
•
•
•
•
•
•
•
•
•
•
•
•
•
•

15.1 INTRODUCTION

One of the key features offered by C++ is polymorphisms. It is essential to know the concepts
of polymorphisms and associated topics. In this chapter, we are going to learn and implement
static (early) binding, dynamic (late) binding, polymorphisms, and virtual functions. An attempt
is made to illustrate every point of this new topic in an easy way, and complicated subtopics are
explained in a simple way.

The word poly means many, and morphism means several forms. Both the words are
derived from Greek language. Thus, by combining these two words, a new whole word called

15.1 Introduction

15.2 Binding in C++

15.3 Pointer to Base and Derived Class Objects

15.4 Virtual Functions

15.5 Rules for Virtual Functions

15.6 Array of Pointers

15.7 Pure Virtual Functions

15.8 Abstract Classes

15.9 Working of Virtual Functions

15.10 Virtual Functions in Derived Classes

15.11 Object Slicing

15.12 Constructors and Virtual Functions

15.13 Virtual Destructors

15.14 Destructors and Virtual Functions

15
Binding,

Polymorphisms, and
Virtual Functions

C
h

a
p

t
e

r
 O

u
t

l
in

e

C H A P T E R

604 Binding, Polymorphisms, and Virtual Functions

polymorphism is created, which means various forms. We have learnt about overloading
of functions and operators. It is also one type of polymorphism. The information pertaining to
various overloaded member functions and arguments is known to the compiler while compiling.
Thus, the compiler selects an appropriate function and collects the arguments at compile time.
This is called early binding or static binding. This is also known as compile time
polymorphism.

In C++, the function can be bound at either compile time or run time. Deciding a function
call at compile time is called compile time or early or static binding. Deciding a
function call at run time is called run time or late or dynamic binding. Dynamic binding
permits to suspend the decision of choosing a suitable member function until run time. Two types
of polymorphism are shown in Figure 15.1.

POLYMORPHISMS
A polymorphism is a technique in which various forms of a single function can be defined and shared by
various objects to perform an operation.

POLYMORPHISM

Compile TimeRun-Time

Virtual
Function

Function
Overloading

Operator
Overloading

 Fig. 15.1 Polymorphisms in C++

15.2 BINDING IN C++

Though C++ is an object-oriented programming language, it is very much inspired by proce-
dural language. A program in C++ is executed sequentially line by line. Each line of the source
program after translation is in the form of machine language. Each line in the machine language
is assigned a unique address. Similarly, when a function call is encountered by the complier dur-
ing execution, the function call is translated into machine language, and a sequential address is
provided. Thus, binding refers to the process that is to be used for converting functions and
variables into machine language addresses. The C++ supports two types of binding: static or
early binding and dynamic or late binding.

15.2.1 Static (Early) Binding

In this section, we are going to focus on static or early binding. Even though similar function
names are used at many places, their references and their positions are indicated explicitly by the
compiler. Their ambiguities are fixed at compile time. Consider the following example.

Binding in C++ 605

class first // base class
{
 int d;
 public:
 void display() {------} // base class member

function
};
class second : public first // derived class
{
 int k:
 public:
 void display() {-------} // member function of
derived class
}

In the above program, base and derived classes have a similar member function name dis-
play() but after conversion into machine language, addresses for two display() functions
are different and unique. Thus, the compiler instructs the CPU to jump to the different addresses
when similar display() function calls are executed at various places in the program. This is
not an overloaded function, because its prototype is the same and it is defined in different classes.

The following program is based on early binding:

15.1 Write a program to invoke function using scope access operator.

#include<iostream.h>
#include<conio.h>

class first
{
 int b;
 public:
 first() {b=10;}
 void display() {cout<<“\n b=”<<b;}
};
class second: public first
{
 int d;
 public:
 second() {d=20;}
 void display() {cout<<“\n d=”<<d;}
};
 int main()
 {
 clrscr();

606 Binding, Polymorphisms, and Virtual Functions

 second s;
 s.first::display(); // Invokes base class function
 s.display(); // Invokes derived class function
 return 0;
 }

OUTPUT

 b = 10
 d = 20

Explanation: In the above program, the class first is a base class and class second is a derived
class. Both the classes contain one integer data member and member function. The display()
function is used to display the content of the data member. Both the classes contain a similar
function name. In function main(), s is an object of the derived class second. Hence, in or-
der to invoke the display() function of the base class, the scope access operator is used. When
base and derived classes have similar function names, in such a situation, it is very essential to
provide information to the compiler at run time about the member functions. The mechanism that
provides run-time selection of a function is called a polymorphism.

A virtual keyword plays an important role in late binding. Before introducing virtual
functions, let us have a look at the given below program. The following program shows what
happens when functions are not declared virtual. This is an example of early binding.

15.2 Write a program to invoke member function of base and derived class using pointer
of base class.

#include<iostream.h>
#include<conio.h>

class first
{ int b;
 public:
 first() {b=10;}
 void display() {cout<<“\n b=” <<b;}
};
class second: public first
{
 int d;
 public:
 second() {d=20;}
 void display() {cout<<“\n d=”<<d;}
};
int main()
 {
 clrscr();
 first f,*p;

 second s;
 p=&f;
 p->display();
 p=&s;
 p->display();
 return 0;
 }

OUTPUT

 b = 10
 b = 10

Explanation: In the above program, the class first is a base class and class second is a
derived class. The variable f is an object of the base class, and s is an object of the derived class.
The pointer *p is an object pointer of the base class. The address of the base class object is as-
signed to pointer p, and display() function is called. Again, the address of the derived class
is assigned to pointer p, and display() function is called. Both the times, the display()
function of base class is executed. This is so, because though in the second call p contains the
address of the object of the derived class, yet the display() function of the base class replaces
the existence of the display() function of the derived class. In order to execute various forms
of the same function defined in the base, derived class, run-time binding is necessary, and it can
be achieved using the virtual keyword.

15.2.2 Dynamic (Late) Binding

In the case of a few programs, it is impossible to know which function is to be called until run
time. This is called dynamic binding. Dynamic binding of member functions in C++ can
be done using the virtual keyword. The member function followed by the virtual key-
word is called a virtual function. Consider the following example:

class first // base class
{
 int d;
 public:
 virtual void display() {------} // base class member
function
};
class second: public first // derived class
{
 int k:
 public:
 virtual void display() {-------} // member function
of derived class
}

Binding in C++ 607

608 Binding, Polymorphisms, and Virtual Functions

In the example of the above program, base and derived classes have a similar member function
display() preceded by the keyword virtual. The various forms of virtual functions in base
and derived classes are dynamically bound. The references are detected from the base class. All
virtual functions in derived classes are considered virtual, supposing they match the base class
function exactly in the number and types of parameters sent. If there is no match between these
functions, they will be assumed as overloaded functions. The virtual function should be defined
in the public section. If the function is declared virtual, the system will use dynamic (late) bind-
ing, which is carried out at run time. Otherwise, early or compile-time binding is used.

Dynamic binding can be implemented with function pointers. In this method, the pointer
points to a function instead of a variable. A simple programming example is given below based
on late binding.

15.3 Write a program to perform few arithmetic operations on floating numbers using
functions. Use function pointer (Late binding).

#include<iostream.h>
#include<conio.h>

float add(float m, float n)
{
 return m+n;
}
float sub(float m, float n)
{
 return m-n;
}
float mul(float m, float n)
{
 return m*n;
}
int main()
{
 clrscr();
 float x,y;
 cout<<“Enter two numbers:”;
 cin>>x>>y;
 int task;
 do
 {
 cout<<“Enter task (1=add, 2=sub, 3=mul):”;
 cin>>task;
 }
 while (task< 1 || task > 3);

Pointer to Base and Derived Class Objects 609

 float (*pt)(float, float);
 // Function pointer named pt is created
 switch (task)
 {
 case 1:
 pt=add;
 break;
 case 2:
 pt=sub;
 break;
 case 3:
 pt=mul;
 break;
 }
 cout<<“Result of operation is:” << pt(x,y) << endl;
 return 0;
}

OUTPUT

Enter two numbers: 2.5 2.5
Enter task (1=add, 2=sub, 3=mul): 3
Result of operation is : 6.25

Explanation: In the above program, instead of calling functions directly, we have called them
through function pointer pt. The complier is unable to use static or early binding in this case. In
this program, the late binding concept is implemented. The compiler has to read the addresses
held in the pointers toward different functions. Until run time, decisions are not taken as to which
function needs to be executed; hence, it is late binding.

15.3 POINTER TO BASE AND DERIVED CLASS OBJECTS

In inheritance, the properties of existing classes are extended to the new classes. The new classes
that can be created from the existing base class are called as derived classes. The
inheritance provides the hierarchical organization of classes. It also provides the hierarchical
relationship between two objects and indicates the shared properties between them. All derived
classes inherit properties from the common base class. Pointers can be declared to the point base
or derived class. Pointers to objects of the base class are type compatible with pointers to objects
of the derived class. A base class pointer can point to objects of both the base and derived class.
In other words, a pointer to the object of the base class can point to the object of the derived class;
whereas a pointer to the object of the derived class cannot point to the object of the base class, as
shown in Figure 15.2.

610 Binding, Polymorphisms, and Virtual Functions

Base class object Derived class object

Base class pointer

Derived class pointer

 Fig. 15.2 Type compatibility of base and derived class pointers

15.4 Write a program to access members of base and derived class using pointer objects
of both classes.

#include<iostream.h>
#include<constream.h>

class W
{
 protected:
 int w;
 public:
 W (int k) { w=k; }
 void show()
 {
 cout<<“\n In base class W”;
 cout<<“\n W=”<<w; };
};
class X: public W
{
 protected:
 int x;
 public:
 X (int j, int k): W(j)
 {
 x=k;
 }
 void show()
 {
 cout<<“\n In class X”;
 cout<<“\n w=”<<w;
 cout<<“\n x=”<<x;
 }

};
class Y: public X
{
 public:
 int y;
};
void main()
{
 clrscr();
 W *b;
 b = new W(20); // pointer to class W
 b->show();
 delete b;
 b = new X(5,2); // pointer to class X
 b->show();
 ((X*)b)->show();
 delete b;
 X x(3,4);
 X *d=&x;
 d->show();
}

OUTPUT

 In base class W
 W=20
 In base class W
 W=5
 In class X
 w=5
 x=2
 In class X
 w=3
 x=4

Explanation: In the above program, the class W is a base class. The X is derived from W, and
class Y is derived from class X. Here, the type of inheritance is multilevel inheritance. The vari-
able *b is a pointer object of the class W. The statement b = new W (20); creates a nameless
object and returns its address to the pointer b. The show() function is invoked by the pointer
object b. Here, the show() function of base class W is invoked. Using delete operator, the
pointer b is deleted.

The statement b = new X (5,2); creates a nameless object of class X and assigns its ad-
dress to the base class pointer b. Here, it should be noted that the object b is a pointer object of

Pointer to Base and Derived Class Objects 611

612 Binding, Polymorphisms, and Virtual Functions

the base class, and it is initialized with the address of the derived class object. Again, the pointer
b invokes the function show() of the base class and not the function of class X (derived class.).
To invoke the function of the derived class X, the following statement is used:

((X*)b)->show();

In the above statement, typecasting (upcasting) is used. The upcasting forces the object of class
W to behave as if it were the object of class X. This time, the function show() of class X (de-
rived class) is invoked. The process of obtaining the address of a derived class object, and treating
it as the address of a base class object is known as upcasting.

The statement X x(3,4); creates object x of class X. The statement X *d = &x;
declares the pointer object d of the derived class X and assigns the address of x to it. The

pointer object d invokes the derived class function show(). Figure 15.3 shows a pictorial repre-
sentation of the above explanation.

Pointer object of
base class W

Base class W

Members

Derived class X

Inherited members of
base class W

New declared data
members

Derived class Y

Inherited members of
classes W and X

New declared data
members

Pointer object of
class X

Pointer object of
class Y

 Fig. 15.3 Type compatibility of base and derived class pointers

Here, the pointer of class W points to its own class as well as its derived class. The pointer of
derived class X can point to its own class but cannot point to its base class.

15.4 VIRTUAL FUNCTIONS

Virtual functions of the base class should be redefined in the derived classes. The programmer
can define a virtual function in a base class, and can then use the same function name in any de-
rived class, even if the number and type of arguments are matching. The matching function over-
rides the base class function of a similar name. Virtual functions can only be member functions.
We can also declare the functions as given below:

int Base::get (int) and int Derived::get(int) even when they are not virtual.

The base class version is available to derived class objects via scope override. If they are virtual,
only the function associated with the actual type of the object is available. With virtual functions,
we cannot alter just the function type. It is illegal, therefore, to redefine a virtual function so that

Rules for Virtual Functions 613

it varies only in the return type. If two functions with a similar name have different arguments,
C++ compiler considers them different, and the virtual function mechanism is dropped.

15.5 RULES FOR VIRTUAL FUNCTIONS

(1) The virtual function should not be static and must be a member of a class.
(2) The virtual function may be declared as a friend for another class. An object pointer can

access the virtual functions.
(3) A constructor cannot be declared as virtual, but a destructor can be declared as virtual.
(4) The virtual function should be defined in the public section of the class. It is also pos-

sible to define the virtual function outside the class. In such a case, the declaration is
done inside the class, and the definition is outside the class. The virtual keyword is
used in the declaration and not in the function declarator.

(5) It is also possible to return a value from virtual functions similar to other functions.
(6) The prototype of the virtual function in the base class and derived class should be ex-

actly the same. In case of a mismatch, the compiler neglects the virtual function mecha-
nism and treats these functions as overloaded functions.

(7) Arithmetic operations cannot be used with base class pointers.
(8) If a base class contains a virtual function and if the same function is not redefined in the

derived classes, in such a case, the base class function is invoked.
(9) The operator keyword used for operator overloading also supports the virtual

mechanism.

15.5 Write a program to declare virtual function and execute the same function defined
in the base and derived class.

#include<iostream.h>
#include<conio.h>

class first
{
 int b;
 public:
 first() {b=10;}
 virtual void display() {cout<<“\n b=” <<b;}
};
class second : public first
{
 int d;
 public:
 second() {d=20;}
 void display() {cout<<“\n d=”<<d;}
};
int main()
{
 clrscr();

614 Binding, Polymorphisms, and Virtual Functions

 first f,*p;
 second s;
 p=&f;
 p->display();
 p=&s;
 p->display();
 return 0;
}

OUTPUT

b = 10
d = 20

Explanation: The above program is similar to the previous one. The only difference is that a
virtual keyword precedes the display() function of the base class as per the statement
virtual void display() {cout<<“\n b = ” <<b;}. The virtual keyword does the
run-time binding. In the first call, the display() function of the base class is executed and
in the second call, that is, after assigning the address of the derived class to pointer p, dis-
plays() function of the derived class is executed.

15.6 Write a program to use pointer for both base and derived class and call the member
function. Use virtual keyword.

VIRTUAL FUNCTIONS

#include<iostream.h>
#include<conio.h>
class super
{
 public:
 virtual void display() {cout<<“\n In function display() class
super”;}
 virtual void show() {cout<<“\n In function show() class su-
per”;}
}
;
class sub : public super
{
 public:
 void display() {cout<<“\nIn function display() class sub”;}
 void show() {cout<<“\n In function show() class sub”;}
};
int main()
{

Array of Pointers 615

 clrscr();
 super S;
 sub A;
 super *point;
 cout<<“\n Pointer point points to class super\n”;
 point=&S;
 point->display();
 point->show();
 cout<<“\n\n Now Pointer point points to derived class sub\n”;
 point=&A;
 point->display();
 point->show();
 return 0;
}

OUTPUT

Pointer point points to class super
In function display() class super
In function show() class super
Now Pointer point points to derived class sub
In function display() class sub
In function show() class sub

Explanation: In the above program, the base class super and the derived class
sub have member functions a similar name. They are display() and show(). In function
main(), the variable S is an object of class super, and the variable A is an object of derived
class sub. The pointer variable point is a pointer to the base class. The address of object S
is assigned to the pointer S. The pointer calls both the member functions. Similarly, the variable
A is an object of the derived class sub. The address of A is assigned to the pointer point and
again, the pointer calls the member functions.

The member functions of the base class are preceded by the keyword virtual. If the vir-
tual keyword is removed, in both the function calls, the member functions of the base class are
executed. The member functions for the derived class are not executed, though the pointer has the
address of the derived class. If the virtual keyword is not removed, firstly, the member func-
tion of the base class is executed, and then member function of derived class.

15.6 ARRAY OF POINTERS

Polymorphism refers to late or dynamic binding; that is, the selection of an entity is decided at
run time. In class hierarchy, methods with similar names can be defined, which perform different
tasks, and then, the selection of the appropriate method is done using dynamic binding. Dynamic
binding is associated with object pointers. Thus, addresses of different objects can be stored in an
array to invoke functions dynamically. The following program explains this concept:

616 Binding, Polymorphisms, and Virtual Functions

15.7 Write a program to create array of pointers. Invoke functions using array objects.

#include<iostream.h>
#include<constream.h>

class A
{
 public:
 virtual void show()
 {
 cout<<“A\n”;
 }
};
class B : public A
{
 public:
 void show() {cout<<“B\n”;}
};
class C : public A
{
 public:
 void show()
 {cout<<“C\n”;
 }
};
class D : public A
{
 public:
 void show()
 {
 cout<<“D\n”;
 }
};
class E : public A
{
 public:
 void show()
 {
 cout<<“E”;
 }
};
void main()
{
 clrscr();
 A a;

 B b;
 C c;
 D d;
 E e;
 A *pa[]={&a,&b,&c,&d,&e};
 for (int j=0;j<5;j++)
 pa[j]->show();
}

OUTPUT

A
B
C
D
E

Explanation: In the above program, class A is a base class. The classes B, C, D, and E
are classes derived from class A. All these classes have a similar function show(). In function
main(), a, b, c, d, and e are objects of classes A, B, C, D, and E, respectively. The
function show() of the base class is declared virtual. An array of pointer *pa is declared, and
it is initialized with addresses of the base and derived class objects; that is, a, b, c, d, and e.
Using for loop and array, each object invokes function show(). The output is as shown above.
If the base class function show() is non-virtual, then the very time function show() of base
class is executed. Figure 15.4 illustrates this concept more clearly.

pa[1]->show();
class A

show()

void show()
{
--------;
--------;
}

void show()
{
--------;
--------;
}

void show()
{
--------;
--------;
}

void show()
{
--------;
--------;
}

void show()
{
--------;
--------;
}

class B class Eclass C class D

show() show() show() show()

Base class

Derived
classes

pa[0]->show();

pa[2]->show();

pa[3]->show();

pa[4]->show();

 Fig. 15.4 Early and late binding of functions

Array of Pointers 617

618 Binding, Polymorphisms, and Virtual Functions

15.7 PURE VIRTUAL FUNCTIONS

In practical applications, the member function of the base class is rarely used for doing any op-
eration; such functions are called do-nothing functions, dummy functions, or pure
virtual functions. The do-nothing functions or pure functions are always virtual functions.
Usually, pure virtual functions are defined with a null body. This is so, because derived classes
should be able to override them. Any normal function cannot be declared as a pure function. After
the declaration of a pure function in a class, the class becomes an abstract class. It cannot be used
to declare any object. Any attempt to declare an object will result in the error “cannot create
instance of abstract class.” The pure function can be declared as follows:

Declaration of pure virtual function

virtual void display() =0; // pure function

In the above declaration of the function, the display() is a pure virtual function. The assign-
ment operator is not used to assign zero to this function. It is used just to instruct the compiler that
the function is a pure virtual function and that it will not have a definition.

A pure virtual function declared in the base class cannot be used for any operation. The class
containing the pure virtual function cannot be used to declare objects. Such classes are known as
abstract classes or pure abstract classes. Anyone who attempts to declare an ob-
ject from the abstract class would be reported an error message by the compiler. In addition, the
compiler will display the name of the virtual function present in the base class. The classes de-
rived from the pure abstract classes are required to re-declare the pure virtual function. All other
derived classes without pure virtual functions are called concrete classes. The concrete
classes can be used to create objects. A pure virtual function is similar to an unfilled container
that the derived class is made to fill.

15.8 Write a program to declare pure virtual functions.

#include<iostream.h>
#include<conio.h>

class first
{
 protected:
 int b;
 public:
 first() {b=10;}
 virtual void display() =0; // pure function
};
class second: public first
{
 int d;
 public:
 second() {d=20;}

Abstract Classes 619

 void display() {cout<<“\n b=”<<b <<“ d=”<<d;}
};
int main()
{
 clrscr();
 first *p;
 // p->display // abnormal program termination
 second s;
 p=&s;
 p->display();
 return 0;
}

OUTPUT

b= 10 d = 20

Explanation: In the above program, the display() function of the base class is declared a
pure function. The pointer object *p holds the address of the object of the derived class and in-
vokes the function display() of the derived class. Here, the function display() of the base
class does nothing. If we try to invoke the pure function using the statement p-> display() as
per the given remarks in the above program (//p->display//abnormalprogram ter-
mination), the program is terminated with the error “abnormal program termination.”

15.8 ABSTRACT CLASSES

Abstract classes are similar to a skeleton on which new classes are designed to assemble a well-
designed class hierarchy. The set of well-tested abstract classes can be used, and the programmer
only extends them. Abstract classes containing virtual functions can be used to help in program
debugging. When various programmers work on the same project, it is necessary to create a com-
mon abstract base class for them. The programmers are restricted to create a new base class.

The development of such software can be demonstrated by creating a header file. The file
abstract.h is an example of a file containing an abstract base class that is used for debugging
purpose. Contents of the file abstract.h are as follows:

Contents of abstract.h header file

#include<iostream.h>

struct debug
{
 virtual void show()
 {
 cout<<“\n No function show() defined for this class”;
 }
};

620 Binding, Polymorphisms, and Virtual Functions

15.9 Write program to use abstract class for program debugging.

#include“abstract.h”
#include<constream.h>

class A : public debug
{
 int a;
 public:

 A(int j=0) {a=j;
}
void show() {cout<<“\nIn class A a=”<<a;}
};
class B : public debug
{
 int b;
 public:
 B (int k) {b=k;}
};
void main()
{
 clrscr();
 A a(1);
 B b(5);
 a.show();
 b.show();
}

OUTPUT

In class A a=1
No function show() defined for this class

Explanation: Observe the contents of file abstract.h. The struct debug contains the virtual func-
tion show(). This function is declared in the file abstract.h and the same is inserted using
#include directive in the above program. The classes A and B are derived from class debug,
which is defined in the header file abstract.h. In function, a and b are the objects of classes A and
B, respectively. The statement a.show(); invokes the function show(), and the value of a is
displayed. The object b also invokes the function show(). However, the class B does not have
the function show(). Hence, the function show() of an abstract base class is executed, which
displays a warning message.

Traditional languages do not provide such facilities. An abstract class develops into a domi-
nant and powerful interface when the software system undergoes various changes. It is essential

Working of Virtual Functions 621

to confirm that the debugging interface is accurately constructed. If changes are made in the
actual project, it is compulsory to add appropriate methods to the abstract base class. In case the
programmer needs to define a function warn() to the class debug, then the header file can be
updated. The contents of the file would be as follows:

Contents of abstract.h header file

#include<iostream.h>
struct debug
{
 virtual void show()
 {
 cout<<“\n No function show() defined for this
class”;
 }
};
virtual void warn()
{
 cout<<“\n No function warn() defined for this
class”;
}
};

While defining such an abstract class, the following points should be kept in mind:

(1) Do not declare an object of abstract class type.
(2) An abstract class can be used as a base class.
(3) The derived class should not have pure virtual functions. Objects of the derived class

can be declared.

15.9 WORKING OF VIRTUAL FUNCTIONS

Before learning about the mechanism of virtual functions, let us revise a few points related to
virtual functions:

(1) Binding means a link between a function call and the real function that is executed
when the function is called.

(2) When a compiler knows which function to call before execution, it is known as early
binding.

(3) Dynamic binding means the actual function invoked at run time is dependent on
the address stored in the pointer. In this binding, a link between function call and actual
function is made during program execution.

(4) The keyword virtual prevents the compiler from performing early binding. Binding
is postponed until program execution.

622 Binding, Polymorphisms, and Virtual Functions

The following programs illustrate the step-by-step working of virtual functions:

15.10 Write a program to define virtual and non-virtual functions and determine the size
of the objects.

#include<iostream.h>
#include<conio.h>

class A
{
 private:
 int j;
 public:
 virtual void show() {cout<<endl<<“In A class”;}
};
class B
{
 private:
 int j;
 public:
 void show() {cout<<endl<<“in B class”;}
};
class C
{
 public:
 void show() {cout<<endl<<“In C class”;}
};
void main()
{
 clrscr();
 A x;
 B y;
 C z;
 cout<<endl<<“Size of x=”<<sizeof (x);
 cout<<endl<<“Size of y=”<<sizeof (y);
 cout<<endl<<“Size of z=”<<sizeof (z);
}

OUTPUT

Size of x = 4
Size of y = 2
Size of z = 1

Explanation: In the above program, the class A has only one data element of integer type, but
the size of the object displayed is 4. The size of the object of class B that contains a one-integer
data element is two, and finally, the size of the object of class C is displayed as one, even if
the class C has no data element.

The function show() of class A is prefixed by the virtual keyword. Without the
virtual keyword, the size of objects would be 2,2 and 1. The size of object x with a virtual
function in class A is the addition of data member int (2 bytes) and void pointers (2 bytes).
When a function is declared as virtual, the compiler inserts a void pointer. In class C, even if it
has no object, the size of the object displayed is 1, and this is due to the compiler, who assumes
the size of object z not to be zero, as every object should have an individual address. Hence, mini-
mum size one is considered. The minimum nonzero positive integer is one.

To perform late binding, the compiler establishes VTABLE (virtual table) for every class
and its derived classes having a virtual function. The VTABLE contains addresses of the virtual
functions. The compiler puts the address of the virtual functions in the VTABLE. If no function
is redefined in the derived class that is defined as virtual in the base class, the compiler takes
the address of the base class function.

When an object of the base or derived class is created, a void pointer is inserted in the
VTABLE, called VPTR (vpointer). The VPTR points to the VTABLE. When a virtual function is
invoked, using the base class pointer, the compiler speedily puts a code to obtain the VPTR and
searches for the address of the function in the VTABLE. In this way, an appropriate function is
invoked, and dynamic binding takes place.

The VPTR should be initialized with the beginning address of the apposite VTABLE. When
the VPTR is initialized with the apposite VTABLE, the type of the object can be determined by
itself. However, it is useless if is applied at the point when a virtual function is invoked.

Assume a base class pointer object points to the object of a derived class. If a function is
invoked using the base class pointer, the compiler uses a different code to accomplish the func-
tion call. The compiler begins from the base class pointer. The base class pointer holds the ad-
dress of the derived class object. With the aid of this address, the VPTR of the derived class is
obtained. Via VPTR, the VTABLE of the derived class is obtained. In the VTABLE, the address
of the function being invoked is acquired and the function is called. All the above processes are
handled by the compiler, and the user need not worry about them. The following program makes
the concept clearer:

15.11 Write a program to define virtual member functions in derived classes.

#include<iostream.h>
#include<conio.h>

class shop
{
 public:
 virtual void area() {cout<<endl<<“In area of shop”;}
 virtual void rent() {cout<<endl<<“In rent of shop”;}

Working of Virtual Functions 623

624 Binding, Polymorphisms, and Virtual Functions

 void period() {cout<<endl<<“In period of shop”;}
};
class shopA : public shop
{
 public:
 void area() {cout<<endl<<“In area of shopA”;}
 void rent() {cout<<endl<<“In rent of shopA”;}
};
class shopB : public shop
{
 public:
 void area() {cout<<endl<<“In area of shopB”;}
 void rent() {cout<<endl<<“In rent of shopB”;}
 void period() {cout<<endl<<“In period of shopB”;}
};
class shopC: public shop
{
 void area() {cout<<endl<<“In area of shopC”;}
};
void main()
{
 clrscr();
 shop *p;
 shop s;
 p=&s;
 p->area();
 p->rent();
 p->period();
 shop *sa,*sb,*sc;
 shopA a;
 shopB b;
 shopC c;
 sa=&a;
 sb=&b;
 sc=&c;
 sa->area();
 sa->rent();
 sb->area();
 sb->rent();
 sc->area();
 sc->rent();
 sa->period();

 e.area();
 sb->period();
 shop d;
 d.area();
 shopA e;
 shopC f;
 f.rent();
}

OUTPUT

In area of shop
In rent of shop
In period of shop
In area of shopA
In rent of shopA
In area of shopB
In rent of shopB
In area of shopC
In rent of shop
In period of shop
In period of shop
In area of shop
In area of shopA
In rent of shop

Explanation: In the above program, four classes are declared, as shown in Figure 15.5.

class shop

virtual void area()
virtual void rent()
void period()

class shop A

void area()
void rent()

class shop B

void area()
void rent()
void period()

class shop C

void area()

 Fig. 15.5 Base and derived classes

Working of Virtual Functions 625

626 Binding, Polymorphisms, and Virtual Functions

p VPTR
&shop:: area
&shop:: rent

Object s

Class shop

sa VPTR
&shopA:: area
&shopA:: rent

Object a

Class shopA

sb VPTR
&shopB:: area
&shopB:: rent

Object b

Class shopB

sc VPTR
&shopC:: area
&shopC:: rent

Object c

Class shopC

Pointers Objects VTABLEs

 Fig. 15.6 VPTR AND VTABLES

As discussed earlier, a VTABLE is formed for each class having a virtual function and for the de-
rived class of the same class. The VTABLE is formed for the following classes: shop, shopA, shopB,
and shopC. All of the above four VTABLES hold the address of virtual functions. In addition, the
compiler would place a VPTR that points to the particular VTABLE, as shown in Figure 15.6.

The class shopC is without functions rent(). Therefore, the VTABLE holds the ad-
dress of the base class rent() function. Consider the following statements:

shop *p; // Base class object pointer
shop s; // object of base class
p = &s; // Address of s is assigned to p

The pointer p contains the address of the object s. Now, consider the following statements:

p->area(); // Invokes function area() of base class
p->rent(); // Invokes function rent() of base class
p->period(); // Invokes function period() of base class

From the above functions, first two function area() and rent() are virtual, and period()
is a non-virtual function. Though the address of the base class object or derived class object is
stored in the base class pointer, the function of the base class is invoked, because the period()
is a non-virtual function. The member function area() is declared as virtual in the base class.
All the three derived classes shopA, shopB, and shopC contain the function area(). The execu-

Virtual Functions in Derived Classes 627

tion of these functions depends on the address stored in the base class pointer. For example, p
contains the address of object a; the functions of class shopA are invoked. Similarly, for storing
addresses of objects b and c, functions of classB and classC can be invoked.

p = &s; // Address of s is assigned to p

In the above statement, p contains the address of the object s (base class). Therefore, when the
function area() is invoked by the pointer p, VPTR is created from the object s. With the help of
VPTR, VTABLE of the class shop is obtained, and the address of the function area() for class
shop is accessed. With the aid of an address, shop::area() is finally invoked. Consider the fol-
lowing statements:

shop *sa; // object pointer declaration
shopA a; // object of derived class
sa = &a; // assigns address of derived class object to base class pointer
sa->area(); // invokes function area()
sa->rent(); // invokes function rent()

In the statement sa = &a; the address of the derived class object is stored in the base class
pointer. When the function area() is invoked, the VPTR of object a is used to obtain the
VTABLE of class shopA. From this VTABLE, the address of shopA :: area() and shopA
:: rent are obtained and finally invoked. Likewise, for objects b and c, binding is achieved.

Consider the following statements:

sa->period();
sb->period();

Function period() is a non-virtual function. The VTABLE is not used to call the function
shop :: period(). In addition, the function period() is not redefined in the derived class-
es. Now, concentrate on the following statements:

shop d; // Base class object
d.area();
shopA e; // Derived class object
e.area();
shopC f; // Derived class object
f..rent();

In the above statements, dynamic binding is not performed, and, hence, VPTR and VTABLE are
not created. The functions are called as usual.

C++ places addresses of the virtual member function in the virtual table. When these mem-
ber functions are called, the accurate address is obtained from the virtual table. This entire proce-
dure takes time. Therefore, the virtual function makes program execution a bit slow. Conversely,
it provides better flexibility.

15.10 VIRTUAL FUNCTIONS IN DERIVED CLASSES

We know that when functions are declared virtual in the base class, it is mandatory to redefine
virtual functions in the derived class. The compiler creates VTABLES for the derived class and
stores addresses of functions in it. In case the virtual function is not redefined in the derived class,
the VTABLE of the derived class contains the address of the base class virtual function. Thus, the

628 Binding, Polymorphisms, and Virtual Functions

VTABLE contains addresses of all functions. Thus, it is not possible for a function to exist but for
its address to not be present in the VTABLE. Consider the following program, which shows the
possibility of a function existing but an address not being located in the VTABLE:

15.12 Write a program to redefine a virtual base class function in the derived class. Also,
add a new member in the derived class. Observe the VTABLE.

#include<iostream.h>
#include<conio.h>

class A
{
 public:
 virtual void joy()
 {
 cout<<endl<<“In joy of class A”;
 }
};
class B: public A
{
 public:
 void joy() {cout<<endl<<“In joy of class B”;}
 void virtual joy2()
 {
 cout<<endl<<“In joy2 of class B”;
 }
};
void main()
{
 clrscr();
 A *a1,*a2;
 A a3;
 B b;
 a1=&a3;
 a2=&b;
 a1->joy();
 a2->joy();
 // a2->joy2(); // joy2 is not member of class A
}

OUTPUT

In joy of class A
In joy of class B

Object Slicing 629

Explanation: In the above program, the base class A con-
tains one virtual function joy(). In the derived class B,
the function joy() is redefined and defines a new virtual
function joy2(). Figure 15.7 shows VTABLES created
for the base and derived class.

a2->joy2();

The above statement will generate an error message. In the
above statement, the pointer a2 is treated as only a point-
er to the base class object. The function joy2() is not
a member of base class A. Hence, it is not allowed to invoke the function joy2() using the
pointer object a2. However, an address of the derived class is assigned to the base class pointer,
and the compiler has no way to determine that we are working with a derived class object. The
compiler avoids calling virtual functions present only in derived classes. In a hierarchical class
organization of various levels, if it is essential to invoke a function at any level by using a base
class pointer, then the function should be declared virtual in the base class.

15.11 OBJECT SLICING

Virtual functions permit us to manipulate both base and derived objects using similar member
functions with no modifications. Virtual functions can be invoked using a pointer or reference. If
we do so, object slicing takes place. The following program takes you to the real thing:

15.13 Write a program to declare reference to object and invoke functions.

#include<constream.h>
#include<iostream.h>

class B
{
 int j;
 public:
 B (int jj) {j=jj;}
 virtual void joy()
 {
 cout<<“\n In class B”;
 cout<<endl<<“ j=”<<j;
 }
};
class D : public B
{
 int k;
 public:
 D (int jj, int kk) : B (jj)

Base class
VTABLE

Derived class
VTABLE

&A::joy() &B::joy()
&B::joy1()

 Fig. 15.7 VTABLES for base
and derived class

630 Binding, Polymorphisms, and Virtual Functions

 {k=kk;}
 void joy()
 {
 B::joy();
 cout<<“\n In class D”;
 cout<<endl<<“ k=”<<k;
 }
};
void main()
{
 clrscr();
 B b(3);
 D d (4,5);
 B &r=d;
 cout<<“\n Using Object”;
 d.joy();
 cout<<“\n Using Reference”;
 r.joy();
}

OUTPUT

 Using Object
 In class B
 j= 4
 In class D
 k= 5
 Using Reference
 In class B
 j= 4
 In class D
 k= 5

Explanation: In the above program, a reference object r is created to an object d using the state-
ment B &r = d;. The member function joy() is invoked using r and d objects. The output is
similar.

15.14 Write a program to demonstrate object slicing.

#include<iostream.h>
#include<constream.h>

class A
{
 public:
 int a;

Constructors and Virtual Functions 631

 A() {a=10;}
};
class B: public A
{
 public:
 int b;
 B() {a=40; b=30;}
};
void main()
{
 clrscr();
 A x;
 B y;
 cout<<“ a=”<<x.a <<“”;
 x=y;
 cout<<“ Now a=”<<x.a;
}

OUTPUT

a=10 now a=40

Explanation: In the above program, class A has only one data member a and derived class B has
one member b. In function main(), objects x and y of classes A and B are declared. The object
x has only one member, that is, a and the object y has two members a and b. The statement x = y,
that is, the derived class object, is assigned to the base class object. In such an assignment, only
base, class part of the derived object is assigned to the base class object. Thus, if an object of a
derived class is assigned to a base class object, the compiler allows it. However, it copies only the
base class members of the object, and this process is known as object slicing.

15.12 CONSTRUCTORS AND VIRTUAL FUNCTIONS

It is possible to invoke a virtual function using a constructor. A constructor makes the virtual
mechanism illegal. When a virtual function is invoked through a constructor, the base class vir-
tual function will not be called; instead, the member function of a similar class is invoked.

15.15 Write a program to call virtual function through constructor.

#include<iostream.h>
#include<constream.h>

class B
{
 int k;
 public:
 B (int l) {k=l;}

632 Binding, Polymorphisms, and Virtual Functions

 virtual void show() {cout<<endl<<“ k=”<<k;}
};
class D: public B
{
 int h;
 public:
 D (int m, int n) : B (m)
 {
 h=n;
 B *b;
 b=this;
 b->show();
 }
 void show()
 {
 cout<<endl<<“ h=”<<h;
 }
};
void main()
{
 clrscr();
 B b(4);
 D d(5,2);
}

OUTPUT

h=2

Explanation: In the above program, the base class B contains a virtual function. In the derived
class D, a similar function is redefined. Both the base and derived classes contain a constructor.
In the derived class constructor, the base class pointer *b is declared. We know that this pointer
contains the address of the object calling the member function. Here, the this pointer holds the
address of the object d. The pointer object b invokes the function show(). The derived class
show() function is invoked.

Here, the object d is not fully constructed; then, how does it invoke the member function of
a similar class? This is possible, because a virtual function call reaches ahead into inheritance.

15.13 VIRTUAL DESTRUCTORS

We have learned how to declare virtual functions. Likewise, destructors can be declared as vir-
tual. The constructor cannot be virtual, as it requires information about the accurate type of the
object in order to construct it properly. The virtual destructors are implemented in a similar man-
ner to virtual functions. In constructors and destructors, pecking order (hierarchy) of base and

Virtual Destructors 633

derived classes is constructed. Destructors of derived and base classes are called when a derived
class object addressed by the base class pointer is deleted.

For example, a derived class object is constructed using a new operator. The base class
pointer object holds the address of the derived object. When the base class pointer is destructed
using the delete operator, the destructor of the base and derived class is executed. The following
program explains this:

15.16 Write a program to define virtual destructors.

#include<iostream.h>
#include<conio.h>

class B
{
 public:
 B() {cout<<endl<<“In constructor of class B”;}
 virtual ~B() {cout<<endl<<“In destructor of class B”;}
};
class D: public B
{
 public:
 D() {cout<<endl<<“In constructor of class D”;}
 ~ D() {cout<<endl<<“In destructor of class D”;}
};
void main()
{
 clrscr();
 B *p;
 p= new D;
 delete p;
}

OUTPUT

In constructor of class B
In constructor of class D
In destructor of class D
In destructor of class B

Explanation: In the above program, the destructor of the base class B is declared as virtual. A
dynamic object is created, and the address of the nameless object that is created is assigned to
pointer p. The new operator allocates the memory required for data members. When the object
goes out of scope, it should be deleted, and the same should be performed by the statement delete
p;. When the derived class object is pointed by the base class pointer object, in order to invoke
the base class destructor, virtual destructors are useful.

634 Binding, Polymorphisms, and Virtual Functions

15.14 DESTRUCTORS AND VIRTUAL FUNCTIONS

When a virtual function is invoked through a non-virtual member function, late binding is per-
formed. When a virtual function is called through the destructor, the redefined function of a
similar class is invoked. Consider the following program:

15.17 Write a program to call virtual function using destructors.

#include<iostream.h>
#include<conio.h>
class B
{
 public:
 ~ B() {cout<<endl<<“ in virtual destructor”;}
 virtual void joy() {cout<<endl<<“In joy of class B”;}
};
class D : public B
{
 public :
 ~ D()
 {
 B *p;
 p=this;
 p->joy();
 }
 void joy() {cout<<endl<<“ in joy() of class D”;}
};
void main()
{
 clrscr();
 D X;
}

OUTPUT

in joy() of class D
in virtual destructor

Explanation: In the above program, the destructor of the derived class function joy() is invoked.
The member function joy() of the derived class is invoked followed by the virtual destructor.

(1) The word poly means many, and mor-
phism means several forms. Both the
words are derived from Greek language.
Thus, by combining these two words,
a new whole word called polymor-
phism is created, which means vari-
ous forms.

(2) The information pertaining to various over-
loaded member functions is to be given to
the compiler while compiling. This is called
early binding or static bind-
ing. The deciding function call at run time
is called run time or late or dynamic
binding. Dynamic binding permits to
suspend the decision of choosing a suitable
member function until run time.

(3) Pointers to the object of a base class are
type compatible with pointers to the ob-
ject of a derived class. The reverse is not
possible.

(4) Virtual functions of the base class should
be redefined in the derived classes. The
programmer can define a virtual function
in a base class, and can then use a similar
function name in any derived class.

(5) Addresses of different objects can be
stored in an array to invoke the function
dynamically.

(6) In practical applications, the member
function of the base class is rarely used

for doing any operation; such functions
are called do-nothing functions,
dummy functions, or pure virtu-
al functions.

(7) All other derived classes without pure
virtual functions are called concrete
classes.

(8) Abstract classes are similar to a skeleton
on which new classes are designed to as-
semble a well-designed class hierarchy.
They are not used for object declaration.

(9) Virtual functions can be invoked using a
pointer or a reference.

(10) If an object of a derived class is assigned
to a base class object, the compiler allows
it. However, it copies only the base class
members of the object, and this process is
known as object slicing.

(11) It is possible to invoke a virtual func-
tion using a constructor. The constructor
makes the virtual mechanism illegal.

(12) We have learned how to declare virtual
functions. Likewise, destructors can be
declared as virtual. The constructor can-
not be virtual. The virtual destructors are
implemented in a similar manner to vir-
tual functions. Destructors of derived and
base classes are called when a derived
class object addressed by the base class
pointer is deleted.

(1) What is polymorphism?
(2) Explain compile-time and run-time binding.
(3) Explain the use of a virtual keyword.
(4) What are pure functions? How are they

declared?
(5) Is it possible to declare an object of the

class that contains a pure function?

(6) What is the difference between a virtual
function and virtual classes?

(7) What are virtual destructors?
(8) How does a C++ compiler accomplish

dynamic binding?
(9) Where do we use virtual functions? Give

their applications.

SUMMARY

EXERCISES

(A) Answer the following questions

Exercises 635

636 Binding, Polymorphisms, and Virtual Functions

(1) Write a program to declare a function
show() in base and derived classes. Dis-
play a message through the function to
know the name of the class whose member
function is executed. Use the late binding
concept using the virtual keyword.

(2) Write a program to define classes A, B,
and C. The class C is derived from classes
A and B. Define count() member func-

tion in all the classes as virtual. Count the
number of objects created.

(3) Write a program to declare a matrix class,
which has a data-member integer array as
3 × 3. Derive class matrix A from class
matrix B and matrix B from matrix A.
All these classes should have a function
show() to display the contents. Read and
display the elements of all three matrices.

(10) What is early binding and late binding?
(11) Explain object slicing.
(12) Explain virtual destructors.
(13) What are abstract classes? How can they

be used for a debugging program?
(14) What are VPTR and VTABLE? Explain

in detail.
(15) Describe the rules for declaring virtual

functions.
(16) What is the difference between a base

class pointer and a derived class pointer?

(1) Consider the statement virtual void
display()=0. The display()
function is
(a) pure virtual function
(b) pure member function
(c) normal function
(d) all of the above

(2) The do-nothing function is nothing but
(a) pure virtual function
(b) pure member function
(c) both (a) and (b)
(d) none of the above

(3) Static binding is done
(a) at the time of compilation of the

program
(b) at run time
(c) both (a) and (b)
(d) none of the above

(4) Dynamic binding is done using the key-
word
(a) virtual
(b) inline
(c) static
(d) void

(5) The virtual keyword solves the
(a) ambiguity in the base and derived

class
(b) ambiguity in derived classes
(c) ambiguity in base classes

(d) none of the above
(6) B is a base class object, and D is a de-

rived class object. The statement B = D
(a) copies all elements of object D to

object B
(b) copies only the base portion of ob-

ject D to B
(c) copies only the derived portion of

object D to B
(d) none of the above

(7) When a base class is not used for objects,
the declaration is called
(a) abstract class
(b) container class
(c) concrete class
(d) derived class

(8) The derived class without a pure virtual
function is called
(a) concrete class
(b) abstract class
(c) container class
(d) derived class

(9) A pointer to base class object can hold
addresses of
(a) only derived class objects
(b) only base class objects
(c) addresses of a base class object and

its derived class object
(d) none of the above

(B) Answer the following by selecting the appropriate option

(C) Attempt the following programs

(4) Write a program to declare the reference
object. Invoke the member function of the
class using the reference object.

(5) Write a program to demonstrate object
slicing.

(6) Write a program to demonstrate the use of
an abstract class.

(7) Write a program to redefine a virtual base
class function in the derived class. In ad-
dition, add a new member in the derived

class. Observe the VTABLE.
(8) Write a program to define virtual, non-

virtual functions and determine the size
of the objects.

(9) Write a program to invoke the member
function of the base and derived class us-
ing the pointer of the base class.

(10) Write a program to access the members
of the base and derived class using the
pointer objects of both classes.

(D) Find the bugs in the following programs
(1)

class B {virtual void
display()=0;};
void main() {B d;}

(2)

class B
{
public:
virtual void display()
{
cout<<“\n no function display
defined in this class.”;
}
};
struct D : B {};
void main()
{
D d;
d.display();
}

(3)

class B
{
 int a,b,c;
 public:
 B() {a=10, b=20,c=40;}
};
class D : public B {};
void main()
{
 B b;
 D d;
 d=b;
}

(4)

class B {};
class D : public B
{
 int i,j,k;
 public:
 D() {i=5; j=10; k=15;}};
void main()
{
 B b;
 D d;
 b=d;
 cout<<b.i;
}

(5)

class B
{public:
 B() {cout<<endl<<“In con-
structor of class B”;}
 virtual ~B() =0;
};
class D : public B
{
 public:
 D() {cout<<endl <<“In con-
structor of class D”;}
 ~D() {cout<<endl<<“In de-
structor of class D”;}
};
void main()
{
 B *p;
 p=new D;
 delete p;
}

Exercises 637

	Brief Contents
	Contents
	Preface
	About the Author
	Chapter 1 : Introduction to C++
	1.1 Differences between C and C++
	1.2 Evolution of C++
	1.3 The ANSI Standard
	1.4 The Object Oriented Technology
	1.5 Disadvantage of Conventional Programming
	1.6 Programming Paradigms
	(1) Monolithic Programming
	(2) Procedural/Structured Programming

	1.7 Preface to Object Oriented Programming
	1.8 Key Concepts of Object Oriented Programming
	(1) Objects
	(2) Classes
	(3) Method
	(4) Data Abstraction
	(5) Encapsulation
	(6) Inheritance
	(7) Polymorphism
	(8) Dynamic Binding
	(9) Message passing
	(10) Reusability
	(11) Delegation
	(12) Genericity

	1.9 Advantages of OOP
	1.10 Object Oriented Languages
	SMALTALK
	CHARM++
	JAVA

	1.11 Usage of OOP

