

2 )( 34
1 )]/[( 59

5 )( 35
1 )] $7

7. Match two white balls and Powerball [( 5
2 )( 54

3 )( 1
1 )]/[( 59

5 )( 35
1 )] $7

8. Match one white ball and Powerball [( 5
1 )( 54

4 )( 1
1 )]/[( 59

5 )( 35
1 )] $4

9. Match zero white balls and Powerball [( 5
0 )( 54

5 )( 1
1 )]/[( 59

5 )( 35
1 )] $4

Comment While the six numbers drawn in Powerball are random, records show
that the six numbers picked by ticket-buyers are not random. Why? Because Power-
ball players have a tendency to bet on their birthdays, which results in their entries
tending to have smaller digits and be disproportionately over-represented (and du-
plicated) in the population of all possible entries. Does that matter? It depends. If one
ticket or one hundred thousand tickets qualify for the fourth prize, for example, each
of those players will still receive $100. But if n players qualify for the jackpot, each
will receive only l/nth of the jackpot money. So, unless you feel a burning desire to be
magnanimous and share your possible (albeit highly improbable) multi-millions of
dollars of jackpot winnings with total strangers, betting on your birthday is a bad idea.

Problem-Solving Hints

(Doing combinatorial probability problems)

Listed on p. 70 are several hints that can be helpful in counting the number of
ways to do something. Those same hints apply to the solution of combinatorial
probability problems, but a few others should be kept in mind as well.

(Continued on next page)
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(Continued)

1. The solution to a combinatorial probability problem should be set up as a
quotient of numerator and denominator enumerations. Avoid the tempta-
tion to multiply probabilities associated with each position in the sequence.
The latter approach will always “sound” reasonable, but it will frequently
oversimplify the problem and give the wrong answer.

2. Keep the numerator and denominator consistent with respect to order—if
permutations are being counted in the numerator, be sure that permutations are
being counted in the denominator; likewise, if the outcomes in the numerator
are combinations, the outcomes in the denominator must also be combinations.

3. The number of outcomes associated with any problem involving the rolling
of n six-sided dice is 6n; similarly, the number of outcomes associated with
tossing a coin n times is 2n. The number of outcomes associated with dealing
a hand of n cards from a standard fifty-two-card poker deck is 52Cn.

Questions

2.7.1. Ten equally qualified marketing assistants are can-
didates for promotion to associate buyer; seven are men
and three are women. If the company intends to promote
four of the ten at random, what is the probability that
exactly two of the four are women?

2.7.2. An urn contains six chips, numbered 1 through 6.
Two are chosen at random and their numbers are added
together. What is the probability that the resulting sum is
equal to 5?

2.7.3. An urn contains twenty chips, numbered 1 through 20.
Two are drawn simultaneously. What is the probability that
the numbers on the two chips will differ by more than 2?

2.7.4. A bridge hand (thirteen cards) is dealt from a stan-
dard fifty-two-card deck. Let A be the event that the hand
contains four aces; let B be the event that the hand con-
tains four kings. Find P(A ∪ B).

2.7.5. Consider a set of ten urns, nine of which contain
three white chips and three red chips each. The tenth con-
tains five white chips and one red chip. An urn is picked at
random. Then a sample of size 3 is drawn without replace-
ment from that urn. If all three chips drawn are white,
what is the probability that the urn being sampled is the
one with five white chips?

2.7.6. A committee of fifty politicians is to be chosen from
among our one hundred U.S. senators. If the selection is
done at random, what is the probability that each state will
be represented?

2.7.7. Suppose that n fair dice are rolled. What are the
chances that all n faces will be the same?

2.7.8. Five fair dice are rolled. What is the probability
that the faces showing constitute a “full house”—that is,
three faces show one number and two faces show a second
number?

2.7.9. Imagine that the test tube pictured contains 2n
grains of sand, n white and n black. Suppose the tube is
vigorously shaken. What is the probability that the two
colors of sand will completely separate; that is, all of one
color fall to the bottom, and all of the other color lie on
top? (Hint: Consider the 2n grains to be aligned in a row.
In how many ways can the n white and the n black grains
be permuted?)

2.7.10. Does a monkey have a better chance of
rearranging

AC C L LU U S to spell C A LC U LU S

or

A A B E G L R to spell A L G E B R A?

2.7.11. An apartment building has eight floors. If seven
people get on the elevator on the first floor, what is the
probability they all want to get off on different floors? On
the same floor? What assumption are you making? Does
it seem reasonable? Explain.

2.7.12. If the letters in the phrase

A R O L L I N G S T O N E G A T H E R S N O M O S S

are arranged at random, what are the chances that not all
the S’s will be adjacent?

2.7.13. Suppose each of ten sticks is broken into a long
part and a short part. The twenty parts are arranged into
ten pairs and glued back together so that again there are
ten sticks. What is the probability that each long part
will be paired with a short part? (Note: This problem is
a model for the effects of radiation on a living cell. Each
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chromosome, as a result of being struck by ionizing radi-
ation, breaks into two parts, one part containing the cen-
tromere. The cell will die unless the fragment containing
the centromere recombines with a fragment not contain-
ing a centromere.)

2.7.14. Six dice are rolled one time. What is the probability
that each of the six faces appears?

2.7.15. Suppose that a randomly selected group of k peo-
ple are brought together. What is the probability that
exactly one pair has the same birthday?

2.7.16. For one-pair poker hands, why is the number of
denominations for the three single cards

(12
3

)
rather than(12

1

)(11
1

)(10
1

)
?

2.7.17. Dana is not the world’s best poker player. Dealt a
2 of diamonds, an 8 of diamonds, an ace of hearts, an ace
of clubs, and an ace of spades, she discards the three aces.
What are her chances of drawing to a flush?

2.7.18. A poker player is dealt a 7 of diamonds, a queen
of diamonds, a queen of hearts, a queen of clubs, and an
ace of hearts. He discards the 7. What is his probability of
drawing to either a full house or four-of-a-kind?

2.7.19. Tim is dealt a 4 of clubs, a 6 of hearts, an 8 of hearts,
a 9 of hearts, and a king of diamonds. He discards the 4

and the king. What are his chances of drawing to a straight
flush? To a flush?

2.7.20. Five cards are dealt from a standard 52-card deck.
What is the probability that the sum of the faces on the
five cards is 48 or more?

2.7.21. Nine cards are dealt from a 52-card deck. Write a
formula for the probability that three of the five even nu-
merical denominations are represented twice, one of the
three face cards appears twice, and a second face card
appears once. (Note: Face cards are the jacks, queens,
and kings; 2, 4, 6, 8, and 10 are the even numerical
denominations.)

2.7.22. A coke hand in bridge is one where none of the
thirteen cards is an ace or is higher than a 9. What is the
probability of being dealt such a hand?

2.7.23. A pinochle deck has forty-eight cards, two of
each of six denominations (9, J, Q, K, 10, A) and the
usual four suits. Among the many hands that count for
meld is a roundhouse, which occurs when a player has a
king and queen of each suit. In a hand of twelve cards,
what is the probability of getting a “bare” roundhouse
(a king and queen of each suit and no other kings or
queens)?

2.8 Taking a Second Look at Statistics
(Monte Carlo Techniques)

Recall the von Mises definition of probability given on p. 16. If an experiment is
repeated n times under identical conditions, and if the event E occurs on m of those
repetitions, then

P(E) = lim
n→∞

m
n

(2.8.1)

To be sure, Equation 2.8.1 is an asymptotic result, but it suggests an obvious (and
very useful) approximation—if n is finite,

P(E) .= m
n

In general, efforts to estimate probabilities by simulating repetitions of an ex-
periment (usually with a computer) are referred to as Monte Carlo studies. Usually
the technique is used in situations where an exact probability is difficult to calculate.
It can also be used, though, as an empirical justification for choosing one proposed
solution over another.

For example, consider the game described in Example 2.4.10. An urn contains a
red chip, a blue chip, and a two-color chip (red on one side, blue on the other). One
chip is drawn at random and placed on a table. The question is, if blue is showing,
what is the probability that the color underneath is also blue?

Pictured in Figure 2.8.1 are two ways of conceptualizing the question just posed.
The outcomes in (a) are assuming that a chip was drawn. Starting with that premise,
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the answer to the question is 1
2 —the red chip is obviously eliminated and only one

of the two remaining chips is blue on both sides.

Chip drawn

red

blue

two-color

Side drawn

red/red

blue/blue

red/blue

P(B|B) = 1/2 P(B|B) = 2/3

(a) (b)

Figure 2.8.1

By way of contrast, the outcomes in (b) are assuming that the side of a chip was
drawn. If so, the blue color showing could be any of three blue sides, two of which are
blue underneath. According to model (b), then, the probability of both sides being
blue is 2

3 .
The formal analysis on p. 43, of course, resolves the debate—the correct answer

is 2
3 . But suppose that such a derivation was unavailable. How might we assess

the relative plausibilities of 1
2 and 2

3 ? The answer is simple—just play the game a
number of times and see what proportion of outcomes that show blue on top have
blue underneath.

To that end, Table 2.8.1 summarizes the results of one hundred random drawings.
For a total of fifty-two trials, blue was showing (S) when the chip was placed on a

Table 2.8.1

Trial # S U Trial # S U Trial # S U Trial # S U

1 R B 26 B R 51 B R 76 B B*
2 B B* 27 R R 52 R B 77 B B*
3 B R 28 R B 53 B B* 78 R R
4 R R 29 R B 54 R B 79 B B*
5 R B 30 R R 55 R R 80 R R
6 R B 31 R B 56 R B 81 R B
7 R R 32 B B* 57 R R 82 R B
8 R R 33 R B 58 B B* 83 R R
9 B B* 34 B B* 59 B R 84 B R

10 B R 35 B B* 60 B B* 85 B R
11 R R 36 R R 61 B R 86 R R
12 B B* 37 B R 62 R B 87 B B*
13 R R 38 B B* 63 R R 88 R B
14 B R 39 R R 64 R R 89 B R
15 B B* 40 B B* 65 B B* 90 R R
16 B B* 41 B B* 66 B R 91 R B
17 R B 42 B R 67 R R 92 R R
18 B R 43 B B* 68 B B* 93 R R
19 B B* 44 B B* 69 B B* 94 R B
20 B B* 45 B B* 70 R R 95 B B*
21 R R 46 R R 71 R R 96 B B*
22 R R 47 B B* 72 B B* 97 B R
23 B B* 48 B B* 73 R B 98 R R
24 B R 49 R R 74 R R 99 B B*
25 B B* 50 R R 75 B B* 100 B B*
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table; for thirty-six of the trials (those marked with an asterisk), the color underneath
(U) was also blue. Using the approximation suggested by Equation 2.8.1,

P(Blue is underneath | Blue is on top) = P(B | B) .= 36
52

= 0.69

a figure much more consistent with 2
3 than with 1

2 .
The point of this example is not to downgrade the importance of rigorous deriva-

tions and exact answers. Far from it. The application of Theorem 2.4.1 to solve
the problem posed in Example 2.4.10 is obviously superior to the Monte Carlo
approximation illustrated in Table 2.8.1. Still, replications of experiments can of-
ten provide valuable insights and call attention to nuances that might otherwise go
unnoticed.
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