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One of a Swiss family producing eight distinguished scientists, Jakob (Jacques)
Bernoulli (1654–1705) was forced by his father to pursue theological studies, but his
love of mathematics eventually led him to a university career. He and his brother,
Johann, were the most prominent champions of Leibniz’s calculus on continental
Europe, the two using the new theory to solve numerous problems in physics and
mathematics. Bernoulli’s main work in probability, Ars Conjectandi, was published
after his death by his nephew, Nikolaus, in 1713.

3.1 INTRODUCTION
Throughout Chapter 2, probabilities were assigned to events—that is, to sets of sam-
ple outcomes. The events we dealt with were composed of either a finite or a count-
ably infinite number of sample outcomes, in which case the event’s probability was
simply the sum of the probabilities assigned to its outcomes. One particular proba-
bility function that came up over and over again in Chapter 2 was the assignment of
1
n as the probability associated with each of the n points in a finite sample space. This
is the model that typically describes games of chance (and all of our combinatorial
probability problems in Chapter 2).

The first objective of this chapter is to look at several other useful ways for as-
signing probabilities to sample outcomes. In so doing, we confront the desirability
of “redefining” sample spaces using functions known as random variables. How and
why these are used—and what their mathematical properties are—become the focus
of virtually everything covered in Chapter 3.

As a case in point, suppose a medical researcher is testing eight elderly adults
for their allergic reaction (yes or no) to a new drug for controlling blood pressure.
One of the 28 = 256 possible sample points would be the sequence (yes, no, no, yes,
no, no, yes, no), signifying that the first subject had an allergic reaction, the second
did not, the third did not, and so on. Typically, in studies of this sort, the particular
subjects experiencing reactions is of little interest: what does matter is the number
who show a reaction. If that were true here, the outcome’s relevant information (i.e.,
the number of allergic reactions) could be summarized by the number 3.1

Suppose X denotes the number of allergic reactions among a set of eight adults.
Then X is said to be a random variable and the number 3 is the value of the random
variable for the outcome (yes, no, no, yes, no, no, yes, no).

1 By Theorem 2.6.2, of course, there would be a total of fifty-six (= 8!/3!5!) outcomes having exactly three yeses.
All fifty-six would be equivalent in terms of what they imply about the drug’s likelihood of causing allergic
reactions.
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Section 3.2 Binomial and Hypergeometric Probabilities 103

In general, random variables are functions that associate numbers with some at-
tribute of a sample outcome that is deemed to be especially important. If X denotes
the random variable and s denotes a sample outcome, then X (s) = t, where t is a
real number. For the allergy example, s = (yes, no, no, yes, no, no, yes, no) and t = 3.

Random variables can often create a dramatically simpler sample space. That
certainly is the case here—the original sample space has 256 (= 28) outcomes, each
being an ordered sequence of length eight. The random variable X , on the other
hand, has only nine possible values, the integers from 0 to 8, inclusive.

In terms of their fundamental structure, all random variables fall into one of two
broad categories, the distinction resting on the number of possible values the random
variable can equal. If the latter is finite or countably infinite (which would be the case
with the allergic reaction example), the random variable is said to be discrete; if the
outcomes can be any real number in a given interval, the number of possibilities is
uncountably infinite, and the random variable is said to be continuous. The difference
between the two is critically important, as we will learn in the next several sections.

The purpose of Chapter 3 is to introduce the important definitions, concepts,
and computational techniques associated with random variables, both discrete and
continuous. Taken together, these ideas form the bedrock of modern probability and
statistics.

3.2 Binomial and Hypergeometric Probabilities
This section looks at two specific probability scenarios that are especially important,
both for their theoretical implications as well as for their ability to describe real-world
problems. What we learn in developing these two models will help us understand random
variables in general, the formal discussion of which begins in Section 3.3.

THE BINOMIAL PROBABILITY DISTRIBUTION

Binomial probabilities apply to situations involving a series of independent and iden-
tical trials, where each trial can have only one of two possible outcomes. Imagine
three distinguishable coins being tossed, each having a probability p of coming up
heads. The set of possible outcomes are the eight listed in Table 3.2.1. If the proba-
bility of any of the coins coming up heads is p, then the probability of the sequence
(H, H, H) is p3, since the coin tosses qualify as independent trials. Similarly, the
probability of (T, H, H) is (1 − p)p2. The fourth column of Table 3.2.1 shows the
probabilities associated with each of the three-coin sequences.

Table 3.2.1

1st Coin 2nd Coin 3rd Coin Probability Number of Heads

H H H p3 3
H H T p2(1 − p) 2
H T H p2(1 − p) 2
T H H p2(1 − p) 2
H T T p(1 − p)2 1
T H T p(1 − p)2 1
T T H p(1 − p)2 1
T T T (1 − p)3 0

Suppose our main interest in the coin tosses is the number of heads that oc-
cur. Whether the actual sequence is, say, (H, H, T) or (H, T, H) is immaterial, since
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each outcome contains exactly two heads. The last column of Table 3.2.1 shows the
number of heads in each of the eight possible outcomes. Notice that there are three
outcomes with exactly two heads, each having an individual probability of p2(1 − p).
The probability, then, of the event “two heads” is the sum of those three individual
probabilities—that is, 3p2(1− p). Table 3.2.2 lists the probabilities of tossing k heads,
where k = 0, 1, 2, or 3.

Table 3.2.2

Number of Heads Probability

0 (1 − p)3

1 3p(1 − p)2

2 3p2(1 − p)
3 p3

Now, more generally, suppose that n coins are tossed, in which case the number
of heads can equal any integer from 0 through n. By analogy,

P(k heads) =
⎛
⎝ number of

ways to arrange k
heads and n − k tails

⎞
⎠ ·

⎛
⎜⎜⎝

probability of
any particular sequence

having k heads
and n − k tails

⎞
⎟⎟⎠

=
⎛
⎝ number of ways

to arrange k
heads and n − k tails

⎞
⎠ · pk(1 − p)n−k

The number of ways to arrange k H’s and n − k T’s, though, is n!
k!(n−k)! , or

(n
k

)
(recall

Theorem 2.6.2).

Theorem
3.2.1

Consider a series of n independent trials, each resulting in one of two possible out-
comes, “success” or “failure.” Let p = P (success occurs at any given trial) and
assume that p remains constant from trial to trial. Then

P(k successes) =
(n

k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

Comment The probability assignment given by the equation in Theorem 3.2.1 is
known as the binomial distribution.

Example
3.2.1

In communications of various kinds, a sent message may not be received correctly be-
cause the communications channel is “noisy.” In particular, a bit transmitted might be
changed with probability p. One method of coping with this problem is to send the bit
five times, then use the majority of these five received bits as the intended message.
Under this scheme, what is the probability that the message is received correctly?

The five bits received form a sequence of five Bernoulli trials with probability p
that the bit is changed (success). Then the message is received correctly if the number
of changed bits (successes) is 0, 1, or 2. The probability of this is

2∑
k=0

(
5
k

)
pk(1 − p)5−k

The following chart gives values of this sum for some choices for p.
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p Probability

0.01 0.99999
0.05 0.99884
0.10 0.99144
0.15 0.97339

Example
3.2.2

Kingwest Pharmaceuticals is experimenting with a new affordable AIDS medica-
tion, PM-17, that may have the ability to strengthen a victim’s immune system. Thirty
monkeys infected with the HIV complex have been given the drug. Researchers in-
tend to wait six weeks and then count the number of animals whose immunological
responses show a marked improvement. Any inexpensive drug capable of being ef-
fective 60% of the time would be considered a major breakthrough; medications
whose chances of success are 50% or less are not likely to have any commercial
potential.

Yet to be finalized are guidelines for interpreting results. Kingwest hopes to
avoid making either of two errors: (1) rejecting a drug that would ultimately prove
to be marketable and (2) spending additional development dollars on a drug whose
effectiveness, in the long run, would be 50% or less. As a tentative “decision rule,”
the project manager suggests that unless sixteen or more of the monkeys show im-
provement, research on PM-17 should be discontinued.

a. What are the chances that the “sixteen or more” rule will cause the company to
reject PM-17, even if the drug is 60% effective?

b. How often will the “sixteen or more” rule allow a 50%-effective drug to be per-
ceived as a major breakthrough?

a. Each of the monkeys is one of n = 30 independent trials, where the out-
come is either a “success” (Monkey’s immune system is strengthened) or
a “failure” (Monkey’s immune system is not strengthened). By assumption,
the probability that PM-17 produces an immunological improvement in any
given monkey is p = P (success) = 0.60.

By Theorem 3.2.1, the probability that exactly k monkeys (out of thirty)

will show improvement after six weeks is
(

30
k

)
(0.60)k(0.40)30−k. The proba-

bility, then, that the “sixteen or more” rule will cause a 60%-effective drug to
be discarded is the sum of “binomial” probabilities for k values ranging from
0 to 15:

P(60%-effective drug fails “sixteen or more” rule) =
15∑

k=0

(
30
k

)
(0.60)k(0.40)30−k

= 0.1754

Roughly 18% of the time, in other words, a “breakthrough” drug such as
PM-17 will produce test results so mediocre (as measured by the “sixteen
or more” rule) that the company will be misled into thinking it has no
potential.

b. The other error Kingwest can make is to conclude that PM-17 warrants fur-
ther study when, in fact, its value for p is below a marketable level. The chance
that particular incorrect inference will be drawn here is the probability that
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the number of successes will be greater than or equal to sixteen when p = 0.5.
That is,

P(50%-effective PM-17 appears to be marketable)

= P(Sixteen or more successes occur)

=
30∑

k=16

(
30
k

)
(0.5)k(0.5)30−k

= 0.43

Thus, even if PM-17’s success rate is an unacceptably low 50%, it has a 43%

chance of performing sufficiently well in thirty trials to satisfy the “sixteen or
more” criterion.

Example
3.2.3

The Stanley Cup playoff in professional hockey is a seven-game series, where the
first team to win four games is declared the champion. The series, then, can last any-
where from four to seven games (just like the World Series in baseball). Calculate
the likelihoods that the series will last four, five, six, or seven games. Assume that
(1) each game is an independent event and (2) the two teams are evenly matched.

Consider the case where Team A wins the series in six games. For that to happen,
they must win exactly three of the first five games and they must win the sixth game.
Because of the independence assumption, we can write

P(Team A wins in six games) = P(Team A wins three of first five) ·
P(Team A wins sixth)

=
[(

5
3

)
(0.5)3(0.5)2

]
· (0.5) = 0.15625

Since the probability that Team B wins the series in six games is the same (why?),

P(Series ends in six games) = P(Team A wins in six games ∪
Team B wins in six games)

= P(A wins in six) + P(B wins in six) (why?)

= 0.15625 + 0.15625

= 0.3125

A similar argument allows us to calculate the probabilties of four-, five-, and seven-
game series:

P(four-game series) = 2(0.5)4 = 0.125

P(five-game series) = 2
[(

4
3

)
(0.5)3(0.5)

]
(0.5) = 0.25

P(seven-game series) = 2
[(

6
3

)
(0.5)3(0.5)3

]
(0.5) = 0.3125

Having calculated the “theoretical” probabilities associated with the possible
lengths of a Stanley Cup playoff raises an obvious question: How do those likelihoods
compare with the actual distribution of playoff lengths? Between 1947 and 2015 there
were sixty-eight playoffs (the 2004–05 season was cancelled). Column 2 in Table 3.2.3
shows the proportion of playoffs that have lasted four, five, six, and seven games,
respectively.
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Table 3.2.3

Series Length Observed Proportion Theoretical Probability

4 17/68 = 0.250 0.125
5 16/68 = 0.235 0.250
6 21/68 = 0.309 0.3125
7 14/68 = 0.206 0.3125

Data from: http://statshockey.homestead.com/trophies/stanleycup.html

Clearly, the agreement between the entries in columns 2 and 3 is not very good:
Particularly noticeable is the excess of short playoffs (four games) and the deficit of
long playoffs (seven games). What this “lack of fit” suggests is that one or more of the
binomial distribution assumptions is not satisfied. Consider, for example, the param-
eter p, which we assumed to equal 1

2 . In reality, its value might be something quite
different—just because the teams playing for the championship won their respective
divisions, it does not necessarily follow that the two are equally good. Indeed, if the
two contending teams were frequently mismatched, the consequence would be an
increase in the number of short playoffs and a decrease in the number of long play-
offs. It may also be the case that momentum is a factor in a team’s chances of winning
a given game. If so, the independence assumption implicit in the binomial model is
rendered invalid.

Example
3.2.4

A university discovers that its colleges don’t each require a full time technical support
person. In fact, it estimates that any one of the ten colleges has only a 0.2 probability
of needing a technical support person in any given day. They decide to create a pool
of five support personnel to be called upon by the colleges. What is the probability
that a college will have to wait on someone to get free?

Assume the needs of the colleges for service are independent. Then the number
of support persons needed per day is a sequence of n Bernoulli trials, where a success
means that a college needs a technical support person. Here n = 10, and p = 0.2.
A group has to wait if the number of “successes” is strictly greater than 5. But the

probability of more than five successes is
10∑

k=6

(
10
k

)
(0.2)k(0.8)10−k = 0.006.

In a month, there are approximately two hundred college-days, so typically in
only one of those college-days per month will there be some wait time.

Such analyses can easily be modified to observe the effects of other assumptions
on n and p. (See Question 3.2.17.)

Questions

3.2.1. An investment analyst has tracked a certain blue-
chip stock for the past six months and found that on any
given day, it either goes up a point or goes down a point.
Furthermore, it went up on 25% of the days and down on
75%. What is the probability that at the close of trading
four days from now, the price of the stock will be the same
as it is today? Assume that the daily fluctuations are inde-
pendent events.

3.2.2. In a nuclear reactor, the fission process is controlled
by inserting special rods into the radioactive core to ab-
sorb neutrons and slow down the nuclear chain reaction.

When functioning properly, these rods serve as a first-
line defense against a core meltdown. Suppose a reac-
tor has ten control rods, each operating independently
and each having an 0.80 probability of being properly in-
serted in the event of an “incident.” Furthermore, suppose
that a meltdown will be prevented if at least half the rods
perform satisfactorily. What is the probability that, upon
demand, the system will fail?

3.2.3. In 2009 a donor who insisted on anonymity gave
seven-figure donations to twelve universities. A media
report of this generous but somewhat mysterious act
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identified that all of the universities awarded had fe-
male presidents. It went on to say that with about 23%
of U.S. college presidents being women, the probabil-
ity of a dozen randomly selected institutions having fe-
male presidents is about 1/50,000,000. Is this probability
approximately correct?

3.2.4. An entrepreneur owns six corporations, each with
more than $10 million in assets. The entrepreneur con-
sults the U.S. Internal Revenue Data Book and discovers
that the IRS audits 15.3% of businesses of that size. What
is the probability that two or more of these businesses
will be audited?

3.2.5. The probability is 0.10 that ball bearings in a
machine component will fail under certain adverse con-
ditions of load and temperature. If a component contain-
ing eleven ball bearings must have at least eight of them
functioning to operate under the adverse conditions, what
is the probability that it will break down?

3.2.6. Suppose that since the early 1950s some
ten-thousand independent UFO sightings have been re-
ported to civil authorities. If the probability that any
sighting is genuine is on the order of one in one hun-
dred thousand, what is the probability that at least one of
the ten-thousand was genuine?

3.2.7. Doomsday Airlines (“Come Take the Flight of
Your Life”) has two dilapidated airplanes, one with two
engines, and the other with four. Each plane will land
safely only if at least half of its engines are working. Each
engine on each aircraft operates independently and each
has probability p = 0.4 of failing. Assuming you wish to
maximize your survival probability, which plane should
you fly on?

3.2.8. Two lighting systems are being proposed for an
employee work area. One requires fifty bulbs, each hav-
ing a probability of 0.05 of burning out within a month’s
time. The second has one hundred bulbs, each with a 0.02
burnout probability. Whichever system is installed will
be inspected once a month for the purpose of replac-
ing burned-out bulbs. Which system is likely to require
less maintenance? Answer the question by comparing the
probabilities that each will require at least one bulb to
be replaced at the end of thirty days.

3.2.9. The great English diarist Samuel Pepys asked his
friend Sir Isaac Newton the following question: Is it more
likely to get at least one 6 when six dice are rolled, at least
two 6’s when twelve dice are rolled, or at least three 6’s
when eighteen dice are rolled? After considerable cor-
respondence [see (167)], Newton convinced the skeptical
Pepys that the first event is the most likely. Compute the
three probabilities.

3.2.10. The gunner on a small assault boat fires six mis-
siles at an attacking plane. Each has a 20% chance of being
on-target. If two or more of the shells find their mark, the

plane will crash. At the same time, the pilot of the plane
fires ten air-to-surface rockets, each of which has a 0.05
chance of critically disabling the boat. Would you rather
be on the plane or the boat?

3.2.11. If a family has four children, is it more likely they
will have two boys and two girls or three of one sex and
one of the other? Assume that the probability of a child
being a boy is 1

2 and that the births are independent events.

3.2.12. Experience has shown that only 1
3 of all patients

having a certain disease will recover if given the standard
treatment. A new drug is to be tested on a group of twelve
volunteers. If the FDA requires that at least seven of these
patients recover before it will license the new drug, what is
the probability that the treatment will be discredited even
if it has the potential to increase an individual’s recovery
rate to 1

2 ?

3.2.13. Transportation to school for a rural county’s
seventy-six children is provided by a fleet of four buses.
Drivers are chosen on a day-to-day basis and come from
a pool of local farmers who have agreed to be “on call.”
What is the smallest number of drivers who need to be in
the pool if the county wants to have at least a 95% proba-
bility on any given day that all the buses will run? Assume
that each driver has an 80% chance of being available if
contacted.

3.2.14. The captain of a Navy gunboat orders a volley
of twenty-five missiles to be fired at random along a
five-hundred-foot stretch of shoreline that he hopes to
establish as a beachhead. Dug into the beach is a thirty-
foot-long bunker serving as the enemy’s first line of de-
fense. The captain has reason to believe that the bunker
will be destroyed if at least three of the missiles are on-
target. What is the probability of that happening?

3.2.15. A computer has generated seven random numbers
over the interval 0 to 1. Is it more likely that (a) exactly
three will be in the interval 1

2 to 1 or (b) fewer than three
will be greater than 3

4 ?

3.2.16. Listed in the following table is the length distribu-
tion of World Series competition for the sixty-four series
from 1950 to 2014 (there was no series in 1994).

World Series Lengths

Number of Games, k Number of Years

4 13
5 11
6 14
7 26

Data from: www.baseball-almanac.com

Assuming that each World Series game is an independent
event and that the probability of either team’s winning
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any particular contest is 0.5, find the probability of each
series length. How well does the model fit the data?
(Compute the “expected” frequencies, that is, multiply
the probability of a given-length series times 64).

3.2.17. Redo Example 3.2.4 assuming n = 12 and p = 0.3.

3.2.18. Suppose a series of n independent trials can end
in one of three possible outcomes. Let k1 and k2 denote
the number of trials that result in outcomes 1 and 2, re-
spectively. Let p1 and p2 denote the probabilities associ-
ated with outcomes 1 and 2. Generalize Theorem 3.2.1 to

deduce a formula for the probability of getting k1 and k2
occurrences of outcomes 1 and 2, respectively.

3.2.19. Repair calls for central air conditioners fall into
three general categories: coolant leakage, compressor
failure, and electrical malfunction. Experience has shown
that the probabilities associated with the three are 0.5, 0.3,
and 0.2, respectively. Suppose that a dispatcher has logged
in ten service requests for tomorrow morning. Use the an-
swer to Question 3.2.18 to calculate the probability that
three of those ten will involve coolant leakage and five
will be compressor failures.

THE HYPERGEOMETRIC DISTRIBUTION

The second ‘‘special’’ distribution that we want to look at formalizes the urn problems
that frequented Chapter 2. Our solutions to those earlier problems tended to be
enumerations in which we listed the entire set of possible samples, and then counted
the ones that satisfied the event in question. The inefficiency and redundancy of that
approach should now be painfully obvious. What we are seeking here is a general
formula that can be applied to any and all such problems, much like the expression in
Theorem 3.2.1 can handle the full range of questions arising from the binomial model.

In the binomial model, if p is a rational number, then the experiment can be
cast as an urn model. Suppose that p = r/N, where r and N are positive integers
with r < N. Consider an urn with r red balls and w white balls, where r + w = N.
Draw a ball; note its color; return it to the urn; mix the urn; draw another ball. If we
continue in this way for n trials, we have a Bernoulli experiment. Then the probability
of drawing k red balls is binomial.

Now let us examine a variation of the above scheme. The urn is the same, but n
balls are drawn from the urn simultaneously. We again count the number of red balls
in the sample. The result is unordered sampling without replacement. The probabilities
associated with the number of red balls drawn are known as hypergeometric, and not
surprisingly, rely on combinations. We formalize this discussion in the following theorem.

Theorem
3.2.2

Suppose an urn contains r red chips and w white chips, where r + w = N. If n chips
are drawn out at random, without replacement, and if k denotes the number of red
chips selected, then

P(k red chips are chosen) =
( r

k

)(
w

n−k

)
(N

n

) (3.2.1)

where k varies over all the integers for which
( r

k

)
and

(
w

n−k

)
are defined. The proba-

bilities appearing on the right-hand side of Equation 3.2.1 are known as the hyper-
geometric distribution.

Proof Since this model concerns unordered selections, Theorem 2.6.3 applies.
The number of ways to select a sample of size n from N elements is

(
N
n

)
. Now,

ignoring the white balls, the number of ways to select k red balls from the r in
the urn is

( r
k

)
. Similarly, the selection of white balls can be done in

(
w

n−k

)
ways.

The number of ways to choose the red and white balls together is
(

r
k

) · ( w
n−k

)
by

the multiplication principle. Finally, the desired probability is

(
r
k

)(
w

n−k

)(
N
n

) .
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Comment A third urn model is to draw the sample in order but without replace-
ment. In this case, the probabilities are also hypergeometric (See Question 3.2.28).

Comment The name hypergeometric derives from a series introduced in 1769 by
the Swiss mathematician and physicist Leonhard Euler:

1 + ab
c

x + a(a + 1)b(b + 1)
2!c(c + 1)

x2 + a(a + 1)(a + 2)b(b + 1)(b + 2)
3!c(c + 1)(c + 2)

x3 + · · ·

This is an expansion of considerable flexibility: Given appropriate values for a, b, and
c, it reduces to many of the standard infinite series used in analysis. In particular, if
a is set equal to 1, and b and c are set equal to each other, it reduces to the familiar
geometric series,

1 + x + x2 + x3 + · · ·
hence the name hypergeometric. The relationship of the probability function in Theo-
rem 3.2.2 to Euler’s series becomes apparent if we set a = −n, b = −r, c = w − n + 1,
and multiply the series by

(
w

n

)
/
(N

n

)
. Then the coefficient of xk will be(r

k

)(
w

n−k

)
(N

n

)
the value the theorem gives for P(k red chips are chosen).

Example
3.2.5

A hung jury is one that is unable to reach a unanimous decision. Suppose that a pool
of twenty-five potential jurors is assigned to a murder case where the evidence is
so overwhelming against the defendant that twenty-three of the twenty-five would
return a guilty verdict. The other two potential jurors would vote to acquit regardless
of the facts. What is the probability that a twelve-member panel chosen at random
from the pool of twenty-five will be unable to reach a unanimous decision?

Think of the jury pool as an urn containing twenty-five chips, twenty-three of
which correspond to jurors who would vote “guilty” and two of which correspond to
jurors who would vote “not guilty.” If either or both of the jurors who would vote “not
guilty” are included in the panel of twelve, the result would be a hung jury. Applying
Theorem 3.2.2 (twice) gives 0.74 as the probability that the jury impanelled would
not reach a unanimous decision:

P(Hung jury) = P(Decision is not unanimous)

=
(

2
1

)(
23
11

)/(
25
12

)
+
(

2
2

)(
23
10

)/(
25
12

)
= 0.74

Example
3.2.6

The Florida Lottery features a number of games of chance, one of which is called
Fantasy Five. The player chooses five numbers from a card containing the numbers 1
through 36. Each day five numbers are chosen at random, and if the player matches
all five, the winnings can be as much as $200,000 for a $1 bet.

Lottery games like this one have spawned a mini-industry looking for biases in
the selection of the winning numbers. Websites post various “analyses” claiming cer-
tain numbers are “hot” and should be played. One such examination focused on the
frequency of winning numbers between 1 and 12. The probability of such occurrences
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fits the hypergeometric distribution, where r = 12, w = 24, n = 5, and N = 36. For
example, the probability that three of the five numbers are 12 or less is(

12
3

) (
24
2

)
(

36
5

) = 60,720
376,992

= 0.161

Notice how that compares to the observed proportion of drawings with exactly three
numbers between 1 and 12. Of one leap year’s daily drawings—366 of them —there were
sixty-five with three numbers 12 or less, giving a relative frequency of 65/366 = 0.178.

The full breakdown of observed and expected probabilities for winning numbers
between 1 and 12 is given in Table 3.2.4.

Table 3.2.4

No. Drawn ≤ 12 Observed Proportion Hypergeometric Probability

0 0.128 0.113
1 0.372 0.338
2 0.279 0.354
3 0.178 0.161
4 0.038 0.032
5 0.005 0.002

Data from: www.flalottery.com/exptkt/ff.html

The naive or dishonest commentator might claim that the lottery “likes” num-
bers ≤ 12 since the proportion of tickets drawn with three, four, or five numbers ≤
12 is

0.178 + 0.038 + 0.005 = 0.221

This figure is in excess of the sum of the hypergeometric probabilities for k = 3,
4, and 5:

0.161 + 0.032 + 0.002 = 0.195

However, we shall see in Chapter 10 that such variation is well within the random
fluctuations expected for truly random drawings. No bias can be inferred from these
results.

Example
3.2.7

When a bullet is fired it becomes scored with minute striations produced by imper-
fections in the gun barrel. Appearing as a series of parallel lines, these striations have
long been recognized as a basis for matching a bullet with a gun, since repeated firings
of the same weapon will produce bullets having substantially the same configuration
of markings. Until recently, deciding how close two patterns had to be before it could
be concluded the bullets came from the same weapon was largely subjective. A bal-
listics expert would simply look at the two bullets under a microscope and make
an informed judgment based on past experience. Today, however, criminologists
are beginning to address the problem more quantitatively, partly with the help of
the hypergeometric distribution.

Suppose a bullet is recovered from the scene of a crime, along with the suspect’s
gun. Under a microscope, a grid of m cells, numbered 1 to m, is superimposed over the
bullet. If m is chosen large enough that the width of the cells is sufficiently small, each
of that evidence bullet’s ne striations will fall into a different cell (see Figure 3.2.1a).
Then the suspect’s gun is fired, yielding a test bullet, which will have a total of nt

striations located in a possibly different set of cells (see Figure 3.2.1b). How might
we assess the similarities in cell locations for the two striation patterns?
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1 2 3 4 5 m

Striations (total of ne)

Evidence bullet

(a)

1 2 3 4 5 m

Striations (total of nt)

Test bullet

(b)

Figure 3.2.1

As a model for the striation pattern on the evidence bullet, imagine an urn con-
taining m chips, with ne corresponding to the striation locations. Now, think of the
striation pattern on the test bullet as representing a sample of size nt from the evi-
dence urn. By Theorem 3.2.2, the probability that k of the cell locations will be shared
by the two striation patterns is (ne

k

)(m−ne
nt−k

)
(m

nt

)
Suppose the bullet found at a murder scene is superimposed with a grid having

m = 25 cells, ne = 4 of which contain striations. The suspect’s gun is fired and the
bullet is found to have nt = 3 striations, one of which matches the location of one
of the striations on the evidence bullet. What do you think a ballistics expert would
conclude?

Intuitively, the similarity between the two bullets would be reflected in the prob-
ability that one or more striations in the suspect’s bullet match the evidence bullet.
The smaller that probability is, the stronger would be our belief that the two bullets
were fired by the same gun. Based on the values given for m, ne, and nt ,

P(one or more matches) =
(4

1

)(21
2

)
(25

3

) +
(4

2

)(21
1

)
(25

3

) +
(4

3

)(21
0

)
(25

3

)
= 0.42

If P(one or more matches) had been a very small number—say, 0.001—the infer-
ence would have been clear-cut: The same gun fired both bullets. But, here with the
probability of one or more matches being so large, we cannot rule out the possibility
that the bullets were fired by two different guns (and, presumably, by two different
people).

Example
3.2.8

A tax collector, finding himself short of funds, delayed depositing a large property
tax payment ten different times. The money was subsequently repaid, and the whole
amount deposited in the proper account. The tip-off to this behavior was the delay
of the deposit. During the period of these irregularities, there was a total of 470 tax
collections.

An auditing firm was preparing to do a routine annual audit of these transactions.
They decided to randomly sample nineteen of the collections (approximately 4%)
of the payments. The auditors would assume a pattern of malfeasance only if they
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saw three or more irregularities. What is the probability that three or more of the
delayed deposits would be chosen in this sample?

This kind of audit sampling can be considered a hypergeometric experiment.
Here, N = 470, n = 19, r = 10, and w = 460. In this case it is better to calculate the
desired probability via the complement—that is,

1 −
(

10
0

) (
460
19

)
(

470
19

) −
(

10
1

) (
460
18

)
(

470
19

) −
(

10
2

) (
460
17

)
(

470
19

)
The calculation of the first hypergeometric term is(

10
0

) (
460
19

)
(

470
19

) = 1 · 460!
19!441!

· 19!451
470!

= 451
470

· 450
469

· . . . · 442
461

= 0.6592

To compute hypergeometric probabilities where the numbers are large, a useful
device is a recursion formula. To that end, note that the ratio of the k + 1 term to the
k term is ( r

k+1

) (
w

n−k−1

)(
N
n

) ÷
( r

k

) (
w

n−k

)(
N
n

) = n − k
k + 1

· r − k
w − n + k + 1

(See Question 3.2.30.)
Therefore,(

10
1

) (
460
18

)
(

470
19

) = 0.6592 · 19 + 0
1 + 0

· 10 − 0
460 − 19 + 0 + 1

= 0.2834

and (
10
2

) (
460
17

)
(

470
19

) = 0.2834 · 19 − 1
1 + 1

· 10 − 1
460 − 19 + 1 + 1

= 0.0518

The desired probability, then, is 1 − 0.6592 − 0.2834 − 0.0518 = 0.0056, which shows
that a larger audit sample would be necessary to have a reasonable chance of detect-
ing this sort of impropriety.

CASE STUDY 3.2.1

Biting into a plump, juicy apple is one of the innocent pleasures of autumn. Crit-
ical to that enjoyment is the firmness of the apple, a property that growers and
shippers monitor closely. The apple industry goes so far as to set a lowest ac-
ceptable limit for firmness, which is measured (in lbs) by inserting a probe into
the apple. For the Red Delicious variety, for example, firmness is supposed to
be at least 12 lbs; in the state of Washington, wholesalers are not allowed to sell
apples if more than 10% of their shipment falls below that 12-lb limit.

All of this raises an obvious question: How can shippers demonstrate that
their apples meet the 10% standard? Testing each one is not an option—the
probe that measures firmness renders an apple unfit for sale. That leaves sam-
pling as the only viable strategy.

(Continued on next page)
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(Case Study 3.2.1 continued)

Suppose, for example, a shipper has a supply of one hundred forty-four ap-
ples. She decides to select fifteen at random and measure each one’s firmness,
with the intention of selling the remaining apples if two or fewer in the sample
are substandard. What are the consequences of her plan? More specifically, does
it have a good chance of “accepting” a shipment that meets the 10% rule and
“rejecting” one that does not? (If either or both of those objectives are not met,
the plan is inappropriate.)

For example, suppose there are actually ten defective apples among the orig-
inal one hundred forty-four. Since 10

144 × 100 = 6.9%, that shipment would be
suitable for sale because fewer than 10% failed to meet the firmness standard.
The question is, how likely is it that a sample of fifteen chosen at random from
that shipment will pass inspection?

Notice, here, that the number of substandard apples in the sample has a hy-
pergeometric distribution with r = 10, w = 134, n = 15, and N = 144. Therefore,

P(Sample passes inspection) = P(Two or fewer substandard apples are found)

=
(10

0

)(134
15

)
(144

15

) +
(10

1

)(134
14

)
(144

15

) +
(10

2

)(134
13

)
(144

15

)
= 0.320 + 0.401 + 0.208 = 0.929

So, the probability is reassuringly high that a supply of apples this good would,
in fact, be judged acceptable to ship. Of course, it also follows from this calcula-
tion that roughly 7% of the time, the number of substandard apples found will
be greater than two, in which case the apples would be (incorrectly) assumed to
be unsuitable for sale (earning them an undeserved one-way ticket to the apple-
sauce factory . . . ).

How good is the proposed sampling plan at recognizing apples that would,
in fact, be inappropriate to ship? Suppose, for example, that 30, or 21%, of
the one hundred forty-four apples would fall below the 12-lb limit. Ideally, the
probability here that a sample passes inspection should be small. The number
of substandard apples found in this case would be hypergeometric with r = 30,
w = 114, n = 15, and N = 144, so

P(Sample passes inspection) =
(30

0

)(114
15

)
(144

15

) +
(30

1

)(114
14

)
(144

15

) +
(30

2

)(114
13

)
(144

15

)
= 0.024 + 0.110 + 0.221 = 0.355

Here the bad news is that the sampling plan will allow a 21% defective supply
to be shipped 36% of the time. The good news is that 64% of the time, the
number of substandard apples in the sample will exceed two, meaning that the
correct decision “not to ship” will be made.

Figure 3.2.2 shows P(Sample passes) plotted against the percentage of de-
fectives in the entire supply. Graphs of this sort are called operating characteristic
(or OC) curves: They summarize how a sampling plan will respond to all possible
levels of quality.
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Figure 3.2.2

Comment Every sampling plan invariably allows for two kinds of errors—
rejecting shipments that should be accepted and accepting shipments that
should be rejected. In practice, the probabilities of committing these errors can
be manipulated by redefining the decision rule and/or changing the sample size.
Some of these options will be explored in Chapter 6.

Questions

3.2.20. A corporate board contains twelve members.
The board decides to create a five-person Committee
to Hide Corporation Debt. Suppose four members of
the board are accountants. What is the probability that
the Committee will contain two accountants and three
nonaccountants?

3.2.21. One of the popular tourist attractions in Alaska is
watching black bears catch salmon swimming upstream to
spawn. Not all “black” bears are black, though—some are
tan-colored. Suppose that six black bears and three tan-
colored bears are working the rapids of a salmon stream.
Over the course of an hour, six different bears are sighted.
What is the probability that those six include at least twice
as many black bears as tan-colored bears?

3.2.22. A city has 4050 children under the age of ten, in-
cluding 514 who have not been vaccinated for measles.
Sixty-five of the city’s children are enrolled in the ABC
Day Care Center. Suppose the municipal health depart-
ment sends a doctor and a nurse to ABC to immunize any
child who has not already been vaccinated. Find a formula
for the probability that exactly k of the children at ABC
have not been vaccinated.

3.2.23. Country A inadvertently launches ten guided
missiles—six armed with nuclear warheads—at
Country B. In response, Country B fires seven antiballis-
tic missiles, each of which will destroy exactly one of the
incoming rockets. The antiballistic missiles have no way
of detecting, though, which of the ten rockets are carrying
nuclear warheads. What are the chances that Country B
will be hit by at least one nuclear missile?

3.2.24. Anne is studying for a history exam covering the
French Revolution that will consist of five essay ques-
tions selected at random from a list of ten the professor

has handed out to the class in advance. Not exactly a
Napoleon buff, Anne would like to avoid researching all
ten questions but still be reasonably assured of getting a
fairly good grade. Specifically, she wants to have at least
an 85% chance of getting at least four of the five ques-
tions right. Will it be sufficient if she studies eight of the
ten questions?

3.2.25. Each year a college awards five merit-based schol-
arships to members of the entering freshman class who
have exceptional high school records. The initial pool
of applicants for the upcoming academic year has been
reduced to a “short list” of eight men and ten women,
all of whom seem equally deserving. If the awards are
made at random from among the eighteen finalists, what
are the chances that both men and women will be
represented?

3.2.26. Keno is a casino game in which the player has
a card with the numbers 1 through 80 on it. The player
selects a set of k numbers from the card, where k can
range from one to fifteen. The “caller” announces twenty
winning numbers, chosen at random from the eighty. The
amount won depends on how many of the called numbers
match those the player chose. Suppose the player picks
ten numbers. What is the probability that among those ten
are six winning numbers?

3.2.27. A display case contains thirty-five gems, of which
ten are real diamonds and twenty-five are fake diamonds.
A burglar removes four gems at random, one at a time
and without replacement. What is the probability that the
last gem she steals is the second real diamond in the set
of four?

3.2.28. Consider an urn with r red balls and w white
balls, where r + w = N. Draw n balls in order without
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replacement. Show that the probability of k red balls is
hypergeometric.

3.2.29. Show directly that the set of probabilities associ-
ated with the hypergeometric distribution sum to 1. (Hint:
Expand the identity

(1 + μ)N = (1 + μ)r(1 + μ)N−r

and equate coefficients.)

3.2.30. Show that the ratio of two successive hypergeo-
metric probability terms satisfies the following equation,( r

k+1

) (
w

n−k−1

)(
N
n

) ÷
( r

k

) (
w

n−k

)(
N
n

) = n − k
k + 1

· r − k
w − n + k + 1

for any k where both numerators are defined.

3.2.31. Urn I contains five red chips and four white chips;
urn II contains four red and five white chips. Two chips are
drawn simultaneously from urn I and placed into urn II.
Then a single chip is drawn from urn II. What is the proba-
bility that the chip drawn from urn II is white? (Hint: Use
Theorem 2.4.1.)

3.2.32. As the owner of a chain of sporting goods stores,
you have just been offered a “deal” on a shipment of one
hundred robot table tennis machines. The price is right,
but the prospect of picking up the merchandise at mid-
night from an unmarked van parked on the side of the
New Jersey Turnpike is a bit disconcerting. Being of low
repute yourself, you do not consider the legality of the
transaction to be an issue, but you do have concerns about
being cheated. If too many of the machines are in poor
working order, the offer ceases to be a bargain. Sup-
pose you decide to close the deal only if a sample of ten

machines contains no more than one defective. Construct
the corresponding operating characteristic curve. For ap-
proximately what incoming quality will you accept a ship-
ment 50% of the time?

3.2.33. Suppose that r of N chips are red. Divide the
chips into three groups of sizes n1, n2, and n3, where n1 +
n2 + n3 = N. Generalize the hypergeometric distribution
to find the probability that the first group contains r1 red
chips, the second group r2 red chips, and the third group
r3 red chips, where r1 + r2 + r3 = r.

3.2.34. Some nomadic tribes, when faced with a life-
threatening contagious disease, try to improve their
chances of survival by dispersing into smaller groups. Sup-
pose a tribe of twenty-one people, of whom four are car-
riers of the disease, split into three groups of seven each.
What is the probability that at least one group is free of the
disease? (Hint: Find the probability of the complement.)

3.2.35. Suppose a population contains n1 objects of one
kind, n2 objects of a second kind, . . . , and nt objects of a
tth kind, where n1 + n2 + · · · + nt = N. A sample of size n
is drawn at random and without replacement. Deduce an
expression for the probability of drawing k1 objects of the
first kind, k2 objects of the second kind, . . . , and kt objects
of the tth kind by generalizing Theorem 3.2.2.

3.2.36. Sixteen students—five freshmen, four sopho-
mores, four juniors, and three seniors—have applied for
membership in their school’s Communications Board, a
group that oversees the college’s newspaper, literary mag-
azine, and radio show. Eight positions are open. If the se-
lection is done at random, what is the probability that each
class gets two representatives? (Hint: Use the generalized
hypergeometric model asked for in Question 3.2.35.)

3.3 Discrete Random Variables
The binomial and hypergeometric distributions described in Section 3.2 are special
cases of some important general concepts that we want to explore more fully in this
section. Previously in Chapter 2, we studied in depth the situation where every point
in a sample space is equally likely to occur (recall Section 2.6). The sample space of
independent trials that ultimately led to the binomial distribution presented a quite
different scenario: specifically, individual points in S had different probabilities. For
example, if n = 4 and p = 1

3 , the probabilities assigned to the sample points (s, f, s, f )
and ( f, f, f, f ) are (1/3)2(2/3)2 = 4

81 and (2/3)4 = 16
81 , respectively. Allowing for the

possibility that different outcomes may have different probabilities will obviously
broaden enormously the range of real-world problems that probability models can
address.

How to assign probabilities to outcomes that are not binomial or hypergeomet-
ric is one of the major questions investigated in this chapter. A second critical issue
is the nature of the sample space itself and whether it makes sense to redefine the
outcomes and create, in effect, an alternative sample space. Why we would want to
do that has already come up in our discussion of independent trials. The “original”
sample space in such cases is a set of ordered sequences, where the ith member of a
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sequence is either an “s” or an “ f ,” depending on whether the ith trial ended in suc-
cess or failure, respectively. However, knowing which particular trials ended in suc-
cess is typically less important than knowing the number that did (recall the medical
researcher discussion on p. 102). That being the case, it often makes sense to replace
each ordered sequence with the number of successes that sequence contains. Doing
so collapses the original set of 2n ordered sequences (i.e., outcomes) in S to the set
of n + 1 integers ranging from 0 to n. The probabilities assigned to those integers, of
course, are given by the binomial formula in Theorem 3.2.1.

In general, a function that assigns numbers to outcomes is called a random vari-
able. The purpose of such functions in practice is to define a new sample space whose
outcomes speak more directly to the objectives of the experiment. That was the ratio-
nale that ultimately motivated both the binomial and hypergeometric distributions.

The purpose of this section is to (1) outline the general conditions under which
probabilities can be assigned to sample spaces and (2) explore the ways and means
of redefining sample spaces through the use of random variables. The notation intro-
duced in this section is especially important and will be used throughout the remain-
der of the book.

ASSIGNING PROBABILITIES: THE DISCRETE CASE

We begin with the general problem of assigning probabilities to sample outcomes,
the simplest version of which occurs when the number of points in S is either finite
or countably infinite. The probability functions, p(s), that we are looking for in those
cases satisfy the conditions in Definition 3.3.1.

Definition 3.3.1
Suppose that S is a finite or countably infinite sample space. Let p be a real-
valued function defined for each element of S such that

a. 0 ≤ p(s) for each s ∈ S

b.
∑
s∈S

p(s) = 1

Then p is said to be a discrete probability function.

Comment Once p(s) is defined for all s, it follows that the probability of any event
A—that is, P(A)—is the sum of the probabilities of the outcomes comprising A:

P(A) =
∑
s∈A

p(s) (3.3.1)

Defined in this way, the function P(A) satisfies the probability axioms given in Sec-
tion 2.3. The next several examples illustrate some of the specific forms that p(s) can
have and how P(A) is calculated.

Example
3.3.1

Ace-six flats are a type of crooked dice where the cube is foreshortened in the one-
six direction, the effect being that 1’s and 6’s are more likely to occur than any of
the other four faces. Let p(s) denote the probability that the face showing is s. For
many ace-six flats, the “cube” is asymmetric to the extent that p(1) = p(6) = 1

4 ,
while p(2) = p(3) = p(4) = p(5) = 1

8 . Notice that p(s) here qualifies as a discrete
probability function because each p(s) is greater than or equal to 0 and the sum of
p(s), over all s, is 1

[ = 2
( 1

4

)+ 4
( 1

8

)]
.
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Suppose A is the event that an even number occurs. It follows from Equa-
tion 3.3.1 that P(A) = P(2) + P(4) + P(6) = 1

8 + 1
8 + 1

4 = 1
2 .

Comment If two ace-six flats are rolled, the probability of getting a sum equal to
7 is equal to 2p(1)p(6) + 2p(2)p(5) + 2p(3)p(4) = 2

( 1
4

)2 + 4
( 1

8

)2 = 3
16 . If two fair

dice are rolled, the probability of getting a sum equal to 7 is 2p(1)p(6)+2p(2)p(5)+
2p(3)p(4) = 6

( 1
6

)2 = 1
6 , which is less than 3

16 . Gamblers cheat with ace-six flats by
switching back and forth between fair dice and ace-six flats, depending on whether
or not they want a sum of 7 to be rolled.

Example
3.3.2

Suppose a fair coin is tossed until a head comes up for the first time. What are the
chances of that happening on an odd-numbered toss?

Note that the sample space here is countably infinite and so is the set of outcomes
making up the event whose probability we are trying to find. The P(A) that we are
looking for, then, will be the sum of an infinite number of terms.

Let p(s) be the probability that the first head appears on the sth toss. Since the
coin is presumed to be fair, p(1) = 1

2 . Furthermore, we would expect that half the
time, when a tail appears, the next toss would be a head, so p(2) = 1

2 · 1
2 = 1

4 . In
general, p(s) = ( 1

2

)s, s = 1, 2, . . . .
Does p(s) satisfy the conditions stated in Definition 3.3.1? Yes. Clearly, p(s) ≥ 0

for all s. To see that the sum of the probabilities is 1, recall the formula for the sum
of a geometric series: If 0 < r < 1,

∞∑
s=0

rs = 1
1 − r

(3.3.2)

Applying Equation 3.3.2 to the sample space here confirms that P(S) = 1:

P(S) =
∞∑

s=1

p(s) =
∞∑

s=1

(
1
2

)s

=
∞∑

s=0

(
1
2

)s

−
(

1
2

)0

= 1
/(

1 − 1
2

)
− 1 = 1

Now, let A be the event that the first head appears on an odd-numbered toss.
Then P(A) = p(1) + p(3) + p(5) + · · · But

p(1) + p(3) + p(5) + · · · =
∞∑

s=0

p(2s + 1) =
∞∑

s=0

(
1
2

)2s+1

=
(

1
2

) ∞∑
s=0

(
1
4

)s

=
(

1
2

)[
1
/(

1 − 1
4

)]
= 2

3

CASE STUDY 3.3.1

For good pedagogical reasons, the principles of probability are always intro-
duced by considering events defined on familiar sample spaces generated by
simple experiments. To that end, we toss coins, deal cards, roll dice, and draw
chips from urns. It would be a serious error, though, to infer that the impor-
tance of probability extends no further than the nearest casino. In its infancy,
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gambling and probability were, indeed, intimately related: Questions arising
from games of chance were often the catalyst that motivated mathematicians to
study random phenomena in earnest. But more than three hundred forty years
have passed since Huygens published De Ratiociniis. Today, the application of
probability to gambling is relatively insignificant (the NCAA March basketball
tournament notwithstanding) compared to the depth and breadth of uses the
subject finds in business, medicine, engineering, and science.

Probability functions—properly chosen—can “model” complex real-world
phenomena every bit as well as P(heads) = 1

2 describes the behavior of a fair
coin. The following set of actuarial data is a case in point. Over a period of
three years (= 1096 days) in London, records showed that a total of nine hun-
dred three deaths occurred among males eighty-five years of age and older (191).
Columns 1 and 2 of Table 3.3.1 give the breakdown of those 903 deaths accord-
ing to the number occurring on a given day. Column 3 gives the proportion of
days for which exactly s elderly men died.

Table 3.3.1

(1) (2) (3) (4)
Number of
Deaths, s

Number of
Days

Proportion
[= Col.(2)/1096]

p(s)

0 484 0.442 0.440
1 391 0.357 0.361
2 164 0.150 0.148
3 45 0.041 0.040
4 11 0.010 0.008
5 1 0.001 0.003
6+ 0 0.000 0.000

1096 1 1

For reasons that we will go into at length in Chapter 4, the probability func-
tion that describes the behavior of this particular phenomenon is

p(s) = P(s elderly men die on a given day)

= e−0.82(0.82)s

s!
, s = 0, 1, 2, . . . (3.3.3)

How do we know that the p(s) in Equation 3.3.3 is an appropriate way to assign
probabilities to the “experiment” of elderly men dying? Because it accurately
predicts what happened. Column 4 of Table 3.3.1 shows p(s) evaluated for s =
0, 1, 2, . . . . To two decimal places, the agreement between the entries in Column
3 and Column 4 is perfect.

Example
3.3.3

Consider the following experiment: Every day for the next month you copy down
each number that appears in the stories on the front pages of your hometown news-
paper. Those numbers would necessarily be extremely diverse: One might be the age
of a celebrity who had just died, another might report the interest rate currently paid
on government Treasury bills, and still another might give the number of square feet
of retail space recently added to a local shopping mall.
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Suppose you then calculated the proportion of those numbers whose leading
digit was a 1, the proportion whose leading digit was a 2, and so on. What relationship
would you expect those proportions to have? Would numbers starting with a 2, for
example, occur as often as numbers starting with a 6?

Let p(s) denote the probability that the first significant digit of a “newspaper
number” is s, s = 1, 2, . . . , 9. Our intuition is likely to tell us that the nine first digits
should be equally probable—that is, p(1) = p(2) = · · · = p(9) = 1

9 . Given the
diversity and the randomness of the numbers, there is no obvious reason why one
digit should be more common than another. Our intuition, though, would be wrong—
first digits are not equally likely. Indeed, they are not even close to being equally
likely!

Credit for making this remarkable discovery goes to Simon Newcomb, a math-
ematician who observed more than a hundred years ago that some portions of log-
arithm tables are used more than others (85). Specifically, pages at the beginning of
such tables are more dog-eared than pages at the end, suggesting that users have
more occasion to look up logs of numbers starting with small digits than they do
numbers starting with large digits.

Almost fifty years later, a physicist, Frank Benford, reexamined Newcomb’s
claim in more detail and looked for a mathematical explanation. What is now
known as Benford’s law asserts that the first digits of many different types of mea-
surements, or combinations of measurements, often follow the discrete probability
model:

p(s) = P(First significant digit is s) = log
(

1 + 1
s

)
, s = 1, 2, . . . , 9

Table 3.3.2 compares Benford’s law to the uniform assumption that p(s) = 1
9 , for

all s. The differences are striking. According to Benford’s law, for example, 1’s are
the most frequently occurring first digit, appearing 6.5 times (= 0.301/0.046) as often
as 9’s.

Table 3.3.2

s “Uniform” Law Benford’s Law

1 0.111 0.301
2 0.111 0.176
3 0.111 0.125
4 0.111 0.097
5 0.111 0.079
6 0.111 0.067
7 0.111 0.058
8 0.111 0.051
9 0.111 0.046

Comment A key to why Benford’s law is true is the differences in proportional
changes associated with each leading digit. To go from one thousand to two thou-
sand, for example, represents a 100% increase; to go from eight thousand to nine
thousand, on the other hand, is only a 12.5% increase. That would suggest that evo-
lutionary phenomena such as stock prices would be more likely to start with 1’s and
2’s than with 8’s and 9’s—and they are. Still, the precise conditions under which
p(s) = log

(
1 + 1

s

)
, s = 1, 2, . . . , 9, are not fully understood and remain a topic of

research.
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Example
3.3.4

Is p(s) as defined below a discrete probability function? Why or why not?

p(s) = 1
1 + λ

(
λ

1 + λ

)s

, s = 0, 1, 2, . . . ; λ > 0

To qualify as a discrete probability function, a given p(s) needs to satisfy parts
(a) and (b) of Definition 3.3.1. A simple inspection shows that part (a) is satisfied.
Since λ > 0, p(s) is, in fact, greater than or equal to 0 for all s = 0, 1, 2, . . . . Part (b)
is satisfied if the sum of all the probabilities defined on the outcomes in S is 1. But

∑
all s∈S

p(s) =
∞∑

s=0

1
1 + λ

(
λ

1 + λ

)s

= 1
1 + λ

(
1

1 − λ
1+λ

)
(why?)

= 1
1 + λ

· 1 + λ

1

= 1

The answer, then, is “yes”—p(s) = 1
1+λ

(
λ

1+λ

)s, s = 0, 1, 2, . . . ; λ > 0 does qual-
ify as a discrete probability function. Of course, whether it has any practical value
depends on whether the set of values for p(s) actually do describe the behavior of
real-world phenomena.

DEFINING “NEW” SAMPLE SPACES

We have seen how the function p(s) associates a probability with each outcome, s,
in a sample space. Related is the key idea that outcomes can often be grouped or
reconfigured in ways that may facilitate problem solving. Recall the sample space
associated with a series of n independent trials, where each s is an ordered se-
quence of successes and failures. The most relevant information in such outcomes
is often the number of successes that occur, not a detailed listing of which trials
ended in success and which ended in failure. That being the case, it makes sense
to define a “new” sample space by grouping the original outcomes according to the
number of successes they contained. The outcome ( f , f , . . . , f ), for example, had
0 successes. On the other hand, there were n outcomes that yielded 1 success—
(s, f , f , . . . , f ), ( f , s, f , . . . , f ), . . . , and ( f , f , . . . , s). As we saw earlier in
this chapter, that particular regrouping of outcomes ultimately led to the binomial
distribution.

The function that replaces the outcome (s, f , f , . . . , f ) with the numerical value
1 is called a random variable. We conclude this section with a discussion of some of
the concepts, terminology, and applications associated with random variables.

Definition 3.3.2
A function whose domain is a sample space S and whose values form a finite or
countably infinite set of real numbers is called a discrete random variable. We
denote random variables by uppercase letters, often X or Y .
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Example
3.3.5

Consider tossing two dice, an experiment for which the sample space is a set of or-
dered pairs, S = {(i, j) | i = 1, 2, . . . , 6; j = 1, 2, . . . , 6}. For a variety of games
ranging from Monopoly to craps, the sum of the numbers showing is what matters
on a given turn. That being the case, the original sample space S of thirty-six ordered
pairs would not provide a particularly convenient backdrop for discussing the rules
of those games. It would be better to work directly with the sums. Of course, the
eleven possible sums (from 2 to 12) are simply the different values of the random
variable X , where X (i, j) = i + j.

Comment In the above example, suppose we define a random variable X1 that gives
the result on the first die and a random variable X2 that gives the result on the second
die. Then X = X1 + X2. Note how easily we could extend this idea to the toss of
three dice, or ten dice. The ability to conveniently express complex events in terms of
simpler ones is an advantage of the random variable concept that we will see playing
out over and over again.

THE PROBABILITY DENSITY FUNCTION

We began this section discussing the function p(s), which assigns a probability to
each outcome s in S. Now, having introduced the notion of a random variable X as
a real-valued function defined on S, that is, X (s) = k, we need to find a mapping
analogous to p(s) that assigns probabilities to the different values of k.

Definition 3.3.3
Associated with every discrete random variable X is a probability density func-
tion (or pdf ), denoted pX (k), where

pX (k) = P({s ∈ S | X (s) = k})
Note that pX (k) = 0 for any k not in the range of X . For notational simplicity,
we will usually delete all references to s and S and write pX (k) = P(X = k).

Comment We have already discussed at length two examples of the function pX (k).
Recall the binomial distribution derived in Section 3.2. If we let the random vari-
able X denote the number of successes in n independent trials, then Theorem 3.2.1
states that

P(X = k) = pX (k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

A similar result was given in that same section in connection with the hyper-
geometric distribution. If a sample of size n is drawn without replacement from
an urn containing r red chips and w white chips, and if we let the random vari-
able X denote the number of red chips included in the sample, then (according to
Theorem 3.2.2),

P(X = k) = pX (k) =
(

r
k

)(
w

n − k

)/(
r + w

n

)
where k ranges over the values for which the numerator terms are defined.
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Example
3.3.6

Consider again the rolling of two dice as described in Example 3.3.5. Let i and j
denote the faces showing on the first and second die, respectively, and define the
random variable X to be the sum of the two faces: X (i, j) = i + j. Find pX (k).

According to Definition 3.3.3, each value of pX (k) is the sum of the probabilities
of the outcomes that get mapped by X onto the value k. For example,

P(X = 5) = pX (5) = P({s ∈ S | X (s) = 5})
= P[(1, 4), (4, 1), (2, 3), (3, 2)]

= P(1, 4) + P(4, 1) + P(2, 3) + P(3, 2)

= 1
36

+ 1
36

+ 1
36

+ 1
36

= 4
36

assuming the dice are fair. Values of pX (k) for other k are calculated similarly.
Table 3.3.3 shows the random variable’s entire pdf.

Table 3.3.3

k pX (k) k pX (k)

2 1/36 8 5/36
3 2/36 9 4/36
4 3/36 10 3/36
5 4/36 11 2/36
6 5/36 12 1/36
7 6/36

Example
3.3.7

Acme Industries typically produces three electric power generators a day; some
pass the company’s quality-control inspection on their first try and are ready to be
shipped; others need to be retooled. The probability of a generator needing further
work is 0.05. If a generator is ready to ship, the firm earns a profit of $10,000. If it
needs to be retooled, it ultimately costs the firm $2,000. Let X be the random vari-
able quantifying the company’s daily profit. Find pX (k).

The underlying sample space here is a set of n = 3 independent trials, where
p = P(Generator passes inspection) = 0.95. If the random variable X is to measure
the company’s daily profit, then

X = $10,000 × (no. of generators passing inspection)

− $2,000 × (no. of generators needing retooling)

For instance, X (s, f, s) = 2($10,000) − 1($2,000) = $18,000. Moreover, the random
variable X equals $18,000 whenever the day’s output consists of two successes and
one failure. That is, X (s, f, s) = X (s, s, f ) = X ( f, s, s). It follows that

P(X = $18,000) = pX (18,000) =
(

3
2

)
(0.95)2(0.05)1 = 0.135375

Table 3.3.4 shows pX (k) for the four possible values of k ($30,000, $18,000, $6,000,
and −$6,000).
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Table 3.3.4

No. Defectives k = Profit pX (k)

0 $30,000 0.857375
1 $18,000 0.135375
2 $6,000 0.007125
3 −$6,000 0.000125

Example
3.3.8

As part of her warm-up drill, each player on State’s basketball team is required to
shoot free throws until two baskets are made. If Rhonda has a 65% success rate at
the foul line, what is the pdf of the random variable X that describes the number of
throws it takes her to complete the drill? Assume that individual throws constitute
independent events.

Figure 3.3.1 illustrates what must occur if the drill is to end on the kth toss, k =
2, 3, 4, . . . First, Rhonda needs to make exactly one basket sometime during the first
k − 1 attempts, and, second, she needs to make a basket on the kth toss. Written
formally,

pX (k) = P(X = k) = P(Drill ends on kth throw)

= P[(1 basket and k − 2 misses in first k − 1 throws) ∩ (basket on kth throw)]

= P(1 basket and k − 2 misses) · P(basket)

Exactly one basket Second basket

Miss

1

Basket

2

Miss

3
· · ·

Miss

k − 1

Basket

k
Attempts

Figure 3.3.1

Notice that k − 1 different sequences have the property that exactly one of the
first k − 1 throws results in a basket:

k − 1
sequences

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B
1

M
2

M
3

M
4 · · · M

k−1
M
1

B
2

M
3

M
4 · · · M

k−1
...

M
1

M
2

M
3

M
4 · · · B

k−1

Since each sequence has probability (0.35)k−2(0.65),

P(1 basket and k − 2 misses) = (k − 1)(0.35)k−2(0.65)

Therefore,

pX (k) = (k − 1)(0.35)k−2(0.65) · (0.65)

= (k − 1)(0.35)k−2(0.65)2, k = 2, 3, 4, . . . (3.3.4)

Table 3.3.5 shows the pdf evaluated for specific values of k. Although the range of k
is infinite, the bulk of the probability associated with X is concentrated in the values
2 through 7: It is highly unlikely, for example, that Rhonda would need more than
seven shots to complete the drill.
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Table 3.3.5

k pX (k)

2 0.4225
3 0.2958
4 0.1553
5 0.0725
6 0.0317
7 0.0133
8+ 0.0089

THE CUMULATIVE DISTRIBUTION FUNCTION

In working with random variables, we frequently need to calculate the probability
that the value of a random variable is somewhere between two numbers. For exam-
ple, suppose we have an integer-valued random variable. We might want to calculate
an expression like P(s ≤ X ≤ t). If we know the pdf for X , then

P(s ≤ X ≤ t) =
t∑

k=s

pX (k)

But depending on the nature of pX (k) and the number of terms that need to be
added, calculating the sum of pX (k) from k = s to k = t may be quite difficult. An
alternate strategy is to use the fact that

P(s ≤ X ≤ t) = P(X ≤ t) − P(X ≤ s − 1)

where the two probabilities on the right represent cumulative probabilities of the
random variable X . If the latter were available (and they often are), then evaluating
P(s ≤ X ≤ t) by one simple subtraction would clearly be easier than doing all the

calculations implicit in
t∑

k=s
pX (k).

Definition 3.3.4
Let X be a discrete random variable. For any real number t, the probability that
X takes on a value ≤ t is the cumulative distribution function (cdf ) of X [written
FX (t)]. In formal notation, FX (t) = P({s ∈ S | X (s) ≤ t}). As was the case with
pdfs, references to s and S are typically deleted, and the cdf is written FX (t) =
P(X ≤ t).

Example
3.3.9

Suppose we wish to compute P(21 ≤ X ≤ 40) for a binomial random variable X
with n = 50 and p = 0.6. From Theorem 3.2.1, we know the formula for pX (k), so
P(21 ≤ X ≤ 40) can be written as a simple, although computationally cumbersome,
sum:

P(21 ≤ X ≤ 40) =
40∑

k=21

(
50
k

)
(0.6)k(0.4)50−k

Equivalently, the probability we are looking for can be expressed as the difference
between two cdfs:

P(21 ≤ X ≤ 40) = P(X ≤ 40) − P(X ≤ 20) = FX (40) − FX (20)
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As it turns out, values of the cdf for a binomial random variable are widely available,
both in books and in computer software. Here, for example, FX (40) = 0.9992 and
FX (20) = 0.0034, so

P(21 ≤ X ≤ 40) = 0.9992 − 0.0034

= 0.9958

Example
3.3.10

Suppose that two fair dice are rolled. Let the random variable X denote the larger
of the two faces showing: (a) Find FX (t) for t = 1, 2, . . . , 6 and (b) find FX (2.5).

a. The sample space associated with the experiment of rolling two fair dice is the set
of ordered pairs s = (i, j), where the face showing on the first die is i and the face
showing on the second die is j. By assumption, all thirty-six possible outcomes
are equally likely. Now, suppose t is some integer from 1 to 6, inclusive. Then

FX (t) = P(X ≤ t)

= P[Max (i, j) ≤ t]

= P(i ≤ t and j ≤ t) (why?)

= P(i ≤ t) · P( j ≤ t) (why?)

= t
6

· t
6

= t2

36
, t = 1, 2, 3, 4, 5, 6

b. Even though the random variable X has nonzero probability only for the inte-
gers 1 through 6, the cdf is defined for any real number from −∞ to +∞. By
definition, FX (2.5) = P(X ≤ 2.5). But

P(X ≤ 2.5) = P(X ≤ 2) + P(2 < X ≤ 2.5)

= FX (2) + 0

so

FX (2.5) = FX (2) = 22

36
= 1

9
What would the graph of FX (t) as a function of t look like?

Questions

3.3.1. An urn contains five balls numbered 1 to 5. Two
balls are drawn simultaneously.
(a) Let X be the larger of the two numbers drawn. Find
pX (k).
(b) Let V be the sum of the two numbers drawn. Find
pV (k).

3.3.2. Repeat Question 3.3.1 for the case where the two
balls are drawn with replacement.

3.3.3. Suppose a fair die is tossed three times. Let X be
the largest of the three faces that appear. Find pX (k).

3.3.4. Suppose a fair die is tossed three times. Let X be
the number of different faces that appear (so X = 1, 2,
or 3). Find pX (k).

3.3.5. A fair coin is tossed three times. Let X be the num-
ber of heads in the tosses minus the number of tails. Find
pX (k).

3.3.6. Suppose die one has spots 1, 2, 2, 3, 3, 4 and die two
has spots 1, 3, 4, 5, 6, 8. If both dice are rolled, what is the
sample space? Let X = total spots showing. Show that the
pdf for X is the same as for normal dice.

3.3.7. Suppose a particle moves along the x-axis beginning
at 0. It moves one integer step to the left or right with equal
probability. What is the pdf of its position after four steps?

3.3.8. How would the pdf asked for in Question 3.3.7 be
affected if the particle was twice as likely to move to the
right as to the left?
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3.3.9. Suppose that five people, including you and a
friend, line up at random. Let the random variable X de-
note the number of people standing between you and your
friend. What is pX (k)?

3.3.10. Urn I and urn II each have two red chips and two
white chips. Two chips are drawn simultaneously from
each urn. Let X1 be the number of red chips in the first
sample and X2 the number of red chips in the second sam-
ple. Find the pdf of X1 + X2.

3.3.11. Suppose X is a binomial random variable with
n = 4 and p = 2

3 . What is the pdf of 2X + 1?

3.3.12. Find the cdf for the random variable X in Ques-
tion 3.3.3.

3.3.13. A fair die is rolled four times. Let the random vari-
able X denote the number of 6’s that appear. Find and
graph the cdf for X .

3.3.14. At the points x = 0, 1, . . . , 6, the cdf for the
discrete random variable X has the value FX (x) =
x(x + 1)/42. Find the pdf for X .

3.3.15. Find the pdf for the infinite-valued discrete ran-
dom variable X whose cdf at the points x = 1, 2, 3, . . . is
given by FX (x) = 1 − (1 − p)x, where 0 < p < 1.

3.3.16. Recall the game of Fantasy Five from Example
3.2.6. For any Fantasy Five draw of five balls, let the ran-
dom variable X be the largest number drawn.

(a) Find FX (k)
(b) Find P(X = 36)
(c) In one hundred eight plays of Fantasy Five, thirty-
six was the largest number drawn fifteen times. Com-
pare this observation to the theoretical probability in
part (b).

3.4 Continuous Random Variables
The statement was made in Chapter 2 that all sample spaces belong to one of two
generic types—discrete sample spaces are ones that contain a finite or a countably
infinite number of outcomes and continuous sample spaces are those that contain an
uncountably infinite number of outcomes. Rolling a pair of dice and recording the
faces that appear is an experiment with a discrete sample space; choosing a number
at random from the interval [0, 1] would have a continuous sample space.

How we assign probabilities to these two types of sample spaces is different.
Section 3.3 focused on discrete sample spaces. Each outcome s is assigned a probability
by the discrete probability function p(s). If a random variable X is defined on
the sample space, the probabilities associated with its outcomes are assigned by
the probability density function pX (k). Applying those same definitions, though, to
the outcomes in a continuous sample space will not work. The fact that a continuous
sample space has an uncountably infinite number of outcomes eliminates the option
of assigning a probability to each point as we did in the discrete case with the function
p(s). We begin this section with a particular pdf defined on a discrete sample space that
suggests how we might define probabilities, in general, on a continuous sample space.

Suppose an electronic surveillance monitor is turned on briefly at the beginning
of every hour and has a 0.905 probability of working properly, regardless of how long
it has remained in service. If we let the random variable X denote the hour at which
the monitor first fails, then pX (k) is the product of k individual probabilities:

pX (k) = P(X = k) = P(Monitor fails for the first time at the kth hour)

= P(Monitor functions properly for first k − 1 hours ∩ Monitor fails at the kth hour)

= (0.905)k−1(0.095), k = 1, 2, 3, . . .

Figure 3.4.1 shows a probability histogram of pX (k) for k values ranging from 1 to
21. Here the height of the kth bar is pX (k), and since the width of each bar is 1, the
area of the kth bar is also pX (k).

Now, look at Figure 3.4.2, where the exponential curve y = 0.1e−0.1x is superim-
posed on the graph of pX (k). Notice how closely the area under the curve approxi-
mates the area of the bars. It follows that the probability that X lies in some given
interval will be numerically similar to the integral of the exponential curve above
that same interval.
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For example, the probability that the monitor fails sometime during the first four
hours would be the sum

P(1 ≤ X ≤ 4) =
4∑

k=1

pX (k)

=
4∑

k=1

(0.905)k−1(0.095)

= 0.3297

To four decimal places, the corresponding area under the exponential curve is the same:∫ 4

0
0.1e−0.1x dx = 0.3297

Implicit in the similarity here between pX (k) and the exponential curve y =
0.1e−0.1x is our sought-after alternative to p(s) for continuous sample spaces. Instead
of defining probabilities for individual points, we will define probabilities for intervals
of points, and those probabilities will be areas under the graph of some function (such
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as y = 0.1e−0.1x), where the shape of the function will reflect the desired probability
“measure” to be associated with the sample space.

Definition 3.4.1
A probability function P on a set of real numbers S is called continuous if there
exists a function f (t) such that for any closed interval [a, b] ⊂ S, P([a, b]) =∫ b

a f (t) dt. The function f (t) must have the following two properties:

a. f (t) ≥ 0 for all t.

b.
∫ ∞
−∞ f (t)dt = 1.

Then the probability P(A) = ∫
A f (t)dt for any set A where the integral is defined.

Comment Using the −∞ and ∞ limits on the integral is simply a convention to
mean the function should be integrated over its entire domain. The examples below
will make this clear.

Comment If a probability function P satisfies Definition 3.4.1, then it will satisfy
the probability axioms given in Section 2.3.

Comment Replacing a sum for discrete probability with an integral is not without
its own logic. One of the founders of calculus, Gottfried Wilhelm Leibniz, regarded
the integral as an infinite sum of infinitesimal summands. The integral sign was based
on a version of the German letter long s (for the German Summe).

CHOOSING THE FUNCTION f(t)

We have seen that the probability structure of any sample space with a finite or count-
ably infinite number of outcomes is defined by the function p(s) = P(Outcome is s).
For sample spaces having an uncountably infinite number of possible outcomes, the
function f (t) serves an analogous purpose. Specifically, f (t) defines the probability
structure of S in the sense that the probability of any interval in the sample space is the
integral of f (t). The next set of examples illustrate several different choices for f (t).

Example
3.4.1

The continuous equivalent of the equiprobable probability model on a discrete sam-
ple space is the function f (t) defined by f (t) = 1/(b−a) for all t in the interval [a, b]
(and f (t) = 0, otherwise). This particular f (t) places equal probability weighting on
every closed interval of the same length contained in the interval [a, b]. For example,
suppose a = 0 and b = 10, and let A = [1, 3] and B = [6, 8]. Then f (t) = 1

10 , and

P(A) =
∫ 3

1

(
1

10

)
dt = 2

10
= P(B) =

∫ 8

6

(
1

10

)
dt

(See Figure 3.4.3.)
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t
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2
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2
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1
10

Probability
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Figure 3.4.3
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Example
3.4.2

Could f (t) = 3t2, 0 ≤ t ≤ 1, be used to define the probability function for a con-
tinuous sample space whose outcomes consist of all the real numbers in the interval
[0, 1]? Yes, because (1) f (t) ≥ 0 for all t, and (2)

∫ 1
0 f (t) dt = ∫ 1

0 3t2 dt = t3
∣∣1
0 = 1.

Notice that the shape of f (t) (see Figure 3.4.4) implies that outcomes close to
1 are more likely to occur than are outcomes close to 0. For example, P

([
0, 1

3

]) =∫ 1/3
0 3t2 dt = t3

∣∣1/3
0 = 1

27 , while P
([ 2

3 , 1
]) = ∫ 1

2/3 3t2 dt = t3
∣∣1
2/3 = 1 − 8

27 = 19
27 .
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27
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1
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2
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Figure 3.4.4

Example
3.4.3

By far the most important of all continuous probability functions is the “bell-shaped”
curve, known more formally as the normal (or Gaussian) distribution. The sample
space for the normal distribution is the entire real line; its probability function is
given by

f (t) = 1√
2πσ

exp

[
−1

2

(
t − μ

σ

)2
]

, −∞ < t < ∞, −∞ < μ < ∞, σ > 0

Depending on the values assigned to the parameters μ and σ, f (t) can take on a
variety of shapes and locations; three are illustrated in Figure 3.4.5.

m = –4
s = 0.5

m = 0
s = 1.5

m = 3
s = 1

0
t

f(t)

–4 3

Figure 3.4.5

FITTING f(t) TO DATA: THE DENSITY-SCALED HISTOGRAM

The notion of using a continuous probability function to approximate an integer-
valued discrete probability model has already been discussed (recall Figure 3.4.2).
The “trick” there was to replace the spikes that define pX (k) with rectangles whose
heights are pX (k) and whose widths are 1. Doing that makes the sum of the areas of
the rectangles corresponding to pX (k) equal to 1, which is the same as the total area
under the approximating continuous probability function. Because of the equality of
those two areas, it makes sense to superimpose (and compare) the “histogram” of
pX (k) and the continuous probability function on the same set of axes.

Now, consider the related, but slightly more general, problem of using a con-
tinuous probability function to model the distribution of a set of n measurements,
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y1, y2, . . . , yn. Following the approach taken in Figure 3.4.2, we would start by mak-
ing a histogram of the n observations. The problem, though, is that the sum of the
areas of the bars comprising that histogram would not necessarily equal 1.

As a case in point, Table 3.4.1 shows a set of forty observations. Grouping those
yi’s into five classes, each of width 10, produces the distribution and histogram
pictured in Figure 3.4.6. Furthermore, suppose we have reason to believe that these
forty yi’s may be a random sample from a uniform probability function defined over
the interval [20, 70], that is,

f (t) = 1
70 − 20

= 1
50

, 20 ≤ t ≤ 70

Table 3.4.1

33.8 62.6 42.3 62.9 32.9 58.9 60.8 49.1 42.6 59.8
41.6 54.5 40.5 30.3 22.4 25.0 59.2 67.5 64.1 59.3
24.9 22.3 69.7 41.2 64.5 33.4 39.0 53.1 21.6 46.0
28.1 68.7 27.6 57.6 54.8 48.9 68.4 38.4 69.0 46.6

Recall Example 3.4.1. How can we appropriately draw the distribution of the yi’s and
the uniform probability model on the same graph?

Class Frequency

20 ≤ y < 30 7
30 ≤ y < 40 6
40 ≤ y < 50 9
50 ≤ y < 60 8
60 ≤ y < 70 10

40 0

4

8

12

3020 7050 6040

Frequency

y

Figure 3.4.6

Note, first, that f (t) and the histogram are not compatible in the sense that the
area under f (t) is (necessarily) 1 (= 50 × 1

50 ), but the sum of the areas of the bars
making up the histogram is 400:

histogram area = 10(7) + 10(6) + 10(9) + 10(8) + 10(10)

= 400

Nevertheless, we can “force” the total area of the five bars to match the area under
f (t) by redefining the scale of the vertical axis on the histogram. Specifically, fre-
quency needs to be replaced with the analog of probability density, which would be
the scale used on the vertical axis of any graph of f (t). Intuitively, the density asso-
ciated with, say, the interval [20, 30) would be defined as the quotient

7
40 × 10

because integrating that constant over the interval [20, 30) would give 7
40 , and the

latter does represent the estimated probability that an observation belongs to the
interval [20, 30).

Figure 3.4.7 shows a histogram of the data in Table 3.4.1, where the height of
each bar has been converted to a density, according to the formula

density (of a class) = class frequency
total no. of observations × class width



132 Chapter 3 Random Variables

Superimposed is the uniform probability model, f (t) = 1
50 , 20 ≤ t ≤ 70. Scaled in

this fashion, areas under both f (t) and the histogram are 1.

Class Density

20 ≤ y < 30 7/[40(10)] = 0.0175
30 ≤ y < 40 6/[40(10)] = 0.0150
40 ≤ y < 50 9/[40(10)] = 0.0225
50 ≤ y < 60 8/[40(10)] = 0.0200
60 ≤ y < 70 10/[40(10)] = 0.0250

0

0.01

0.02

0.03

3020 7050 6040

Density

Uniform probability
function

y

Figure 3.4.7

In practice, density-scaled histograms offer a simple, but effective, format for
examining the “fit” between a set of data and a presumed continuous model. We will
use it often in the chapters ahead. Applied statisticians have especially embraced
this particular graphical technique. Indeed, computer software packages that include
Histograms on their menus routinely give users the choice of putting either frequency
or density on the vertical axis.

CASE STUDY 3.4.1

Years ago, the V805 transmitter tube was standard equipment on many aircraft
radar systems. Table 3.4.2 summarizes part of a reliability study done on the
V805; listed are the lifetimes (in hrs) recorded for nine hundred three tubes (38).
Grouped into intervals of width 80, the densities for the nine classes are shown
in the last column.

Table 3.4.2

Lifetime (hrs) Number of Tubes Density

0–80 317 0.0044
80–160 230 0.0032

160–240 118 0.0016
240–320 93 0.0013
320–400 49 0.0007
400–480 33 0.0005
480–560 17 0.0002
560–700 26 0.0002
700+ 20 0.0002

903

Experience has shown that lifetimes of electrical equipment can often be
nicely modeled by the exponential probability function,

f (t) = λe−λt , t > 0

where the value of λ (for reasons explained in Chapter 5) is set equal to the
reciprocal of the average lifetime of the tubes in the sample. Can the distribution
of these data also be described by the exponential model?
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One way to answer such a question is to superimpose the proposed model on
a graph of the density-scaled histogram. The extent to which the two graphs are
similar then becomes an obvious measure of the appropriateness of the model.

For these data, λ would be 0.0056. Figure 3.4.8 shows the function

f (t) = 0.0056e−0.0056t

0.004

0.001

80 240 400 560500 700
0

V805 lifetimes (hrs)

f(t) = 0.0056e–0.0056t

Shaded area = P (lifetime > 500)

Probability
density

0.002

0.003

Figure 3.4.8

plotted on the same axes as the density-scaled histogram. Clearly, the agreement
is excellent, and we would have no reservations about using areas under f (t) to
estimate lifetime probabilities. How likely is it, for example, that a V805 tube
will last longer than five hundred hrs? Based on the exponential model, that
probability would be 0.0608:

P(V805 lifetime exceeds 500 hrs) =
∫ ∞

500
0.0056e−0.0056ydy

= −e−0.0056y
∣∣∞
500 = e−0.0056(500) = e−2.8 = 0.0608

CONTINUOUS PROBABILITY DENSITY FUNCTIONS

We saw in Section 3.3 how the introduction of discrete random variables facilitates
the solution of certain problems. The same sort of function can also be defined on
sample spaces with an uncountably infinite number of outcomes. Usually, the sample
space is an interval of real numbers—finite or infinite. The notation and techniques
for this type of random variable replace sums with integrals.

Definition 3.4.2
Let Y be a function from a sample space S to the real numbers. The function Y
is called a continuous random variable if there exists a function fY (y) such that
for any real numbers a and b with a < b

P(a ≤ Y ≤ b) =
∫ b

a
fY (y)dy
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The function fY (y) is the probability density function (pdf ) for Y .
As in the discrete case, the cumulative distribution function (cdf ) is defined

by

FY (y) = P(Y ≤ y)

The cdf in the continuous case is just an integral of fY (y), that is,

FY (y) =
∫ y

−∞
fY (t)dt

Let f (y) be an arbitrary real-valued function defined on some subset S of the
real numbers. If f (y) satisfies Definition 3.4.1, then f (y) = fY (y) for all y, where the
random variable Y is the identity mapping.

Example
3.4.4

We saw in Case Study 3.4.1 that lifetimes of V805 radar tubes can be nicely modeled
by the exponential probability function

f (t) = 0.0056e−0.0056t , t > 0

To couch that statement in random variable notation would simply require that we
define Y to be the life of a V805 radar tube. Then Y would be the identity mapping,
and the pdf for the random variable Y would be the same as the probability function,
f (t). That is, we would write

fY (y) = 0.0056e−0.0056y, y ≥ 0

Similarly, when we work with the bell-shaped normal distribution in later chapters,
we will write the model in random variable notation as

fY (y) = 1√
2πσ

e− 1
2 ( y−μ

σ )2

, −∞ < y < ∞

Example
3.4.5

Suppose we would like a continuous random variable Y to “select” a number be-
tween 0 and 1 in such a way that intervals near the middle of the range would be
more likely to be represented than intervals near either 0 or 1. One pdf having that
property is the function fY (y) = 6y(1−y), 0 ≤ y ≤ 1 (see Figure 3.4.9). Do we know
for certain that the function pictured in Figure 3.4.9 is a “legitimate” pdf? Yes, be-
cause fY (y) ≥ 0 for all y between 0 and 1, and

∫ 1
0 6y(1 − y) dy = 6[y2/2 − y3/3]

∣∣1
0 = 1.

Comment To simplify the way pdfs are written, it will be assumed that fY (y) = 0 for
all y outside the range actually specified in the function’s definition. In Example 3.4.5,

0

1

1

1
y

fY(y) = 6y(1 – y)

Probability
density

1
2

1
2

1
2

3
4

1
4

Figure 3.4.9
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for instance, the statement fY (y) = 6y(1 − y), 0 ≤ y ≤ 1, is to be interpreted as an
abbreviation for

fY (y) =

⎧⎪⎨
⎪⎩

0, y < 0
6y(1 − y), 0 ≤ y ≤ 1
0, y > 1

CONTINUOUS CUMULATIVE DISTRIBUTION FUNCTIONS

Associated with every random variable, discrete or continuous, is a cumulative dis-
tribution function. For discrete random variables (recall Definition 3.3.4), the cdf is
a nondecreasing step function, where the “jumps” occur at the values of t for which
the pdf has positive probability. For continuous random variables, the cdf is a mono-
tonically nondecreasing continuous function. In both cases, the cdf can be helpful in
calculating the probability that a random variable takes on a value in a given interval.
As we will see in later chapters, there are also several important relationships that
hold for continuous cdfs and pdfs. One such relationship is cited in Theorem 3.4.1.

Definition 3.4.3
The cdf for a continuous random variable Y is an indefinite integral of its pdf:

FY (y) =
∫ y

−∞
fY (t) dt = P({s ∈ S | Y(s) ≤ y}) = P(Y ≤ y)

Theorem
3.4.1

Let FY (y) be the cdf of a continuous random variable Y. Then

d
dy

FY (y) = fY (y)

Proof The statement of Theorem 3.4.1 follows immediately from the Fundamen-
tal Theorem of Calculus.

Theorem
3.4.2

Let Y be a continuous random variable with cdf FY (y). Then
a. P(Y > s) = 1 − FY (s)

b. P(r < Y ≤ s) = FY (s) − FY (r)

c. lim
y→∞ FY (y) = 1

d. lim
y→−∞ FY (y) = 0

Proof

a. P(Y > s) = 1 − P(Y ≤ s) since (Y > s) and (Y ≤ s) are complementary
events. But P(Y ≤ s) = FY (s), and the conclusion follows.

b. Since the set (r < Y ≤ s) = (Y ≤ s) − (Y ≤ r), P(r < Y ≤ s) = P(Y ≤ s)
− P(Y ≤ r) = FY (s) − FY (r).

c. Let {yn} be a set of values of Y, n = 1, 2, 3, . . . , where yn < yn+1 for all n,
and lim

n→∞ yn = ∞. If lim
n→∞ FY (yn) = 1 for every such sequence {yn}, then lim

y→∞
FY (y) = 1. To that end, set A1 = (Y ≤ y1), and let An = (yn−1 < Y ≤ yn)

(Continued on next page)
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(Theorem 3.4.2 continued)

for n = 2, 3, . . . . Then FY (yn) = P(∪n
k=1 Ak) =

n∑
k=1

P(Ak), since the Ak’s

are disjoint. Also, the sample space S = ∪∞
k=1 Ak, and by Axiom 4,

1 = P(S) = P(∪∞
k=1 Ak) =

∞∑
k=1

P(Ak). Putting these equalities together gives

1 =
∞∑

k=1
P(Ak) = lim

n→∞

n∑
k=1

P(Ak) = lim
n→∞ FY (yn).

d. lim
y→−∞ FY (y) = lim

y→−∞ P(Y ≤ y) = lim
y→−∞ P(−Y ≥ −y) = lim

y→−∞[1 − P(−Y ≤ −y)]

= 1 − lim
y→−∞ P(−Y ≤ −y) = 1 − lim

y→∞ P(−Y ≤ y)

= 1 − lim
y→∞ F−Y (y) = 0

Questions

3.4.1. Suppose fY (y) = 4y3, 0 ≤ y ≤ 1. Find P
(
0 ≤

Y ≤ 1
2

)
.

3.4.2. For the random variable Y with pdf fY (y) = 2
3 +

2
3 y, 0 ≤ y ≤ 1, find P

( 3
4 ≤ Y ≤ 1

)
.

3.4.3. Let fY (y) = 3
2 y2,−1 ≤ y ≤ 1. Find P

(|Y − 1
2 | < 1

4

)
.

Draw a graph of fY (y) and show the area representing
the desired probability.

3.4.4. For persons infected with a certain form of malaria,
the length of time spent in remission is described by the
continuous pdf fY (y) = 1

9 y2, 0 ≤ y ≤ 3, where Y is
measured in years. What is the probability that a malaria
patient’s remission lasts longer than one year?

3.4.5. For a high-risk driver, the time in days between the
beginning of a year and an accident has an exponential
pdf. Suppose an insurance company believes the proba-
bility that such a driver will be involved in an accident
in the first forty days is 0.25. What is the probability that
such a driver will be involved in an accident during the
first seventy-five days of the year?

3.4.6. Let n be a positive integer. Show that fY (y) =
(n + 2)(n + 1)yn(1 − y), 0 ≤ y ≤ 1, is a pdf.

3.4.7. Find the cdf for the random variable Y given in
Question 3.4.1. Calculate P

(
0 ≤ Y ≤ 1

2

)
using FY (y).

3.4.8. If Y is an exponential random variable, fY (y) =
λe−λy, y ≥ 0, find FY (y).

3.4.9. If the pdf for Y is

fY (y) =
{

0, |y| > 1
1 − |y|, |y| ≤ 1

find and graph FY (y).

3.4.10. A continuous random variableY has a cdf given by

FY (y) =
⎧⎨
⎩

0 y < 0
y2 0 ≤ y < 1
1 y ≥ 1

Find P
( 1

2 < Y ≤ 3
4

)
two ways—first, by using the cdf and

second, by using the pdf.

3.4.11. A random variable Y has cdf

FY (y) =
⎧⎨
⎩

0 y < 1
ln y 1 ≤ y ≤ e
1 e < y

Find
(a) P(Y < 2)
(b) P

(
2 < Y ≤ 2 1

2

)
(c) P

(
2 < Y < 2 1

2

)
(d) fY (y)

3.4.12. The cdf for a random variable Y is defined by
FY (y) = 0 for y < 0; FY (y) = 4y3 − 3y4 for 0 ≤ y ≤ 1;
and FY (y) = 1 for y > 1. Find P

( 1
4 ≤ Y ≤ 3

4

)
by integrat-

ing fY (y).

3.4.13. Suppose FY (y) = 1
12 (y2 + y3), 0 ≤ y ≤ 2. Find

fY (y).

3.4.14. In a certain country, the distribution of a family’s
disposable income, Y , is described by the pdf fY (y) =
ye−y, y ≥ 0. Find FY (y).

3.4.15. The logistic curve F (y) = 1
1+e−y ,−∞ < y < ∞,

can represent a cdf since it is increasing, lim
y→−∞

1
1+e−y = 0,

and lim
y→+∞

1
1+e−y = 1. Verify these three assertions and also

find the associated pdf.
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3.4.16. Let Y be the random variable described in Ques-
tion 3.4.1. Define W = 2Y + 1. Find fW (w). For which
values of w is fW (w) �= 0?

3.4.17. Suppose that fY (y) is a continuous and symmetric
pdf, where symmetry is the property that fY (y) = fY (−y)
for all y. Show that P(−a ≤ Y ≤ a) = 2FY (a) − 1.

3.4.18. Let Y be a random variable denoting the age at
which a piece of equipment fails. In reliability theory, the

probability that an item fails at time y given that it has
survived until time y is called the hazard rate, h(y). In
terms of the pdf and cdf,

h(y) = fY (y)
1 − FY (y)

Find h(y) if Y has an exponential pdf (see Question 3.4.8).

3.5 Expected Values
Probability density functions, as we have already seen, provide a global overview of
a random variable’s behavior. If X is discrete, pX (k) gives P(X = k) for all k; if Y
is continuous, and A is any interval or a countable union of intervals, P(Y ε A) =∫

A fY (y) dy. Detail that explicit, though, is not always necessary—or even helpful.
There are times when a more prudent strategy is to focus the information contained
in a pdf by summarizing certain of its features with single numbers.

The first such feature that we will examine is central tendency, a term referring
to the “average” value of a random variable. Consider the pdfs pX (k) and fY (y)
pictured in Figure 3.5.1. Although we obviously cannot predict with certainty what
values any future X ’s and Y ’s will take on, it seems clear that X values will tend to
lie somewhere near μX , and Y values somewhere near μY . In some sense, then, we
can characterize pX (k) by μX , and fY (y) by μY .

mX my

pX  (k)
fY (y)

Figure 3.5.1

The most frequently used measure for describing central tendency—that is,
for quantifying μX and μY —is the expected value. Discussed at some length in this
section and in Section 3.9, the expected value of a random variable is a slightly
more abstract formulation of what we are already familiar with in simple discrete
settings as the arithmetic average. Here, though, the values included in the average
are “weighted” by the pdf.

Gambling affords a familiar illustration of the notion of an expected value. Con-
sider the game of roulette. After bets are placed, the croupier spins the wheel and
declares one of thirty-eight numbers, 00, 0, 1, 2, . . ., 36, to be the winner. Disregarding
what seems to be a perverse tendency of many roulette wheels to land on numbers
for which no money has been wagered, we will assume that each of these thirty-eight
numbers is equally likely (although only the eighteen numbers 1, 3, 5, . . ., 35 are con-
sidered to be odd and only the eighteen numbers 2, 6, 4, . . ., 36 are considered to be
even). Suppose that our particular bet (at “even money”) is $1 on odds. If the ran-
dom variable X denotes our winnings, then X takes on the value 1 if an odd number
occurs, and −1 otherwise. Therefore,

pX (1) = P(X = 1) = 18
38

= 9
19
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and

pX (−1) = P(X = −1) = 20
38

= 10
19

Then 9
19 of the time we will win $1 and 10

19 of the time we will lose $1. Intuitively, then,
if we persist in this foolishness, we stand to lose, on the average, a little more than
5¢ each time we play the game:

“expected” winnings = $1 · 9
19

+ (−$1) · 10
19

= −$0.053 .= −5¢

The number −0.053 is called the expected value of X .
Physically, an expected value can be thought of as a center of gravity. Here, for

example, imagine two bars of height 10
19 and 9

19 positioned along a weightless X -axis
at the points −1 and +1, respectively (see Figure 3.5.2). If a fulcrum were placed at
the point −0.053, the system would be in balance, implying that we can think of that
point as marking off the center of the random variable’s distribution.

10
19

9
19

–1 0

–0.053

1

Figure 3.5.2

If X is a discrete random variable taking on each of its values with the same
probability, the expected value of X is simply the everyday notion of an arithmetic
average or mean:

expected value of X =
∑
all k

k · 1
n

= 1
n

∑
all k

k

Extending this idea to a discrete X described by an arbitrary pdf, pX (k), gives

expected value of X =
∑
all k

k · pX (k) (3.5.1)

For a continuous random variable Y , the summation in Equation 3.5.1 is replaced by
an integration and k · pX (k) becomes y · fY (y).

Definition 3.5.1
Let X be a discrete random variable with probability function pX (k). The
expected value of X is denoted E(X ) (or sometimes μ or μX ) and is given by

E(X ) = μ = μX =
∑
all k

k · pX (k)

Similarly, if Y is a continuous random variable with pdf fY (y),

E(Y) = μ = μY =
∫ ∞

−∞
y · fY (y) dy
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Comment We assume that both the sum and the integral in Definition 3.5.1 con-
verge absolutely:

∑
all k

|k|pX (k) < ∞
∫ ∞

−∞
|y| fY (y) dy < ∞

If not, we say that the random variable has no finite expected value. One immediate
reason for requiring absolute convergence is that a convergent sum that is not ab-
solutely convergent depends on the order in which the terms are added, and order
should obviously not be a consideration when defining an average.

Example
3.5.1

Suppose X is a binomial random variable with p = 5
9 and n = 3. Then pX (k) =

P(X = k) = (3
k

)( 5
9

)k( 4
9

)3−k, k = 0, 1, 2, 3. What is the expected value of X?
Applying Definition 3.5.1 gives

E(X ) =
3∑

k=0

k ·
(

3
k

)(
5
9

)k (4
9

)3−k

= (0)
(

64
729

)
+ (1)

(
240
729

)
+ (2)

(
300
729

)
+ (3)

(
125
729

)
= 1215

729
= 5

3
= 3

(
5
9

)

Comment Notice that the expected value here reduces to five-thirds, which can be
written as three times five-ninths, the latter two factors being n and p, respectively.
As the next theorem proves, that relationship is not a coincidence.

Theorem
3.5.1

Suppose X is a binomial random variable with parameters n and p. Then
E(X ) = np.

Proof According to Definition 3.5.1, E(X ) for a binomial random variable is the
sum

E(X ) =
n∑

k=0

k · pX (k) =
n∑

k=0

k
(

n
k

)
pk(1 − p)n−k

=
n∑

k=0

k · n!
k!(n − k)!

pk(1 − p)n−k

=
n∑

k=1

n!
(k − 1)!(n − k)!

pk(1 − p)n−k (3.5.2)

At this point, a trick is called for. If E(X ) = ∑
all k

g (k) can be factored in such a

way that E(X ) = h
∑
all k

pX ∗(k), where pX ∗(k) is the pdf for some random variable

X ∗, then E(X ) = h, since the sum of a pdf over its entire range is 1. Here, suppose
that np is factored out of Equation 3.5.2. Then

E(X ) = np
n∑

k=1

(n − 1)!
(k − 1)!(n − k)!

pk−1(1 − p)n−k

= np
n∑

k=1

(
n − 1
k − 1

)
pk−1(1 − p)n−k

(Continued on next page)
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(Theorem 3.5.1 continued)

Now, let j = k − 1. It follows that

E(X ) = np
n−1∑
j=0

(
n − 1

j

)
pj(1 − p)n− j−1

Finally, letting m = n − 1 gives

E(X ) = np
m∑

j=0

(
m
j

)
pj(1 − p)m− j

and, since the value of the sum is 1 (why?),

E(X ) = np (3.5.3)

Comment The statement of Theorem 3.5.1 should come as no surprise. If a
multiple-choice test, for example, has one hundred questions, each with five pos-
sible answers, we would “expect” to get twenty correct, just by guessing. But if the
random variable X denotes the number of correct answers (out of one hundred),
20 = E(X ) = 100

( 1
5

) = np.

Example
3.5.2

An urn contains nine chips, five red and four white. Three are drawn out at random
without replacement. Let X denote the number of red chips in the sample. Find
E(X ).

From Section 3.2, we recognize X to be a hypergeometric random variable,
where

P(X = k) = pX (k) =
(5

k

)( 4
3−k

)
(9

3

) , k = 0, 1, 2, 3

Therefore,

E(X ) =
3∑

k=0

k ·
(5

k

)( 4
3−k

)
(9

3

)
= (0)

(
4
84

)
+ (1)

(
30
84

)
+ (2)

(
40
84

)
+ (3)

(
10
84

)

= 5
3

Comment As was true in Example 3.5.1, the value found here for E(X ) suggests
a general formula—in this case, for the expected value of a hypergeometric random
variable.

Theorem
3.5.2

Suppose X is a hypergeometric random variable with parameters r, w, and n. That
is, suppose an urn contains r red balls and w white balls. A sample of size n is drawn
simultaneously from the urn. Let X be the number of red balls in the sample. Then
E(X ) = rn

r+w
.

Proof See Question 3.5.25.
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Comment Let p represent the proportion of red balls in an urn, that is, p = r
r+w

.
The formula, then, for the expected value of a hypergeometric random variable
has the same structure as the formula for the expected value of a binomial random
variable:

E(X ) = rn
r + w

= n
r

r + w
= np

Example
3.5.3

Among the more common versions of the “numbers” racket is a game called D.J., its
name deriving from the fact that the winning ticket is determined from Dow Jones
averages. Three sets of stocks are used: Industrials, Transportations, and Utilities.
Traditionally, the three are quoted at two different times, 11 a.m. and noon. The last
digits of the earlier quotation are arranged to form a three-digit number; the noon
quotation generates a second three-digit number, formed the same way. Those two
numbers are then added together and the last three digits of that sum become the
winning pick. Figure 3.5.3 shows a set of quotations for which 906 would be declared
the winner.

Industrials
Transportation
Utilities

845.6 1
375.2 7
110.6 3

11 A.M. quotation

Industrials
Transportation
Utilities

848.1 7
376.7 3
110.6 3

173 733

906 = Winning number

+

Noon quotation

=

Figure 3.5.3

The payoff in D.J. is 700 to 1. Suppose that we bet $5. How much do we stand to
win, or lose, on the average?

Let p denote the probability of our number being the winner and let X denote
our earnings. Then

X =
{

$3500 with probability p
−$5 with probability 1 − p

and

E(X ) = $3500 · p − $5 · (1 − p)

Our intuition would suggest (and this time it would be correct!) that each of the
possible winning numbers, 000 through 999, is equally likely. That being the case,
p = 1/1000 and

E(X ) = $3500 ·
(

1
1000

)
− $5 ·

(
999

1000

)
= −$1.50

On the average, then, we lose $1.50 on a $5.00 bet.

Example
3.5.4

Suppose that fifty people are to be given a blood test to see who has a certain disease.
The obvious laboratory procedure is to examine each person’s blood individually,
meaning that fifty tests would eventually be run. An alternative strategy is to divide
each person’s blood sample into two parts—say, A and B. All of the A’s would then
be mixed together and treated as one sample. If that “pooled” sample proved to be
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negative for the disease, all fifty individuals must necessarily be free of the infection,
and no further testing would need to be done. If the pooled sample gave a positive
reading, of course, all fifty B samples would have to be analyzed separately. Under
what conditions would it make sense for a laboratory to consider pooling the fifty
samples?

In principle, the pooling strategy is preferable (i.e., more economical) if it can
substantially reduce the number of tests that need to be performed. Whether or not
it can do so depends ultimately on the probability p that a person is infected with the
disease.

Let the random variable X denote the number of tests that will have to be per-
formed if the samples are pooled. Clearly,

X =
{

1 if none of the fifty is infected
51 if at least one of the fifty is infected

But

P(X = 1) = pX (1) = P(None of the fifty is infected)

= (1 − p)50

(assuming independence), and

P(X = 51) = pX (51) = 1 − P(X = 1) = 1 − (1 − p)50

Therefore,

E(X ) = 1 · (1 − p)50 + 51 · [1 − (1 − p)50]

Table 3.5.1 shows E(X ) as a function of p. As our intuition would suggest, the
pooling strategy becomes increasingly feasible as the prevalence of the disease di-
minishes. If the chance of a person being infected is 1 in 1000, for example, the
pooling strategy requires an average of only 3.4 tests, a dramatic improvement over
the fifty tests that would be needed if the samples were tested one by one. On the
other hand, if 1 in 10 individuals is infected, pooling would be clearly inappropriate,
requiring more than fifty tests [E(X ) = 50.7].

Table 3.5.1

p E(X)

0.5 51.0
0.1 50.7
0.01 20.8
0.001 3.4
0.0001 1.2

Example
3.5.5

Consider the following game. A fair coin is flipped until the first tail appears; we win
$2 if it appears on the first toss, $4 if it appears on the second toss, and, in general,
$2k if it first occurs on the kth toss. Let the random variable X denote our winnings.
How much should we have to pay in order for this to be a fair game? (Note: A fair
game is one where the difference between the ante and E(X ) is 0.)

Known as the St. Petersburg paradox, this problem has a rather unusual answer.
First, note that

pX (2k) = P(X = 2k) = 1
2k

, k = 1, 2, . . .
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Therefore,

E(X ) =
∑
all k

2k pX (2k) =
∞∑

k=1

2k · 1
2k

= 1 + 1 + 1 + · · ·

which is a divergent sum. That is, X does not have a finite expected value, so in order
for this game to be fair, our ante would have to be an infinite amount of money!

Comment Mathematicians have been trying to “explain” the St. Petersburg para-
dox for almost two hundred years (61). The answer seems clearly absurd—no gam-
bler would consider paying even $25 to play such a game, much less an infinite
amount—yet the computations involved in showing that X has no finite expected
value are unassailably correct. Where the difficulty lies, according to one common
theory, is with our inability to put in perspective the very small probabilities of win-
ning very large payoffs. Furthermore, the problem assumes that our opponent has
infinite capital, which is an impossible state of affairs. We get a much more reason-
able answer for E(X ) if the stipulation is added that our winnings can be at most, say,
$1000 (see Question 3.5.19) or if the payoffs are assigned according to some formula
other than 2k (see Question 3.5.20).

Comment There are two important lessons to be learned from the St. Petersburg
paradox. First is the realization that E(X ) is not necessarily a meaningful charac-
terization of the “location” of a distribution. Question 3.5.24 shows another situa-
tion where the formal computation of E(X ) gives a similarly inappropriate answer.
Second, we need to be aware that the notion of expected value is not necessarily
synonymous with the concept of worth. Just because a game, for example, has a posi-
tive expected value—even a very large positive expected value—does not imply that
someone would want to play it. Suppose, for example, that you had the opportunity
to spend your last $10,000 on a sweepstakes ticket where the prize was $1 billion but
the probability of winning was only one in ten thousand. The expected value of such
a bet would be over $90,000,

E(X ) = $1,000,000,000
(

1
10,000

)
+ (−$10,000)

(
9,999

10,000

)
= $90,001

but it is doubtful that many people would rush out to buy a ticket. (Economists have
long recognized the distinction between a payoff’s numerical value and its perceived
desirability. They refer to the latter as utility.)

Example
3.5.6

The distance, Y , that a molecule in a gas travels before colliding with another
molecule can be modeled by the exponential pdf

fY (y) = 1
μ

e−y/μ, y ≥ 0

where μ is a positive constant known as the mean free path. Find E(Y).
Since the random variable here is continuous, its expected value is an integral:

E(Y) =
∫ ∞

0
y

1
μ

e−y/μ dy



144 Chapter 3 Random Variables

Let w = y/μ, so that dw = 1/μ dy. Then E(Y) = μ
∫∞

0 we−wdw. Setting u = w and
dv = e−wdw and integrating by parts gives

E(Y) = μ[−we−w − e−w]
∣∣∞
0 = μ (3.5.4)

Equation 3.5.4 shows that μ is aptly named—it does, in fact, represent the av-
erage distance a molecule travels, free of any collisions. Nitrogen (N2), for example,
at room temperature and standard atmospheric pressure has μ = 0.00005 cm. An
N2 molecule, then, travels that far before colliding with another N2 molecule, on the
average.

Example
3.5.7

One continuous pdf that has a number of interesting applications in physics is the
Rayleigh distribution, where the pdf is given by

fY (y) = y
a2

e−y2/2a2
, a > 0; 0 ≤ y < ∞ (3.5.5)

Calculate the expected value for a random variable having a Rayleigh distribution.
From Definition 3.5.1,

E(Y) =
∫ ∞

0
y · y

a2
e−y2/2a2

dy

Let v = y/(
√

2a). Then

E(Y) = 2
√

2a
∫ ∞

0
v2e−v2

dv

The integrand here is a special case of the general form v2ke−v2
. For k = 1,∫ ∞

0
v2ke−v2

dv =
∫ ∞

0
v2e−v2

dv = 1
4

√
π

Therefore,

E(Y) = 2
√

2a · 1
4

√
π

= a
√

π/2

Comment The pdf here is named for John William Strutt, Baron Rayleigh, the
nineteenth- and twentieth-century British physicist who showed that Equation 3.5.5
is the solution to a problem arising in the study of wave motion. If two waves are
superimposed, it is well known that the height of the resultant at any time t is sim-
ply the algebraic sum of the corresponding heights of the waves being added (see
Figure 3.5.4). Seeking to extend that notion, Rayleigh posed the following question:
If n waves, each having the same amplitude h and the same wavelength, are super-
imposed randomly with respect to phase, what can we say about the amplitude R of
the resultant? Clearly, R is a random variable, its value depending on the particu-
lar collection of phase angles represented by the sample. What Rayleigh was able to
show in his 1880 paper (177) is that when n is large, the probabilistic behavior of R is
described by the pdf

fR(r) = 2r
nh2

· e−r2/nh2
, r > 0

which is just a special case of Equation 3.5.5 with a =
√

2/nh2.
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Resultant

Wave 1

Wave 2

Figure 3.5.4

A SECOND MEASURE OF CENTRAL TENDENCY: THE MEDIAN

While the expected value is the most frequently used measure of a random variable’s
central tendency, it does have a weakness that sometimes makes it misleading and
inappropriate. Specifically, if one or several possible values of a random variable are
either much smaller or much larger than all the others, the value of μ can be distorted
in the sense that it no longer reflects the center of the distribution in any meaningful
way. For example, suppose a small community consists of a homogeneous group of
middle-range salary earners, and then Ms. Rich moves to town. Obviously, the town’s
average salary before and after the multibillionaire arrives will be quite different,
even though she represents only one new value of the “salary” random variable.

It would be helpful to have a measure of central tendency that is not so sensi-
tive to “outliers” or to probability distributions that are markedly skewed. One such
measure is the median, which, in effect, divides the area under a pdf into two equal
areas.

Definition 3.5.2
If X is a discrete random variable, the median, m, is that point for which P(X <

m) = P(X > m). In the event that P(X ≤ m) = 0.5 and P(X ≥ m′) = 0.5, the
median is defined to be the arithmetic average, (m + m′)/2.

If Y is a continuous random variable, its median is the solution to the integral
equation

∫ m
−∞ fY (y) dy = 0.5.

Example
3.5.8

If a random variable’s pdf is symmetric, μ and m will be equal. Should pX (k) or fY (y)
not be symmetric, though, the difference between the expected value and the median
can be considerable, especially if the asymmetry takes the form of extreme skewness.
The situation described here is a case in point.

Soft-glow makes a 60-watt light bulb that is advertised to have an average life of
one thousand hours. Assuming that the performance claim is valid, is it reasonable
for consumers to conclude that the Soft-glow bulbs they buy will last for approxi-
mately one thousand hours?

No! If the average life of a bulb is one thousand hours, the (continuous) pdf,
fY (y), modeling the length of time, Y , that it remains lit before burning out is likely
to have the form

fY (y) = 0.001e−0.001y, y > 0 (3.5.6)

(for reasons explained in Chapter 4). But Equation 3.5.6 is a very skewed pdf, having
a shape much like the curve drawn in Figure 3.4.8. The median for such a distribution
will lie considerably to the left of the mean.
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More specifically, the median lifetime for these bulbs—according to Defini-
tion 3.5.2—is the value m for which∫ m

0
0.001e−0.001ydy = 0.5

But
∫ m

0 0.001e−0.001ydy = 1 − e−0.001m. Setting the latter equal to 0.5 implies that

m = (1/−0.001) ln(0.5) = 693

So, even though the average life of one of these bulbs is one thousand hours, there
is a 50% chance that the one you buy will last less than six hundred ninety-three
hours.

Questions

3.5.1. Recall the game of Keno described in Ques-
tion 3.2.26. The following are all the payoffs on a $1 wa-
ger where the player has bet on ten numbers. Calculate
E(X ), where the random variable X denotes the amount
of money won.

Number of Correct Guesses Payoff Probability

< 5 −$ 1 .935
5 2 .0514
6 18 .0115
7 180 .0016
8 1,300 1.35 × 10−4

9 2,600 6.12 × 10−6

10 10,000 1.12 × 10−7

3.5.2. The roulette wheels in Monte Carlo typically have
a 0 but not a 00. What is the expected value of betting on
red in this case? If a trip to Monte Carlo costs $3000, how
much would a player have to bet to justify gambling there
rather than Las Vegas?

3.5.3. The pdf describing the daily profit, X , earned by
Acme Industries was derived in Example 3.3.7. Find the
company’s average daily profit.

3.5.4. In the game of redball, two drawings are made with-
out replacement from a bowl that has four white ping-
pong balls and two red ping-pong balls. The amount won is
determined by how many of the red balls are selected. For
a $5 bet, a player can opt to be paid under either Rule A
or Rule B, as shown. If you were playing the game, which
would you choose? Why?

A B

No. of Red No. of Red
Balls Drawn Payoff Balls Drawn Payoff

0 0 0 0
1 $2 1 $1
2 $10 2 $20

3.5.5. Suppose a life insurance company sells a $50,000,
five-year term policy to a twenty-five-year-old woman. At
the beginning of each year the woman is alive, the com-
pany collects a premium of $P. The probability that the
woman dies and the company pays the $50,000 is given in
the table below. So, for example, in Year 3, the company
loses $50,000 – $P with probability 0.00054 and gains $P
with probability 1 − 0.00054 = 0.99946. If the company
expects to make $1000 on this policy, what should P be?

Year Probability of Payoff

1 0.00051
2 0.00052
3 0.00054
4 0.00056
5 0.00059

3.5.6. A manufacturer has one hundred memory chips in
stock, 4% of which are likely to be defective (based on
past experience). A random sample of twenty chips is se-
lected and shipped to a factory that assembles laptops.
Let X denote the number of computers that receive faulty
memory chips. Find E(X ).
3.5.7. Records show that 642 new students have just en-
tered a certain Florida school district. Of those 642, a total
of 125 are not adequately vaccinated. The district’s physi-
cian has scheduled a day for students to receive what-
ever shots they might need. On any given day, though,
12% of the district’s students are likely to be absent. How
many new students, then, can be expected to remain inad-
equately vaccinated?

3.5.8. Calculate E(Y) for the following pdfs:
(a) fY (y) = 3(1 − y)2, 0 ≤ y ≤ 1
(b) fY (y) = 4ye−2y, y ≥ 0

(c) fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

3
4 , 0 ≤ y ≤ 1

1
4 , 2 ≤ y ≤ 3

0, elsewhere

(d) fY (y) = sin y, 0 ≤ y ≤ π
2
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3.5.9. Recall Question 3.4.4, where the length of time
Y (in years) that a malaria patient spends in remission
has pdf fY (y) = 1

9 y2, 0 ≤ y ≤ 3. What is the average length
of time that such a patient spends in remission?

3.5.10. Let the random variable Y have the uniform dis-
tribution over [a, b]; that is, fY (y) = 1

b−a for a ≤ y ≤ b.
Find E(Y) using Definition 3.5.1. Also, deduce the value
of E(Y), knowing that the expected value is the center of
gravity of fY (y).

3.5.11. Show that the expected value associated with the
exponential distribution, fY (y) =λe−λy, y > 0, is 1/λ,
where λ is a positive constant.

3.5.12. Show that

fY (y) = 1
y2

, y ≥ 1

is a valid pdf but that Y does not have a finite expected
value.

3.5.13. Based on recent experience, ten-year-old passen-
ger cars going through a motor vehicle inspection station
have an 80% chance of passing the emissions test. Sup-
pose that two hundred such cars will be checked out next
week. Write two formulas that show the number of cars
that are expected to pass.

3.5.14. Suppose that fifteen observations are chosen at
random from the pdf fY (y) = 3y2, 0 ≤ y ≤ 1. Let X de-
note the number that lie in the interval

( 1
2 , 1

)
. Find E(X ).

3.5.15. A city has 74,806 registered automobiles. Each
is required to display a bumper decal showing that the
owner paid an annual wheel tax of $50. By law, new de-
cals need to be purchased during the month of the owner’s
birthday. How much wheel tax revenue can the city expect
to receive in November?

3.5.16. Regulators have found that twenty-three of
the sixty-eight investment companies that filed for
bankruptcy in the past five years failed because of fraud,
not for reasons related to the economy. Suppose that nine
additional firms will be added to the bankruptcy rolls dur-
ing the next quarter. How many of those failures are likely
to be attributed to fraud?

3.5.17. An urn contains four chips numbered 1 through 4.
Two are drawn without replacement. Let the random vari-
able X denote the larger of the two. Find E(X ).

3.5.18. A fair coin is tossed three times. Let the random
variable X denote the total number of heads that appear
times the number of heads that appear on the first and
third tosses. Find E(X ).

3.5.19. How much would you have to ante to make the
St. Petersburg game “fair” (recall Example 3.5.5) if the

most you could win was $1000? That is, the payoffs are
$2k for 1 ≤ k ≤ 9, and $1000 for k ≥ 10.

3.5.20. For the St. Petersburg problem (Example 3.5.5),
find the expected payoff if
(a) the amounts won are ck instead of 2k, where 0 <

c < 2.

(b) the amounts won are log 2k. [This was a modifi-
cation suggested by D. Bernoulli (a nephew of James
Bernoulli) to take into account the decreasing marginal
utility of money—the more you have, the less useful a bit
more is.]

3.5.21. A fair die is rolled three times. Let X de-
note the number of different faces showing, X = 1, 2, 3.

Find E(X ).

3.5.22. Two distinct integers are chosen at random from
the first five positive integers. Compute the expected
value of the absolute value of the difference of the two
numbers.

3.5.23. Suppose that two evenly matched teams are play-
ing in the World Series. On the average, how many games
will be played? (The winner is the first team to get four
victories.) Assume that each game is an independent
event.

3.5.24. An urn contains one white chip and one black
chip. A chip is drawn at random. If it is white, the “game”
is over; if it is black, that chip and another black one are
put into the urn. Then another chip is drawn at random
from the “new” urn and the same rules for ending or con-
tinuing the game are followed (i.e., if the chip is white,
the game is over; if the chip is black, it is placed back in
the urn, together with another chip of the same color).
The drawings continue until a white chip is selected. Show
that the expected number of drawings necessary to get a
white chip is not finite.

3.5.25. A random sample of size n is drawn without re-
placement from an urn containing r red chips and w white
chips. Define the random variable X to be the number
of red chips in the sample. Use the summation tech-
nique described in Theorem 3.5.1 to prove that E(X ) =
rn/(r + w).

3.5.26. Given that X is a nonnegative, integer-valued ran-
dom variable, show that

E(X ) =
∞∑

k=1

P(X ≥ k)

3.5.27. Find the median for each of the following pdfs:
(a) fY (y) = (θ + 1)yθ, 0 ≤ y ≤ 1, where θ > 0
(b) fY (y) = y + 1

2 , 0 ≤ y ≤ 1
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THE EXPECTED VALUE OF A FUNCTION OF A RANDOM VARIABLE

There are many situations that call for finding the expected value of a function of a
random variable—say, Y = g (X ). One common example would be change of scale
problems, where g (X ) = aX + b for constants a and b. Sometimes the pdf of the
new random variable Y can be easily determined, in which case E(Y) can be cal-
culated by simply applying Definition 3.5.1. Often, though, fY (y) can be difficult to
derive, depending on the complexity of g (X ). Fortunately, Theorem 3.5.3 allows us
to calculate the expected value of Y without knowing the pdf for Y .

Theorem
3.5.3

Suppose X is a discrete random variable with pdf pX (k). Let g (X ) be a function
of X. Then the expected value of the random variable g (X ) is given by

E[g (X )] =
∑
all k

g (k) · pX (k)

provided that
∑
all k

|g (k)|pX (k) < ∞.

If Y is a continuous random variable with pdf fY (y), and if g (Y) is a continuous
function, then the expected value of the random variable g(Y) is

E[g (Y)] =
∫ ∞

−∞
g (y) · fY (y) dy

provided that
∫∞
−∞ |g (y)| fY (y) dy < ∞.

Proof We will prove the result for the discrete case. See (155) for details showing
how the argument is modified when the pdf is continuous. Let W = g (X ). The set
of all possible k values, k1, k2, . . ., of X will give rise to a set of w values, w1,w2, . . . ,
where, in general, more than one k may be associated with a given w. Let Sj be the
set of k’s for which g (k) = w j [so ∪ jS j is the entire set of k values for which pX (k)
is defined]. We obviously have that P(W = w j) = P(X ∈ Sj), and we can write

E(W) =
∑

j

w j · P(W = w j) =
∑

j

w j · P(X ∈ Sj)

=
∑

j

w j

∑
k∈S j

pX (k)

=
∑

j

∑
k∈S j

w j · pX (k)

=
∑

j

∑
k∈S j

g (k)pX (k) (why?)

=
∑
all k

g (k)pX (k)

Since it is being assumed that
∑
all k

|g (k)|pX (k) < ∞, the statement of the theorem

holds.

Corollary
3.5.1

For any random variable W, E(aW +b) = aE(W)+b, where a and b are constants.

Proof Suppose W is continuous; the proof for the discrete case is similar. By The-
orem 3.5.3, E(aW + b) = ∫∞

−∞(aw + b) fW (w) dw, but the latter can be written
a
∫∞
−∞ w · fW (w) dw + b

∫∞
−∞ fW (w) dw = aE(W) + b · 1 = aE(W) + b.
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Example
3.5.9

Suppose that X is a random variable whose pdf is nonzero only for the three values
−2, 1, and +2:

k pX (k)

−2
5
8

1
1
8

2
2
8
1

Let W = g (X ) = X 2. Verify the statement of Theorem 3.5.3 by computing E(W)
two ways—first, by finding pW (w) and summing w · pW (w) over w and, second, by
summing g (k) · pX (k) over k.

By inspection, the pdf for W is defined for only two values, 1 and 4:

w (= k2) pW (w)

1
1
8

4
7
8
1

Taking the first approach to find E(W) gives

E(W) =
∑
w

w · pW (w) = 1 ·
(

1
8

)
+ 4 ·

(
7
8

)

= 29
8

To find the expected value via Theorem 3.5.3, we take

E[g (X )] =
∑

k

k2 · pX (k) = (−2)2 · 5
8

+ (1)2 · 1
8

+ (2)2 · 2
8

with the sum here reducing to the answer we already found, 29
8 .

For this particular situation, neither approach was easier than the other. In gen-
eral, that will not be the case. Finding pW (w) is often quite difficult, and on those
occasions Theorem 3.5.3 can be of great benefit.

Example
3.5.10

Suppose the amount of propellant, Y , put into a can of spray paint is a random vari-
able with pdf

fY (y) = 3y2, 0 < y < 1

Experience has shown that the largest surface area that can be painted by a can
having Y amount of propellant is twenty times the area of a circle generated by a
radius of Y ft. If the Purple Dominoes, a newly formed urban gang, have just stolen
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their first can of spray paint, can they expect to have enough to cover a 5′ ×8′ subway
panel with grafitti?

No. By assumption, the maximum area (in ft2) that can be covered by a can of
paint is described by the function

g (Y) = 20πY 2

According to the second statement in Theorem 3.5.3, though, the average value for
g(Y) is slightly less than the desired 40 ft2:

E[g (Y)] =
∫ 1

0
20πy2 · 3y2 dy

= 60πy5

5

∣∣∣∣1
0

= 12π

= 37.7 ft2

Example
3.5.11

A fair coin is tossed until a head appears. You will be given
( 1

2

)k dollars if that first
head occurs on the kth toss. How much money can you expect to be paid?

Let the random variable X denote the toss at which the first head appears. Then

pX (k) = P(X = k) = P(First k − 1 tosses are tails and kth toss is a head)

=
(

1
2

)k−1

· 1
2

=
(

1
2

)k

, k = 1, 2, . . .

Moreover,

E(amount won) = E

[(
1
2

)X
]

= E[g (X )] =
∑
all k

g (k) · pX (k)

=
∞∑

k=1

(
1
2

)k

·
(

1
2

)k

=
∞∑

k=1

(
1
2

)2k

=
∞∑

k=1

(
1
4

)k

=
∞∑

k=0

(
1
4

)k

−
(

1
4

)0

= 1

1 − 1
4

− 1

= $0.33

Example
3.5.12

In one of the early applications of probability to physics, James Clerk Maxwell
(1831–1879) showed that the speed S of a molecule in a perfect gas has a density
function given by

fS(s) = 4

√
a3

π
s2e−as2

, s > 0
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where a is a constant depending on the temperature of the gas and the mass of the
particle. What is the average energy of a molecule in a perfect gas?

Let m denote the molecule’s mass. Recall from physics that energy (W), mass
(m), and speed (S) are related through the equation

W = 1
2

mS2 = g (S)

To find E(W) we appeal to the second part of Theorem 3.5.3:

E(W) =
∫ ∞

0
g (s) fS(s) ds

=
∫ ∞

0

1
2

ms2 · 4

√
a3

π
s2e−as2

ds

= 2m

√
a3

π

∫ ∞

0
s4e−as2

ds

We make the substitution t = as2. Then

E(W) = m
a
√

π

∫ ∞

0
t3/2e−tdt

But ∫ ∞

0
t3/2e−tdt =

(
3
2

)(
1
2

)√
π (see Section 4.4.6)

so

E(energy) = E(W) = m
a
√

π

(
3
2

)(
1
2

)√
π

= 3m
4a

Example
3.5.13

Consolidated Industries is planning to market a new product and they are trying to
decide how many to manufacture. They estimate that each item sold will return a
profit of m dollars; each one not sold represents an n-dollar loss. Furthermore, they
suspect the demand for the product, V , will have an exponential distribution,

fV (v) =
(

1
λ

)
e−v/λ, v > 0

How many items should the company produce if they want to maximize their ex-
pected profit? (Assume that n, m, and λ are known.)

If a total of x items are made, the company’s profit can be expressed as a function
Q(v), where

Q(v) =
{

mv − n(x − v) if v < x
mx if v ≥ x

and v is the number of items sold. It follows that their expected profit is

E[Q(V)] =
∫ ∞

0
Q(v) · fV (v) dv

=
∫ x

0
[(m + n)v − nx]

(
1
λ

)
e−v/λ dv +

∫ ∞

x
mx ·

(
1
λ

)
e−v/λ dv (3.5.7)
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The integration here is straightforward, though a bit tedious. Equation 3.5.7 eventu-
ally simplifies to

E[Q(V)] = λ · (m + n) − λ · (m + n)e−x/λ − nx

To find the optimal production level, we need to solve dE[Q(V)]/dx = 0 for x. But

dE[Q(V)]
dx

= (m + n)e−x/λ − n

and the latter equals zero when

x = −λ · ln
(

n
m + n

)

Example
3.5.14

A point, y, is selected at random from the interval [0, 1], dividing the line into two
segments (see Figure 3.5.5). What is the expected value of the ratio of the shorter
segment to the longer segment?

0 11
2

y

Figure 3.5.5

Notice, first, that the function

g (Y) = shorter segment
longer segment

has two expressions, depending on the location of the chosen point:

g (Y) =
{

y/(1 − y), 0 ≤ y ≤ 1
2

(1 − y)/y, 1
2 < y ≤ 1

By assumption, fY (y) = 1, 0 ≤ y ≤ 1, so

E[g (Y)] =
∫ 1

2

0

y
1 − y

· 1 dy +
∫ 1

1
2

1 − y
y

· 1 dy

Writing the second integrand as (1/y − 1) gives∫ 1

1
2

1 − y
y

· 1 dy =
∫ 1

1
2

(
1
y

− 1
)

dy = (ln y − y)
∣∣∣∣1

1
2

= ln 2 − 1
2

By symmetry, though, the two integrals are the same, so

E
(

shorter segment
longer segment

)
= 2 ln 2 − 1

= 0.39

On the average, then, the longer segment will be a little more than 2 1
2 times the length

of the shorter segment.
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Questions

3.5.28. Suppose X is a binomial random variable with
n = 10 and p = 2

5 . What is the expected value of 3X − 4?

3.5.29. A typical day’s production of a certain electronic
component is twelve. The probability that one of these
components needs rework is 0.11. Each component need-
ing rework costs $100. What is the average daily cost for
defective components?

3.5.30. Let Y have probability density function

fY (y) = 2(1 − y), 0 ≤ y ≤ 1

Suppose that W = Y 2, in which case

fW (w) = 1√
w

− 1, 0 ≤ w ≤ 1

Find E(W) in two different ways.

3.5.31. A tool and die company makes castings for steel
stress-monitoring gauges. Their annual profit, Q, in hun-
dreds of thousands of dollars, can be expressed as a
function of product demand, y:

Q(y) = 2(1 − e−2y)

Suppose that the demand (in thousands) for their castings
follows an exponential pdf, fY (y) = 6e−6y, y > 0. Find the
company’s expected profit.

3.5.32. A box is to be constructed so that its height is five
inches and its base is Y inches by Y inches, where Y is a
random variable described by the pdf, fY (y) = 6y(1 − y),
0 < y < 1. Find the expected volume of the box.

3.5.33. Grades on the last Economics 301 exam were not
very good. Graphed, their distribution had a shape similar
to the pdf

fY (y) = 1
5000

(100 − y), 0 ≤ y ≤ 100

As a way of “curving” the results, the professor announces
that he will replace each person’s grade, Y , with a new
grade, g (Y), where g (Y) = 10

√
Y . Will the profes-

sor’s strategy be successful in raising the class average
above 60?

3.5.34. If Y has probability density function

fY (y) = 2y, 0 ≤ y ≤ 1

then E(Y) = 2
3 . Define the random variable W to be

the squared deviation of Y from its mean, that is, W =(
Y − 2

3

)2
. Find E(W).

3.5.35. The hypotenuse, Y , of the isosceles right triangle
shown is a random variable having a uniform pdf over
the interval [6, 10]. Calculate the expected value of the
triangle’s area. Do not leave the answer as a function
of a.

0

Y

a

a

3.5.36. An urn contains n chips numbered 1 through n.
Assume that the probability of choosing chip i is equal to
ki, i = 1, 2, . . . , n. If one chip is drawn, calculate E

( 1
X

)
,

where the random variable X denotes the number show-
ing on the chip selected. [Hint: Recall that the sum of the
first n integers is n(n + 1)/2.]

3.6 The Variance
We saw in Section 3.5 that the location of a distribution is an important characteristic
and that it can be effectively measured by calculating either the mean or the median.
A second feature of a distribution that warrants further scrutiny is its dispersion—
that is, the extent to which its values are spread out. The two properties are totally
different: Knowing a pdf’s location tells us absolutely nothing about its dispersion.
Table 3.6.1, for example, shows two simple discrete pdfs with the same expected value
(equal to zero), but with vastly different dispersions.

Table 3.6.1

k pX1 (k) k pX2 (k)

−1 1
2 −1,000,000 1

2

1 1
2 1,000,000 1

2
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It is not immediately obvious how the dispersion in a pdf should be quantified.
Suppose that X is any discrete random variable. One seemingly reasonable approach
would be to average the deviations of X from their mean—that is, calculate the ex-
pected value of X − μ. As it happens, that strategy will not work because the neg-
ative deviations will exactly cancel the positive deviations, making the numerical
value of such an average always zero, regardless of the amount of spread present in
pX (k):

E(X − μ) = E(X ) − μ = μ − μ = 0 (3.6.1)

Another possibility would be to modify Equation 3.6.1 by making all the devia-
tions positive, that is, to replace E(X − μ) with E(|X − μ|). This does work, and
it is sometimes used to measure dispersion, but the absolute value is somewhat
troublesome mathematically: It does not have a simple arithmetic formula, nor is
it a differentiable function. Squaring the deviations proves to be a much better
approach.

Definition 3.6.1
The variance of a random variable is the expected value of its squared deviations
from μ. If X is discrete, with pdf pX (k),

Var(X ) = σ2 = E[(X − μ)2] =
∑
all k

(k − μ)2 · pX (k)

If Y is continuous, with pdf fY (y),

Var(Y) = σ2 = E[(Y − μ)2] =
∫ ∞

−∞
(y − μ)2 · fY (y) dy

[If E(X 2) or E(Y 2) is not finite, the variance is not defined.]

Comment One unfortunate consequence of Definition 3.6.1 is that the units for
the variance are the square of the units for the random variable: If Y is measured
in inches, for example, the units for Var(Y) are inches squared. This causes obvi-
ous problems in relating the variance back to the sample values. For that reason, in
applied statistics, where unit compatibility is especially important, dispersion is mea-
sured not by the variance but by the standard deviation, which is defined to be the
square root of the variance. That is,

σ = standard deviation =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√∑
all k

(k − μ)2 · pX (k) if X is discrete

√∫ ∞

−∞
(y − μ)2 · fY (y) dy if Y is continuous

Comment The analogy between the expected value of a random variable and the
center of gravity of a physical system was pointed out in Section 3.5. A similar equiv-
alency holds between the variance and what engineers call a moment of inertia. If
a set of weights having masses m1, m2, . . . are positioned along a (weightless) rigid
bar at distances r1, r2, . . . from an axis of rotation (see Figure 3.6.1), the moment of
inertia of the system is defined to be value

∑
i

mir2
i . Notice, though, that if the masses

were the probabilities associated with a discrete random variable and if the axis of
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rotation were actually μ, then r1, r2, . . . could be written (k1 − μ), (k2 − μ), . . . and∑
i

mir2
i would be the same as the variance,

∑
all k

(k − μ)2 · pX (k).

Axis of
rotationm1

m2

m3

r3

r1 r2

Figure 3.6.1

Definition 3.6.1 gives a formula for calculating σ2 in both the discrete and
the continuous cases. An equivalent, but easier-to-use, formula is given in The-
orem 3.6.1.

Theorem
3.6.1

Let W be any random variable, discrete or continuous, having mean μ and for which
E(W 2) is finite. Then

Var(W) = σ2 = E(W 2) − μ2

Proof We will prove the theorem for the continuous case. The argument for dis-
crete W is similar. In Theorem 3.5.3, let g (W) = (W − μ)2. Then

Var(W) = E[(W − μ)2] =
∫ ∞

−∞
g (w) fW (w) dw =

∫ ∞

−∞
(w − μ)2 fW (w) dw

Squaring out the term (w − μ)2 that appears in the integrand and using the additive
property of integrals gives

∫ ∞

−∞
(w − μ)2 fW (w) dw =

∫ ∞

−∞
(w2 − 2μw + μ2) fW (w) dw

=
∫ ∞

−∞
w2 fW (w) dw − 2μ

∫ ∞

−∞
w fW (w) dw +

∫ ∞

−∞
μ2 fW (w) dw

= E(W 2) − 2μ2 + μ2 = E(W 2) − μ2

Note that the equality
∫∞
−∞ w2 fW (w) dw = E(W 2) also follows from Theorem 3.5.3.

Example
3.6.1

An urn contains five chips, two red and three white. Suppose that two are drawn out
simultaneously. Let X denote the number of red chips in the sample. Find Var(X ).

Note, first, that since the chips are not being replaced from drawing to drawing,
X is a hypergeometric random variable. Moreover, we need to find μ, regardless of
which formula is used to calculate σ2. In the notation of Theorem 3.5.2, r = 2, w = 3,
and n = 2, so

μ = rn/(r + w) = 2 · 2/(2 + 3) = 0.8
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To find Var(X ) using Definition 3.6.1, we write

Var(X ) = E[(X − μ)2] =
∑
all x

(x − μ)2 · fX (x)

= (0 − 0.8)2 ·
(2

0

)(3
2

)
(5

2

) + (1 − 0.8)2 ·
(2

1

)(3
1

)
(5

2

) + (2 − 0.8)2 ·
(2

2

)(3
0

)
(5

2

)
= 0.36

To use Theorem 3.6.1, we would first find E(X 2). From Theorem 3.5.3,

E(X 2) =
∑
all x

x2 · fX (x) = 02 ·
(2

0

)(3
2

)
(5

2

) + 12 ·
(2

1

)(3
1

)
(5

2

) + 22 ·
(2

2

)(3
0

)
(5

2

)
= 1.00

Then

Var(X ) = E(X 2) − μ2 = 1.00 − (0.8)2

= 0.36

confirming what we calculated earlier.

In Section 3.5 we encountered a change of scale formula that applied
to expected values. For any constants a and b and any random variable W ,
E(aW + b) = aE(W) + b. A similar issue arises in connection with the variance of a
linear transformation: If Var(W) = σ2, what is the variance of aW + b?

Theorem
3.6.2

Let W be any random variable having mean μ and where E(W 2) is finite. Then
Var(aW + b) = a2Var(W).

Proof Using the same approach taken in the proof of Theorem 3.6.1, it can be
shown that E[(aW + b)2] = a2E(W 2) + 2abμ + b2. We also know from the corol-
lary to Theorem 3.5.3 that E(aW + b) = aμ + b. Using Theorem 3.6.1, then, we
can write

Var(aW + b) = E[(aW + b)2] − [E(aW + b)]2

= [a2E(W 2) + 2abμ + b2] − [aμ + b]2

= [a2E(W 2) + 2abμ + b2] − [a2μ2 + 2abμ + b2]

= a2[E(W 2) − μ2] = a2Var(W)

Example
3.6.2

A random variable Y is described by the pdf

fY (y) = 2y, 0 ≤ y ≤ 1

What is the standard deviation of 3Y + 2?
First, we need to find the variance of Y . But

E(Y) =
∫ 1

0
y · 2y dy = 2

3

and

E(Y 2) =
∫ 1

0
y2 · 2y dy = 1

2
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so

Var(Y) = E(Y 2) − μ2 = 1
2

−
(

2
3

)2

= 1
18

Then, by Theorem 3.6.2,

Var(3Y + 2) = (3)2 · Var(Y) = 9 · 1
18

= 1
2

which makes the standard deviation of 3Y + 2 equal to
√

1
2 or 0.71.

Comment When the median is used as the measure of central tendency, the usual
measure of dispersion is called the interquartile range. It marks off the middle 50%
of the data. In other words, let Q1 represent the first quartile; that is, P(Y ≤ Q1) =
0.25 and Q3 represent the third quartile, that is P(Y ≤ Q3) = 0.75. Then Q3 − Q1 is
the interquartile range.

Example
3.6.3

For fY (y) = 3y2, 0 ≤ y ≤ 1, Q1 is the solution to the equation 0.25 = ∫ Q1

0 3y2dy,
or 0.25 = Q3

1, giving Q1 = 3
√

0.25 = 0.630. Similarly Q3 = 3
√

0.75 = 0.909, so the
interquartile range is 0.909 − 0.630 = 0.279.

Questions

3.6.1. Find Var(X ) for the urn problem of Example 3.6.1
if the sampling is done with replacement.

3.6.2. Find the variance of Y if

fY (y) =

⎧⎪⎨
⎪⎩

3
4 , 0 ≤ y ≤ 1
1
4 , 2 ≤ y ≤ 3

0, elsewhere

3.6.3. Ten equally qualified applicants, six men and four
women, apply for three lab technician positions. Unable
to justify choosing any of the applicants over all the oth-
ers, the personnel director decides to select the three at
random. Let X denote the number of men hired. Com-
pute the standard deviation of X .

3.6.4. A certain hospitalization policy pays a cash benefit
for up to five days in the hospital. It pays $250 per day for
the first three days and $150 per day for the next two. The
number of days of hospitalization, X , is a discrete random
variable with probability function P(X = k) = 1

15 (6 − k)
for k = 1, 2, 3, 4, 5. Find Var(X ).

3.6.5. Use Theorem 3.6.1 to find the variance of the ran-
dom variable Y , where

fY (y) = 3(1 − y)2, 0 < y < 1

3.6.6. If

fY (y) = 2y
k2

, 0 ≤ y ≤ k

for what value of k does Var(Y) = 2?

3.6.7. Calculate the standard deviation, σ, for the random
variable Y whose pdf has the graph shown below:

1
2

1 2 30

1

y

f  (y)Y

3.6.8. Consider the pdf defined by

fY (y) = 2
y3

, y ≥ 1

Show that (a)
∫∞

1 fY (y) dy = 1, (b) E(Y) = 2, and (c)
Var(Y) is not finite.

3.6.9. Frankie and Johnny play the following game.
Frankie selects a number at random from the interval
[a, b]. Johnny, not knowing Frankie’s number, is to pick
a second number from that same interval and pay Frankie
an amount, W , equal to the squared difference between
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the two [so 0 ≤ W ≤ (b − a)2]. What should be Johnny’s
strategy if he wants to minimize his expected loss?

3.6.10. Let Y be a random variable whose pdf is given
by fY (y) = 5y4, 0 ≤ y ≤ 1. Use Theorem 3.6.1 to find
Var(Y).

3.6.11. Suppose that Y is an exponential random variable,
so fY (y) = λe−λy, y ≥ 0. Show that the variance of Y is
1/λ2.

3.6.12. Suppose that Y is an exponential random vari-
able with λ = 2 (recall Question 3.6.11). Find P[Y >

E(Y) + 2
√

Var(Y)].

3.6.13. Let X be a random variable with finite mean μ.
Define for every real number a, g (a) = E[(X −a)2]. Show
that

g (a) = E[(X − μ)2] + (μ − a)2.

What is another name for min g (a)?

3.6.14. Suppose the charge for repairing an automobile
averages $200 with a standard deviation of $16. If a 10%
tax is added to the charge and then a $15 flat fee for en-
vironmental impact, what is the standard deviation of the
charge to the car owner?

3.6.15. If Y denotes a temperature recorded in degrees
Fahrenheit, then 5

9 (Y −32) is the corresponding tempera-
ture in degrees Celsius. If the standard deviation for a set
of temperatures is 15.7◦F, what is the standard deviation
of the equivalent Celsius temperatures?

3.6.16. If E(W) = μ and Var(W) = σ2, show that

E
(

W − μ

σ

)
= 0 and Var

(
W − μ

σ

)
= 1

3.6.17. Suppose U is a uniform random variable over
[0, 1].
(a) Show that Y = (b − a)U + a is uniform over [a, b].
(b) Use part (a) and Theorem 3.6.2 to find the variance
of Y .

3.6.18. Recovering small quantities of calcium in the pres-
ence of magnesium can be a difficult problem for an an-
alytical chemist. Suppose the amount of calcium Y to be
recovered is uniformly distributed between 4 and 7 mg.
The amount of calcium recovered by one method is the
random variable

W1 = 0.2281 + (0.9948)Y + E1

where the error term E1 has mean 0 and variance 0.0427
and is independent of Y .

A second procedure has random variable

W2 = −0.0748 + (1.0024)Y + E2

where the error term E2 has mean 0 and variance 0.0159
and is independent of Y .

The better technique should have a mean as close as
possible to the mean of Y(=5.5), and a variance as small
as possible. Compare the two methods on the basis of
mean and variance.

HIGHER MOMENTS

The quantities we have identified as the mean and the variance are actually special
cases of what are referred to more generally as the moments of a random variable.
More precisely, E(W) is the first moment about the origin and σ2 is the second mo-
ment about the mean. As the terminology suggests, we will have occasion to define
higher moments of W . Just as E(W) and σ2 reflect a random variable’s location and
dispersion, so it is possible to characterize other aspects of a distribution in terms of
other moments. We will see, for example, that the skewness of a distribution—that
is, the extent to which it is not symmetric around μ—can be effectively measured
in terms of a third moment. Likewise, there are issues that arise in certain applied
statistics problems that require a knowledge of the flatness of a pdf, a property that
can be quantified by the fourth moment.

Definition 3.6.2
Let W be any random variable with pdf fW (w). For any positive integer r,

a. The rth moment of W about the origin, μr, is given by

μr = E(W r)

provided
∫ ∞
−∞ |w|r · fW (w) dw < ∞ (or provided the analogous condition on

the summation of |w|r holds, if W is discrete). When r = 1, we usually delete
the subscript and write E(W) as μ rather than μ1.
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b. The rth moment of W about the mean, μ′
r, is given by

μ′
r = E[(W − μ)r]

provided the finiteness conditions of part 1 hold.

Comment We can express μ′
r in terms of μ j, j = 1, 2, . . . , r, by simply writing out

the binomial expansion of (W − μ)r:

μ′
r = E[(W − μ)r] =

r∑
j=0

(
r
j

)
E(W j)(−μ)r− j

Thus,

μ′
2 = E[(W − μ)2] = σ2 = μ2 − μ2

1

μ′
3 = E[(W − μ)3] = μ3 − 3μ1μ2 + 2μ3

1

μ′
4 = E[(W − μ)4] = μ4 − 4μ1μ3 + 6μ2

1μ2 − 3μ4
1

and so on.

Example
3.6.4

The skewness of a pdf can be measured in terms of its third moment about the mean.
If a pdf is symmetric, E[(W − μ)3] will obviously be zero; for pdfs not symmetric,
E[(W − μ)3] will not be zero. In practice, the symmetry (or lack of symmetry) of a
pdf is often measured by the coefficient of skewness, γ1, where

γ1 = E[(W − μ)3]
σ3

Dividing μ′
3 by σ3 makes γ1 dimensionless.

A second “shape” parameter in common use is the coefficient of kurtosis, γ2,
which involves the fourth moment about the mean. Specifically,

γ2 = E[(W − μ)4]
σ4

− 3

For certain pdfs, γ2 is a useful measure of the probability of outliers (“fat
tails”). Relatively flat pdfs are said to be platykurtic; more peaked pdfs are called
leptokurtic.

Earlier in this chapter we encountered random variables whose means do not exist—
recall, for example, the St. Petersburg paradox. More generally, there are random
variables having certain of their higher moments finite and certain others, not finite.
Addressing the question of whether or not a given E(W j) is finite is the following
existence theorem.

Theorem
3.6.3

If the kth moment of a random variable exists, all moments of order less than k exist.

Proof Let fY (y) be the pdf of a continuous random variable Y . By Defini-
tion 3.6.2, E(Y k) exists if and only if∫ ∞

−∞
|y|k · fY (y) dy < ∞ (3.6.2)

(Continued on next page)
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(Theorem 3.6.3 continued)

Let 1 ≤ j < k. To prove the theorem we must show that∫ ∞

−∞
|y| j · fY (y) dy < ∞

is implied by Inequality 3.6.2. But∫ ∞

−∞
|y| j · fY (y) dy =

∫
|y|≤1

|y| j · fY (y) dy +
∫

|y|>1
|y| j · fY (y) dy

≤
∫

|y|≤1
fY (y) dy +

∫
|y|>1

|y| j · fY (y) dy

≤ 1 +
∫

|y|>1
|y| j · fY (y) dy

≤ 1 +
∫

|y|>1
|y|k · fY (y) dy < ∞

Therefore, E(Y j) exists, j = 1, 2, . . . , k − 1. The proof for discrete random vari-
ables is similar.

Questions

3.6.19. Let Y be a uniform random variable defined over
the interval (0, 2). Find an expression for the rth moment
of Y about the origin. Also, use the binomial expansion as
described in the Comment to find E[(Y − μ)6].

3.6.20. Find the coefficient of skewness for an exponential
random variable having the pdf

fY (y) = e−y, y > 0

3.6.21. Calculate the coefficient of kurtosis for a uniform
random variable defined over the unit interval, fY (y) = 1,
for 0 ≤ y ≤ 1.

3.6.22. Suppose that W is a random variable for which
E[(W−μ)3] = 10 and E(W 3) = 4. Is it possible that μ = 2?

3.6.23. If Y = aX + b, a > 0, show that Y has the same
coefficients of skewness and kurtosis as X .

3.6.24. Let Y be the random variable of Question 3.4.6,
where for a positive integer n,

fY (y) = (n + 2)(n + 1)yn(1 − y), 0 ≤ y ≤ 1.

(a) Find Var(Y).
(b) For any positive integer k, find the kth moment
around the origin.

3.6.25. Suppose that the random variable Y is described
by the pdf

fY (y) = c · y−6, y > 1

(a) Find c.
(b) What is the highest moment of Y that exists?

3.7 Joint Densities
Sections 3.3 and 3.4 introduced the basic terminology for describing the proba-
bilistic behavior of a single random variable. Such information, while adequate for
many problems, is insufficient when more than one variable are of interest to the ex-
perimenter. Medical researchers, for example, continue to explore the relationship
between blood cholesterol and heart disease, and, more recently, between “good”
cholesterol and “bad” cholesterol. And more than a little attention—both political
and pedagogical—is given to the role played by K–12 funding in the performance of
would-be high school graduates on exit exams. On a smaller scale, electronic equip-
ment and systems are often designed to have built-in redundancy: Whether or not
that equipment functions properly ultimately depends on the reliability of two dif-
ferent components.
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The point is, there are many situations where two relevant random variables,
say, X and Y , are defined on the same sample space.2 Knowing only fX (x) and
fY (y), though, does not necessarily provide enough information to characterize the
all-important simultaneous behavior of X and Y . The purpose of this section is to
introduce the concepts, definitions, and mathematical techniques associated with
distributions based on two (or more) random variables.

DISCRETE JOINT PDFS

As we saw in the single-variable case, the pdf is defined differently depending on
whether the random variable is discrete or continuous. The same distinction applies
to joint pdfs. We begin with a discussion of joint pdfs as they apply to two discrete
random variables.

Definition 3.7.1
Suppose S is a discrete sample space on which two random variables, X and Y ,
are defined. The joint probability density function of X and Y (or joint pdf) is
denoted pX,Y (x, y), where

pX,Y (x, y) = P({s|X (s) = x and Y(s) = y})

Comment A convenient shorthand notation for the meaning of pX,Y (x, y), consis-
tent with what we used earlier for pdfs of single discrete random variables, is to write
pX,Y (x, y) = P(X = x,Y = y).

Example
3.7.1

A supermarket has two express lines. Let X and Y denote the number of customers
in the first and in the second, respectively, at any given time. During nonrush hours,
the joint pdf of X and Y is summarized by the following table:

X
0 1 2 3

0 0.1 0.2 0 0
1 0.2 0.25 0.05 0

Y
2 0 0.05 0.05 0.025
3 0 0 0.025 0.05

Find P(|X − Y | = 1), the probability that X and Y differ by exactly 1.
By definition,

P(|X − Y | = 1) =
∑

|x−y|=1

∑
pX,Y (x, y)

= pX,Y (0, 1) + pX,Y (1, 0) + pX,Y (1, 2)

+ pX,Y (2, 1) + pX,Y (2, 3) + pX,Y (3, 2)

= 0.2 + 0.2 + 0.05 + 0.05 + 0.025 + 0.025

= 0.55

[Would you expect pX,Y (x, y) to be symmetric? Would you expect the event
|X − Y | ≥ 2 to have zero probability?]

2 For the next several sections we will suspend our earlier practice of using X to denote a discrete random
variable and Y to denote a continuous random variable. The category of the random variables will need to be
determined from the context of the problem. Typically, though, X and Y will either be both discrete or both
continuous.
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Example
3.7.2

Suppose two fair dice are rolled. Let X be the sum of the numbers showing, and let
Y be the larger of the two. So, for example,

pX,Y (2, 3) = P(X = 2,Y = 3) = P(∅) = 0

pX,Y (4, 3) = P(X = 4,Y = 3) = P({(1, 3)(3, 1)}) = 2
36

and

pX,Y (6, 3) = P(X = 6,Y = 3) = P({(3, 3)}) = 1
36

The entire joint pdf is given in Table 3.7.1.

Table 3.7.1
�����x

y
1 2 3 4 5 6 Row totals

2 1/36 0 0 0 0 0 1/36
3 0 2/36 0 0 0 0 2/36
4 0 1/36 2/36 0 0 0 3/36
5 0 0 2/36 2/36 0 0 4/36
6 0 0 1/36 2/36 2/36 0 5/36
7 0 0 0 2/36 2/36 2/36 6/36
8 0 0 0 1/36 2/36 2/36 5/36
9 0 0 0 0 2/36 2/36 4/36

10 0 0 0 0 1/36 2/36 3/36
11 0 0 0 0 0 2/36 2/36
12 0 0 0 0 0 1/36 1/36

Col. totals 1/36 3/36 5/36 7/36 9/36 11/36

Notice that the row totals in the right-hand margin of the table give the pdf for X .
Similarly, the column totals along the bottom detail the pdf for Y . Those are not
coincidences. Theorem 3.7.1 gives a formal statement of the relationship between
the joint pdf and the individual pdfs.

Theorem
3.7.1

Suppose that pX,Y (x, y) is the joint pdf of the discrete random variables X and Y.
Then

pX (x) =
∑
all y

pX,Y (x, y) and pY (y) =
∑
all x

pX,Y (x, y)

Proof We will prove the first statement. Note that the collection of sets (Y = y) for
all y forms a partition of S; that is, they are disjoint and

⋃
all y(Y = y) = S. The set

(X = x) = (X = x) ∩ S = (X = x) ∩⋃all y(Y = y) = ⋃
all y[(X = x) ∩ (Y = y)], so

pX (x) = P(X = x) = P

⎛
⎝⋃

all y

[(X = x) ∩ (Y = y)]

⎞
⎠

=
∑
all y

P(X = x,Y = y) =
∑
all y

pX,Y (x, y)
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Definition 3.7.2
An individual pdf obtained by summing a joint pdf over all values of the other
random variable is called a marginal pdf.

CONTINUOUS JOINT PDFS

If X and Y are both continuous random variables, Definition 3.7.1 does not apply
because P(X = x,Y = y) will be identically 0 for all (x, y). As was the case in single-
variable situations, the joint pdf for two continuous random variables will be defined
as a function that when integrated yields the probability that (X,Y) lies in a specified
region of the xy-plane.

Definition 3.7.3
Two random variables defined on the same set of real numbers are jointly con-
tinuous if there exists a function fX,Y (x, y) such that for any region R in the
xy-plane, P[(X,Y) ∈ R] = ∫ ∫

R fX,Y (x, y) dx dy. The function fX,Y (x, y) is the
joint pdf of X and Y.

Comment Any function fX,Y (x, y) for which

1. fX,Y (x, y) ≥ 0 for all x and y

2.
∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1

qualifies as a joint pdf. We shall employ the convention of naming the domain only
where the joint pdf is nonzero; everywhere else it will be assumed to be zero. This is
analogous, of course, to the notation used earlier in describing the domain of single
random variables. Also, for the functions used, the order of integration does not
matter.

Example
3.7.3

Suppose that the variation in two continuous random variables, X and Y , can be
modeled by the joint pdf fX,Y (x, y) = cxy, for 0 < y < x < 1. Find c.

By inspection, fX,Y (x, y) will be nonnegative as long as c ≥ 0. The particular
c that qualifies fX,Y (x, y) as a joint pdf, though, is the one that makes the volume
under fX,Y (x, y) equal to 1. But∫ ∫

S
cxy dy dx = 1 = c

∫ 1

0

[∫ x

0
(xy) dy

]
dx = c

∫ 1

0
x
(

y2

2

∣∣∣x
0

)
dx

= c
∫ 1

0

(
x3

2

)
dx = c

x4

8

∣∣∣1
0

=
(

1
8

)
c

Therefore, c = 8.

Example
3.7.4

A study claims that the daily number of hours, X , a teenager watches television and
the daily number of hours, Y , he works on his homework are approximated by the
joint pdf

fX,Y (x, y) = xye−(x+y), x > 0, y > 0
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What is the probability that a teenager chosen at random spends at least twice as
much time watching television as he does working on his homework?

The region, R, in the xy-plane corresponding to the event “X ≥ 2Y” is shown
in Figure 3.7.1. It follows that P(X ≥ 2Y) is the volume under fX,Y (x, y) above the
region R:

P(X ≥ 2Y) =
∫ ∞

0

∫ x/2

0
xye−(x+y) dy dx

0
x

x = 2y

y

R

Figure 3.7.1

Separating variables, we can write

P(X ≥ 2Y) =
∫ ∞

0
xe−x

[∫ x/2

0
ye−ydy

]
dx

and the double integral reduces to 7
27 :

P(X ≥ 2Y) =
∫ ∞

0
xe−x

[
1 −

(x
2

+ 1
)

e−x/2
]

dx

=
∫ ∞

0
xe−xdx −

∫ ∞

0

x2

2
e−3x/2 dx −

∫ ∞

0
xe−3x/2dx

= 1 − 16
54

− 4
9

= 7
27

GEOMETRIC PROBABILITY

One particularly important special case of Definition 3.7.3 is the joint uniform pdf,
which is represented by a surface having a constant height everywhere above a spec-
ified rectangle in the xy-plane. That is,

fX,Y (x, y) = 1
(b − a)(d − c)

, a ≤ x ≤ b, c ≤ y ≤ d

If R is some region in the rectangle where X and Y are defined, P((X,Y) ∈ R)
reduces to a simple ratio of areas:

P((X,Y) ∈ R) = area of R
(b − a)(d − c)

(3.7.1)

Calculations based on Equation 3.7.1 are referred to as geometric probabilities.
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Example
3.7.5

Two friends agree to meet on the University Commons “sometime around 12:30.”
But neither of them is particularly punctual—or patient. What will actually happen
is that each will arrive at random sometime in the interval from 12:00 to 1:00. If one
arrives and the other is not there, the first person will wait fifteen minutes or until
1:00, whichever comes first, and then leave. What is the probability that the two will
get together?

To simplify notation, we can represent the time period from 12:00 to 1:00 as the
interval from zero to sixty minutes. Then if x and y denote the two arrival times, the
sample space is the 60 × 60 square shown in Figure 3.7.2. Furthermore, the event
M, “The two friends meet,” will occur if and only if |x − y| ≤ 15 or, equivalently,
if and only if −15 ≤ x − y ≤ 15. These inequalities appear as the shaded region in
Figure 3.7.2.

0
x

y

60

(45, 60)

(15, 0)

x – y = –15

x – y = 15

60

(60, 45)

(0, 15)
M

Figure 3.7.2

Notice that the areas of the triangles above and below M are each equal to
1
2 (45)(45). It follows that the two friends have a 44% chance of meeting:

P(M) = area of M
area of S

= (60)2 − 2
[ 1

2 (45)(45)
]

(60)2

= 0.44

Example
3.7.6

A carnival operator wants to set up a ringtoss game. Players will throw a ring of
diameter d onto a grid of squares, the side of each square being of length s (see Fig-
ure 3.7.3). If the ring lands entirely inside a square, the player wins a prize. To ensure
a profit, the operator must keep the player’s chances of winning down to something
less than one in five. How small can the operator make the ratio d/s?

d s
s

Figure 3.7.3

First, assume that the player is required to stand far enough away that no skill is
involved and the ring is falling at random on the grid. From Figure 3.7.4, we see that
in order for the ring not to touch any side of the square, the ring’s center must be
somewhere in the interior of a smaller square, each side of which is a distance d/2
from one of the grid lines.
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s

s
d
2

Figure 3.7.4

Since the area of a grid square is s2 and the area of an interior square is (s − d)2,
the probability of a winning toss can be written as the ratio:

P(Ring touches no lines) = (s − d)2

s2

But the operator requires that

(s − d)2

s2
≤ 0.20

Solving for d/s gives

d
s

≥ 1 −
√

0.20 = 0.55

That is, if the diameter of the ring is at least 55% as long as the side of one of the
squares, the player will have no more than a 20% chance of winning.

Questions

3.7.1. If pX,Y (x, y) = cxy at the points (1, 1), (2, 1), (2, 2),
and (3, 1), and equals 0 elsewhere, find c.

3.7.2. Let X and Y be two continuous random vari-
ables defined over the unit square. What does c equal if
fX,Y (x, y) = c(x2 + y2)?

3.7.3. Suppose that random variables X and Y vary in ac-
cordance with the joint pdf, fX,Y (x, y) = c(x+y), 0 < x <

y < 1. Find c.

3.7.4. Find c if fX,Y (x, y) = cxy for X and Y defined over
the triangle whose vertices are the points (0, 0), (0, 1), and
(1, 1).

3.7.5. An urn contains four red chips, three white chips,
and two blue chips. A random sample of size 3 is drawn
without replacement. Let X denote the number of white
chips in the sample and Y the number of blue chips. Write
a formula for the joint pdf of X and Y .

3.7.6. Four cards are drawn from a standard poker deck.
Let X be the number of kings drawn and Y the number
of queens. Find pX,Y (x, y).

3.7.7. An advisor looks over the schedules of his fifty stu-
dents to see how many math and science courses each has

registered for in the coming semester. He summarizes his
results in a table. What is the probability that a student
selected at random will have signed up for more math
courses than science courses?

Number of math courses, X

0 1 2

Number
of science
courses, Y

0 11 6 4
1 9 10 3
2 5 0 2

3.7.8. Consider the experiment of tossing a fair coin three
times. Let X denote the number of heads on the last flip,
and let Y denote the total number of heads on the three
flips. Find pX,Y (x, y).

3.7.9. Suppose that two fair dice are tossed one time. Let
X denote the number of 2’s that appear, and Y the num-
ber of 3’s. Write the matrix giving the joint probability
density function for X and Y . Suppose a third random
variable, Z, is defined, where Z = X + Y. Use pX,Y (x, y)
to find pZ(z).
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3.7.10. Let X be the time in days between a car accident
and reporting a claim to the insurance company. Let Y be
the time in days between the report and payment of the
claim. Suppose that fX,Y (x, y) = c, 0 ≤ x ≤ 7, 0 ≤ y ≤ 7,
and zero otherwise.
(a) Find c.
(b) Find P(0 ≤ X ≤ 2, 0 ≤ Y ≤ 4).

3.7.11. Let X and Y have the joint pdf

fX,Y (x, y) = 2e−(x+y), 0 < x < y, 0 < y

Find P(Y < 3X ).

3.7.12. A point is chosen at random from the interior of
a circle whose equation is x2 + y2 ≤ 4. Let the random

variables X and Y denote the x- and y-coordinates of the
sampled point. Find fX,Y (x, y).

3.7.13. Find P(X < 2Y) if fX,Y (x, y) = x + y for X and Y
each defined over the unit interval.

3.7.14. Suppose that five independent observations are
drawn from the continuous pdf fT (t) = 2t, 0 ≤ t ≤ 1.
Let X denote the number of t’s that fall in the interval
0 ≤ t < 1

3 and let Y denote the number of t’s that fall in
the interval 1

3 ≤ t < 2
3 . Find pX,Y (1, 2).

3.7.15. A point is chosen at random from the interior of a
right triangle with base b and height h. What is the prob-
ability that the y value is between 0 and h/2?

MARGINAL PDFS FOR CONTINUOUS RANDOM VARIABLES

The notion of marginal pdfs in connection with discrete random variables was in-
troduced in Theorem 3.7.1 and Definition 3.7.2. An analogous relationship holds in
the continuous case—integration, though, replaces the summation that appears in
Theorem 3.7.1.

Theorem
3.7.2

Suppose X and Y are jointly continuous with joint pdf fX,Y (x, y). Then the
marginal pdfs, fX (x) and fY (y), are given by

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy and fY (y) =

∫ ∞

−∞
fX,Y (x, y) dx

Proof It suffices to verify the first of the theorem’s two equalities. As is often the
case with proofs for continuous random variables, we begin with the cdf:

FX (x) = P(X ≤ x) =
∫ ∞

−∞

∫ x

−∞
fX,Y (t, y) dt dy =

∫ x

−∞

∫ ∞

−∞
fX,Y (x, y) dy dt

Differentiating both ends of the equation above gives

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy

Recall Theorem 3.4.1.

Example
3.7.7

Suppose that two continuous random variables, X and Y , have the joint uniform pdf

fX,Y (x, y) = 1
6
, 0 ≤ x ≤ 3, 0 ≤ y ≤ 2

Find fX (x).
Applying Theorem 3.7.2 gives

fX (x) =
∫ 2

0
fX,Y (x, y) dy =

∫ 2

0

1
6

dy = 1
3
, 0 ≤ x ≤ 3

Notice that X , by itself, is a uniform random variable defined over the interval [0, 3];
similarly, we would find that fY (y) is a uniform pdf over the interval [0, 2].
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Example
3.7.8

Consider the case where X and Y are two continuous random variables, jointly dis-
tributed over the first quadrant of the xy-plane according to the joint pdf,

fX,Y (x, y) =
{

y2e−y(x+1) x ≥ 0, y ≥ 0
0 elsewhere

Find the two marginal pdfs.
First, consider fX (x). By Theorem 3.7.2,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

0
y2e−y(x+1) dy

In the integrand, substitute

u = y(x + 1)

making du = (x + 1) dy. This gives

fX (x) = 1
x + 1

∫ ∞

0

u2

(x + 1)2
e−u du = 1

(x + 1)3

∫ ∞

0
u2e−u du

After applying integration by parts (twice) to
∫∞

0 u2e−u du, we get

fX (x) = 1
(x + 1)3

[−u2e−u − 2ue−u − 2e−u]∣∣∞
0

= 1
(x + 1)3

[
2 − lim

u→∞

(
u2

eu
+ 2u

eu
+ 2

eu

)]

= 2
(x + 1)3

, x ≥ 0

Finding fY (y) is a bit easier:

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx =

∫ ∞

0
y2e−y(x+1) dx

= y2e−y
∫ ∞

0
e−yx dx = y2e−y

(
1
y

)(
−e−yx

∣∣∣∣∞
0

)
= ye−y, y ≥ 0

Questions

3.7.16. Find the marginal pdf of X for the joint pdf derived
in Question 3.7.5.

3.7.17. Find the marginal pdfs of X and Y for the joint pdf
derived in Question 3.7.8.

3.7.18. The campus recruiter for an international con-
glomerate classifies the large number of students she in-
terviews into three categories—the lower quarter, the
middle half, and the upper quarter. If she meets six stu-
dents on a given morning, what is the probability that they
will be evenly divided among the three categories? What
is the marginal probability that exactly two will belong to
the middle half?

3.7.19. For each of the following joint pdfs, find fX (x) and
fY (y).
(a) fX,Y (x, y) = 1

2 , 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

(b) fX,Y (x, y) = 3
2 y2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

(c) fX,Y (x, y) = 2
3 (x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(d) fX,Y (x, y) = c(x + y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
(e) fX,Y (x, y) = 4xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
(f) fX,Y (x, y) = xye−(x+y), 0 ≤ x, 0 ≤ y

(g) fX,Y (x, y) = ye−xy−y, 0 ≤ x, 0 ≤ y

3.7.20. For each of the following joint pdfs, find fX (x) and
fY (y).
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(a) fX,Y (x, y) = 1
2 , 0 ≤ x ≤ y ≤ 2

(b) fX,Y (x, y) = 1
x , 0 ≤ y ≤ x ≤ 1

(c) fX,Y (x, y) = 6x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

3.7.21. Suppose that fX,Y (x, y) = 6(1 − x − y) for x and y
defined over the unit square, subject to the restriction that
0 ≤ x + y ≤ 1. Find the marginal pdf for X .

3.7.22. Find fY (y) if fX,Y (x, y) = 2e−xe−y for x and y de-
fined over the shaded region pictured.

0
x

y

y = x

3.7.23. Suppose that X and Y are discrete random vari-
ables with

pX,Y (x, y) = 4!
x!y!(4 − x − y)!

(
1
2

)x (1
3

)y (1
6

)4−x−y

,

0 ≤ x + y ≤ 4

Find pX (x) and pY (x).

3.7.24. A generalization of the binomial model occurs
when there is a sequence of n independent trials with three
outcomes,where p1 = P(outcome1)and p2 = P(outcome2).
Let X and Y denote the number of trials (out of n) result-
ing in outcome 1 and outcome 2, respectively.

(a) Show that pX,Y (x, y) = n!
x!y!(n − x − y)!

px
1 py

2

(1 − p1 − p2)n−x−y, 0 ≤ x + y ≤ n

(b) Find pX (x) and pY (x).

(Hint: See Question 3.7.23.)

JOINT CDFS

For a single random variable X , the cdf of X evaluated at some point x—that is,
FX (x)—is the probability that the random variable X takes on a value less than or
equal to x. Extended to two variables, a joint cdf [evaluated at the point (x, y)] is the
probability that X ≤ x and, simultaneously, that Y ≤ y.

Definition 3.7.4
Let X and Y be any two random variables. The joint cumulative distribution
function of X and Y (or joint cdf ) is denoted FX,Y (x, y), where

FX,Y (x, y) = P(X ≤ x and Y ≤ y)

Example
3.7.9

Find the joint cdf, FX,Y (x, y), for the two random variables X and Y with joint pdf
fX,Y (x, y) = 4

3 (x + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
If Definition 3.7.4 is applied, the probability that X ≤ x and Y ≤ y becomes a

double integral of the pdf. In order to keep the cdf a function of x and y, use u and v

as the variables of integration.

FX,Y (x, y) = 4
3

∫ y

0

∫ x

0
(u + uv) du dv = 4

3

∫ y

0

(∫ x

0
(u + uv) du

)
dv

= 4
3

∫ y

0

(
u2

2
(1 + v)

∣∣∣∣
x

0

)
dv = 4

3

∫ y

0

x2

2
(1 + v) dv

= 4
3

x2

2

(
v + v2

2

)∣∣∣∣
y

0
= 4

3
x2

2

(
y + y2

2

)
,

which simplifies to

FX,Y (x, y) = 1
3

x2(2y + y2).

[For what values of x and y is FX,Y (x, y) defined?]
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Theorem
3.7.3

Let FX,Y (x, y) be the joint cdf associated with the continuous random variables X
and Y. Then the joint pdf of X and Y, fX,Y (x, y), is a second partial derivative of the

joint cdf, that is, fX,Y (x, y) = ∂2

∂x∂y
FX,Y (x, y), provided FX,Y (x, y) has continuous

second partial derivatives.

Example
3.7.10

What is the joint pdf of the random variables X and Y whose joint cdf is FX,Y (x, y) =
1
3 x2(2y + y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1?

By Theorem 3.7.3,

fX,Y (x, y) = ∂2

∂x ∂y
FX,Y (x, y) = ∂2

∂x ∂y
1
3

x2(2y + y2)

= ∂

∂y
2
3

x(2y + y2) = 2
3

x(2 + 2y) = 4
3

(x + xy), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Notice the similarity between Examples 3.7.9 and 3.7.10. fX,Y (x, y) is the same in both
examples; so is FX,Y (x, y).

MULTIVARIATE DENSITIES

The definitions and theorems in this section extend in a very straightforward way
to situations involving more than two variables. The joint pdf for n discrete random
variables, for example, is denoted pX1,...,Xn (x1, . . . , xn) where

pX1,...,Xn (x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn)

For n continuous random variables, the joint pdf is that function fX1,...,Xn (x1, . . . , xn)
having the property that for any region R in n-space,

P[(X1, . . . , Xn) ∈ R] =
∫∫

R
· · ·

∫
fX1,...,Xn (x1, . . . , xn) dx1 · · · dxn

And if FX1,...,Xn (x1, . . . , xn) is the joint cdf of continuous random variables
X1, . . . , Xn—that is, FX1,...,Xn (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)—then

fX1,...,Xn (x1, . . . , xn) = ∂n

∂x1 · · · ∂xn
FX1,...,Xn (x1, . . . , xn)

The notion of a marginal pdf also extends readily, although in the n-variate case,
a marginal pdf can, itself, be a joint pdf. Given X1, . . . , Xn, the marginal pdf of any
subset of r of those variables (Xi1 , Xi2 , . . . , Xir ) is derived by integrating (or summing)
the joint pdf with respect to the remaining n − r variables (Xj1 , Xj2 , . . . , Xjn−r ). If the
Xi’s are all continuous, for example,

fXi1,...,Xir
(xi1 , . . . , xir ) =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX1,...,Xn (x1, . . . , xn) dxj1 · · · dxjn−r
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Questions

3.7.25. Consider the experiment of simultaneously toss-
ing a fair coin and rolling a fair die. Let X denote the
number of heads showing on the coin and Y the number
of spots showing on the die.
(a) List the outcomes in S.
(b) Find FX,Y (1, 2).

3.7.26. An urn contains twelve chips—four red, three
black, and five white. A sample of size 4 is to be
drawn without replacement. Let X denote the number
of white chips in the sample, Y the number of red. Find
FX,Y (1, 2).

3.7.27. For each of the following joint pdfs, find FX,Y (x, y).
(a) fX,Y (x, y) = 3

2 y2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

(b) fX,Y (x, y) = 2
3 (x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

(c) fX,Y (x, y) = 4xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

3.7.28. For each of the following joint pdfs, find FX,Y (x, y).
(a) fX,Y (x, y) = 1

2 , 0 ≤ x ≤ y ≤ 2

(b) fX,Y (x, y) = 1
x , 0 ≤ y ≤ x ≤ 1

(c) fX,Y (x, y) = 6x, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

3.7.29. Find and graph fX,Y (x, y) if the joint cdf for ran-
dom variables X and Y is

FX,Y (x, y) = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

3.7.30. Find the joint pdf associated with two random vari-
ables X and Y whose joint cdf is

FX,Y (x, y) = (1 − e−λy)(1 − e−λx), x > 0, y > 0

3.7.31. Given that FX,Y (x, y) = k(4x2y2 + 5xy4), 0 < x <

1, 0 < y < 1, find the corresponding pdf and use it to cal-
culate P(0 < X < 1

2 , 1
2 < Y < 1).

3.7.32. Prove that

P(a < X ≤ b, c < Y ≤ d) = FX,Y (b, d) − FX,Y (a, d)

− FX,Y (b, c) + FX,Y (a, c)

3.7.33. A certain brand of fluorescent bulbs will last, on
the average, one thousand hours. Suppose that four of
these bulbs are installed in an office. What is the proba-
bility that all four are still functioning after one thousand
fifty hours? If Xi denotes the ith bulb’s life, assume that

fX1,X2,X3,X4 (x1, x2, x3, x4) =
4∏

i=1

(
1

1000

)
e−x/1000

for xi > 0, i = 1, 2, 3, 4.

3.7.34. A hand of six cards is dealt from a standard poker
deck. Let X denote the number of aces, Y the number of
kings, and Z the number of queens.
(a) Write a formula for pX,Y,Z(x, y, z).
(b) Find pX,Y (x, y) and pX,Z(x, z).

3.7.35. Calculate pX,Y (0, 1) if pX,Y,Z(x, y, z) =
3!

x!y!z!(3−x−y−z)!

( 1
2

)x ( 1
12

)y ( 1
6

)z · ( 1
4

)3−x−y−z
for x, y, z = 0, 1,

2, 3 and 0 ≤ x + y + z ≤ 3.

3.7.36. Suppose that the random variables X , Y , and Z
have the multivariate pdf

fX,Y,Z(x, y, z) = (x + y)e−z

for 0 < x < 1, 0 < y < 1, and z > 0. Find (a) fX,Y (x, y),
(b) fY,Z(y, z), and (c) fZ(z).

3.7.37. The four random variables W , X , Y , and Z have
the multivariate pdf

fW,X,Y,Z(w, x, y, z) = 16wxyz

for 0 ≤ w ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1.
Find the marginal pdf, fW,X (w, x), and use it to compute
P(0 ≤ W ≤ 1

2 , 1
2 ≤ X ≤ 1).

INDEPENDENCE OF TWO RANDOM VARIABLES

The concept of independent events that was introduced in Section 2.5 leads quite
naturally to a similar definition for independent random variables.

Definition 3.7.5
Two discrete random variables X and Y are said to be independent if for every
points a and b, P(X = a and Y = b) = P(X = a)P(Y = b). Two continuous
random variables X and Y are said to be independent if for every interval A and
every interval B, P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B).
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Theorem
3.7.4

The continuous random variables X and Y are independent if and only if there are
functions g (x) and h(y) such that

fX,Y (x, y) = g (x)h(y) f or all x and y (3.7.2)

If Equation 3.7.2 holds, there is a constant k such that fX (x) = kg (x) and fY (y) =
(1/k)h(y).

Proof First, suppose that X and Y are independent. Then FX,Y (x, y) = P(X ≤ x
and Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX (x)FY (y), and we can write

fX,Y (x, y) = ∂2

∂x ∂y
FX,Y (x, y) = ∂2

∂x ∂y
FX (x)FY (y) = d

dx
FX (x)

d
dy

FY (y) = fX (x) fY (y)

Next we need to show that Equation 3.7.2 implies that X and Y are indepen-
dent. To begin, note that

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞

−∞
g (x)h(y) dy = g (x)

∫ ∞

−∞
h(y) dy

Set k = ∫∞
−∞ h(y) dy, so fX (x) = kg (x). Similarly, it can be shown that fY (y) =

(1/k)h(y). Therefore,

P(X ∈ A and Y ∈ B) =
∫

A

∫
B

fX,Y (x, y) dx dy =
∫

A

∫
B

g (x)h(y) dx dy

=
∫

A

∫
B

kg (x)(1/k)h(y) dx dy =
∫

A
fX (x) dx

∫
B

fY (y) dy

= P(X ∈ A)P(Y ∈ B)

and the theorem is proved.

Comment Theorem 3.7.4 can be adapted to the case that X and Y are discrete.

Example
3.7.11

Suppose that the probabilistic behavior of two random variables X and Y is de-
scribed by the joint pdf fX,Y (x, y) = 12xy(1 − y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Are X
and Y independent? If they are, find fX (x) and fY (y).

According to Theorem 3.7.4, the answer to the independence question is “yes” if
fX,Y (x, y) can be factored into a function of x times a function of y. There are such
functions. Let g (x) = 12x and h(y) = y(1 − y).

To find fX (x) and fY (y) requires that the “12” appearing in fX,Y (x, y) be factored
in such a way that g (x) · h(y) = fX (x) · fY (y). Let

k =
∫ ∞

−∞
h(y) dy =

∫ 1

0
y(1 − y) dy = [y2/2 − y3/3]

∣∣∣∣1
0

= 1
6

Therefore, fX (x) = kg (x) = 1
6 (12x) = 2x, 0 ≤ x ≤ 1 and fY (y) = (1/k)h(y) =

6y(1 − y), 0 ≤ y ≤ 1.

INDEPENDENCE OF n (>2) RANDOM VARIABLES

In Chapter 2, extending the notion of independence from two events to n events
proved to be something of a problem. The independence of each subset of the n
events had to be checked separately (recall Definition 2.5.2). This is not necessary
in the case of n random variables. We simply use the extension of Theorem 3.7.4 to
n random variables as the definition of independence in the multidimensional case.
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The theorem that independence is equivalent to the factorization of the joint pdf
holds in the multidimensional case.

Definition 3.7.6
The n random variables X1, X2, . . . , Xn are said to be independent if there are
functions g1(x1), g2(x2), . . . , gn(xn) such that for every x1, x2, . . . , xn

fX1,X2,...,Xn (x1, x2, . . . , xn) = g1(x1)g2(x2) · · · gn(xn)

A similar statement holds for discrete random variables, in which case f is re-
placed with p.

Comment Analogous to the result for n = 2 random variables, the expression on
the right-hand side of the equation in Definition 3.7.6 can also be written as the prod-
uct of the marginal pdfs of X1, X2, . . . , and Xn.

Example
3.7.12

Consider k urns, each holding n chips numbered 1 through n. A chip is to be drawn
at random from each urn. What is the probability that all k chips will bear the same
number?

If X1, X2, . . . , Xk denote the numbers on the 1st, 2nd, . . ., and kth chips, respec-
tively, we are looking for the probability that X1 = X2 = · · · = Xk. In terms of the
joint pdf,

P(X1 = X2 = · · · = Xk) =
∑

x1=x2=···=xk

pX1,X2,...,Xk (x1, x2, . . . , xk)

Each of the selections here is obviously independent of all the others, so the joint
pdf factors according to Definition 3.7.6, and we can write

P(X1 = X2 = · · · = Xk) =
n∑

i=1

pX1 (xi) · pX2 (xi) · · · pXk (xi)

= n ·
(

1
n

· 1
n

· · · · · 1
n

)

= 1
nk−1

RANDOM SAMPLES

Definition 3.7.6 addresses the question of independence as it applies to n random vari-
ables having marginal pdfs—say, fX1 (x1), fX2 (x2), . . . , fXn (xn)—that might be quite
different. A special case of that definition occurs for virtually every set of data col-
lected for statistical analysis. Suppose an experimenter takes a set of n measurements,
x1, x2, . . . , xn, under the same conditions. Those Xi’s, then, qualify as a set of indepen-
dent random variables—moreover, each represents the same pdf. The special—but
familiar—notation for that scenario is given in Definition 3.7.7. We will encounter it
often in the chapters ahead.

Definition 3.7.7
Let W1,W2, . . . ,Wn be a set of n independent random variables, all having the
same pdf. Then W1,W2, . . . ,Wn are said to be a random sample of size n.
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Questions

3.7.38. Two fair dice are tossed. Let X denote the num-
ber appearing on the first die and Y the number on the
second. Show that X and Y are independent.

3.7.39. Let fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x, 0 ≤ y. Show
that X andY are independent. What are the marginal pdfs
in this case?

3.7.40. Suppose that each of two urns has four chips, num-
bered 1 through 4. A chip is drawn from the first urn and
bears the number X . That chip is added to the second
urn. A chip is then drawn from the second urn. Call its
number Y .
(a) Find pX,Y (x, y).
(b) Show that pX (k) = pY (k) = 1

4 , k = 1, 2, 3, 4.
(c) Show that X and Y are not independent.

3.7.41. Let X and Y be random variables with joint pdf

fX,Y (x, y) = k, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1

Give a geometric argument to show that X and Y are not
independent.

3.7.42. Are the random variables X and Y independent if
fX,Y (x, y) = 2

3 (x + 2y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1?

3.7.43. Suppose that random variables X and Y are inde-
pendent with marginal pdfs fX (x) = 2x, 0 ≤ x ≤ 1, and
fY (y) = 3y2, 0 ≤ y ≤ 1. Find P(Y < X ).

3.7.44. Find the joint cdf of the independent random vari-

ables X and Y , where fX (x) = x
2

, 0 ≤ x ≤ 2, and

fY (y) = 2y, 0 ≤ y ≤ 1.

3.7.45. If two random variables X and Y are independent
with marginal pdfs fX (x) = 2x, 0 ≤ x ≤ 1, and fY (y) = 1,
0 ≤ y ≤ 1, calculate P

(Y
X > 2

)
.

3.7.46. Suppose fX,Y (x, y) = xye−(x+y), x > 0, y > 0.
Prove for any real numbers a, b, c, and d that

P(a < X < b, c < Y < d) = P(a < X < b) · P(c < Y < d)

thereby establishing the independence of X and Y .

3.7.47. Given the joint pdf fX,Y (x, y) = 2x + y − 2xy,
0 < x < 1, 0 < y < 1, find numbers a, b, c, and d such
that

P(a < X < b, c < Y < d) �= P(a < X < b) · P(c < Y < d)

thus demonstrating that X and Y are not independent.

3.7.48. Prove that if X and Y are two independent ran-
dom variables, then U = g (X ) and V = h(Y) are also
independent.

3.7.49. If two random variables X and Y are defined over
a region in the XY -plane that is not a rectangle (possibly
infinite) with sides parallel to the coordinate axes, can X
and Y be independent?

3.7.50. Write down the joint probability density function
for a random sample of size n drawn from the exponential
pdf, fX (x) = (1/λ)e−x/λ, x ≥ 0.

3.7.51. Suppose that X1, X2, X3, and X4 are independent
random variables, each with pdf fXi (xi) = 4x3

i , 0 ≤ xi ≤ 1.
Find
(a) P

(
X1 < 1

2

)
.

(b) P
(
exactly one Xi < 1

2

)
.

(c) fX1,X2,X3,X4 (x1, x2, x3, x4).
(d) FX2,X3 (x2, x3).

3.7.52. A random sample of size n = 2k is taken from
a uniform pdf defined over the unit interval. Calculate
P
(
X1 < 1

2 , X2 > 1
2 , X3 < 1

2 , X4 > 1
2 , . . . , X2k > 1

2

)
.

3.8 Transforming and Combining Random
Variables

TRANSFORMATIONS

Transforming a variable from one scale to another is a problem that is comfortably
familiar. If a thermometer says the temperature outside is 83◦F, we know that the
temperature in degrees Celsius is 28:

◦C =
(

5
9

)
(◦F − 32) =

(
5
9

)
(83 − 32) = 28

An analogous question arises in connection with random variables. Suppose that
X is a discrete random variable with pdf pX (k). If a second random variable, Y , is
defined to be aX + b, where a and b are constants, what can be said about the pdf
for Y? Recall Questions 3.3.11 and 3.4.16 as examples of such transformations.
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Theorem
3.8.1

Suppose X is a discrete random variable. Let Y = aX + b, where a and b are

constants. Then pY (y) = pX

(
y−b

a

)
.

Proof pY (y) = P(Y = y) = P(aX + b = y) = P
(

X = y − b
a

)
= pX

(
y − b

a

)

Example
3.8.1

Let X be a random variable for which pX (k) = 1
10 , for k = 1, 2, . . . , 10. What is the

probability distribution associated with the random variable Y , where Y = 4X − 1?
That is, find pY (y).

From Theorem 3.8.1, P(Y = y) = P(4X − 1 = y) = P[X = (y + 1)/4] =
pX

(
y+1

4

)
, which implies that pY (y) = 1

10 for the ten values of (y + 1)/4 that equal 1,

2, . . ., 10. But (y+1)/4 = 1 when y = 3, (y+1)/4 = 2 when y = 7, . . . , (y+1)/4 = 10
when y = 39. Therefore, pY (y) = 1

10 , for y = 3, 7, . . . , 39.

Next we give the analogous result for a linear transformation of a continuous random
variable.

Theorem
3.8.2

Suppose X is a continuous random variable. Let Y = aX + b, where a �= 0 and b is
a constant. Then

fY (y) = 1
|a| fX

(
y − b

a

)

Proof We begin by writing an expression for the cdf of Y :

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P(aX ≤ y − b)

At this point we need to consider two cases, the distinction being the sign of a.
Suppose, first, that a > 0. Then

FY (y) = P(aX ≤ y − b) = P
(

X ≤ y − b
a

)
and differentiating FY (y) yields fY (y):

fY (y) = d
dy

FY (y) = d
dy

FX

(
y − b

a

)
= 1

a
fX

(
y − b

a

)
= 1

|a| fX

(
y − b

a

)
If a < 0,

FY (y) = P(aX ≤ y − b) = P
(

X >
y − b

a

)
= 1 − P

(
X ≤ y − b

a

)
Differentiation in this case gives

fY (y) = d
dy

FY (y) = d
dy

[
1 − FX

(
y − b

a

)]
= −1

a
fX

(
y − b

a

)
= 1

|a| fX

(
y − b

a

)
and the theorem is proved.

Now, armed with the multivariable concepts and techniques covered in Sec-
tion 3.7, we can extend the investigation of transformations to functions defined on
sets of random variables. In statistics, the most important combination of a set of
random variables is often their sum, so we continue this section with the problem of
finding the pdf of X + Y .
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FINDING THE PDF OF A SUM

Theorem
3.8.3

Suppose that X and Y are independent random variables. Let W = X + Y. Then

1. If X and Y are discrete random variables with pdfs pX (x) and pY (y),
respectively,

pW (w) =
∑
all x

pX (x)pY (w − x)

2. If X and Y are continuous random variables with pdfs fX (x) and fY (y),
respectively,

fW (w) =
∫ ∞

−∞
fX (x) fY (w − x) dx

Proof

1. pW (w) = P(W = w) = P(X + Y = w)

= P
(⋃

all x

(X = x,Y = w − x)
)

=
∑
all x

P(X = x,Y = w − x)

=
∑
all x

P(X = x)P(Y = w − x)

=
∑
all x

pX (x)pY (w − x)

where the next-to-last equality derives from the independence of X and Y .

2. Since X and Y are continuous random variables, we can find fW (w) by dif-
ferentiating the corresponding cdf, FW (w). Here, FW (w) = P(X + Y ≤ w) is
found by integrating fX,Y (x, y) = fX (x) · fY (y) over the shaded region R, as
pictured in Figure 3.8.1.

0
x

w = x + y

y

R

w

w

Figure 3.8.1

By inspection,

Fw(w) =
∫ ∞

−∞

∫ w−x

−∞
fX (x) fY (y) dy dx =

∫ ∞

−∞
fX (x)

[∫ w−x

−∞
fY (y) dy

]
dx

=
∫ ∞

−∞
fX (x)FY (w − x) dx
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Assume that the integrand in the above equation is sufficiently smooth so that
differentiation and integration can be interchanged. Then we can write

fW (w) = d
dw

FW (w) = d
dw

∫ ∞

−∞
fX (x)FY (w − x) dx =

∫ ∞

−∞
fX (x)

[
d

dw
FY (w − x)

]
dx

=
∫ ∞

−∞
fX (x) fY (w − x) dx

and the theorem is proved.

Comment The integral in part (2) above is referred to as the convolution of the
functions fX and fY . Besides their frequent appearances in random variable prob-
lems, convolutions turn up in many areas of mathematics and engineering.

Example
3.8.2

Suppose that X and Y are two independent binomial random variables, each with
the same success probability but defined on m and n trials, respectively. Specifically,

pX (k) =
(

m
k

)
pk(1 − p)m−k, k = 0, 1, . . . , m

and

pY (k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

Find pW (w), where W = X + Y .
By Theorem 3.8.3, pW (w) = ∑

all x
pX (x)pY (w − x), but the summation over “all

x” needs to be interpreted as the set of values for x and w − x such that pX (x) and
pY (w−x), respectively, are both nonzero. But that will be true for all integers x from
0 to w. Therefore,

pW (w) =
w∑

x=0

pX (x)pY (w − x) =
w∑

x=0

(
m
x

)
px(1 − p)m−x

(
n

w − x

)
pw−x(1 − p)n−(w−x)

=
w∑

x=0

(
m
x

)(
n

w − x

)
pw(1 − p)n+m−w

Now, consider an urn having m red chips and n white chips. If w chips are drawn
out—without replacement—the probability that exactly x red chips are in the sample
is given by the hypergeometric distribution,

P(x reds in sample) =
(m

x

)( n
w−x

)(m+n
w

) (3.8.1)

Summing Equation 3.8.1 from x = 0 to x = w must equal 1 (why?), in which case
w∑

x=0

(
m
x

)(
n

w − x

)
=
(

m + n
w

)
so

pW (w) =
(

m + n
w

)
pw(1 − p)n+m−w, w = 0, 1, . . . , n + m

Should we recognize pW (w)? Definitely. Compare the structure of pW (w) to the
statement of Theorem 3.2.1: The random variable W has a binomial distribution
where the probability of success at any given trial is p and the total number of trials
is n + m.
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Comment Example 3.8.2 shows that the binomial distribution “reproduces”
itself—that is, if X and Y are independent binomial random variables with the same
value for p, their sum is also a binomial random variable. Not all random variables
share that property. The sum of two independent uniform random variables, for ex-
ample, is not a uniform random variable (see Question 3.8.5).

Example
3.8.3

Suppose a radiation monitor relies on an electronic sensor, whose lifetime X is mod-
eled by the exponential pdf, fX (x) = λe−λx, x > 0. To improve the reliability of
the monitor, the manufacturer has included an identical second sensor that is acti-
vated only in the event the first sensor malfunctions. (This is called cold redundancy.)
Let the random variable Y denote the operating lifetime of the second sensor, in
which case the lifetime of the monitor can be written as the sum W = X + Y . Find
fW (w).

Since X and Y are both continuous random variables,

fW (w) =
∫ ∞

−∞
fX (x) fY (w − x) dx (3.8.2)

Notice that fX (x) > 0 only if x > 0 and that fY (w − x) > 0 only if x < w. Therefore,
the integral in Equation 3.8.2 that goes from −∞ to ∞ reduces to an integral from
0 to w, and we can write

fW (w) =
∫ w

0
fX (x) fY (w − x) dx =

∫ w

0
λe−λxλe−λ(w−x) dx = λ2

∫ w

0
e−λxe−λ(w−x) dx

= λ2e−λw

∫ w

0
dx = λ2we−λw, w ≥ 0

Comment By integrating fX (x) and fW (w), we can assess the improvement in the
monitor’s reliability afforded by the cold redundancy. Since X is an exponential ran-
dom variable, E(X ) = 1/λ (recall Question 3.5.11). How different, for example, are
P(X ≥ 1/λ) and P(W ≥ 1/λ)? A simple calculation shows that the latter is actually
twice the magnitude of the former:

P(X ≥ 1/λ) =
∫ ∞

1/λ

λe−λx dx = −e−u
∣∣∞
1 = e−1 = 0.37

P(W ≥ 1/λ) =
∫ ∞

1/λ

λ2we−λw dw = e−u(−u − 1)
∣∣∞
1 = 2e−1 = 0.74

FINDING THE PDFS OF QUOTIENTS AND PRODUCTS

We conclude this section by considering the pdfs for the quotient and product of two
independent random variables. That is, given X and Y , we are looking for fW (w),
where (1) W = Y/X and (2) W = XY . Neither of the resulting formulas is as im-
portant as the pdf for the sum of two random variables, but both formulas will play
key roles in several derivations in Chapter 7. Example 3.8.4 gives an introduction to
the theorems in this section.
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Example
3.8.4

Suppose that X and Y have a joint uniform density over the unit square:

fX,Y (x, y) =
{

1 0 < x < 1, 0 < y < 1

0 elsewhere

Find the pdf for their product—that is, find fZ(z), where Z = XY .
For 0 < z < 1, FZ(z) is the volume above the shaded region in Figure 3.8.2.

Specifically,

FZ(z) = P(Z ≤ z) = P(XY ≤ z) =
∫∫
R

fX,Y (x, y) dy dx

z = xy

X-axisz

Y R

0

1

Figure 3.8.2

By inspection, we see that the double integral over R can be split up into two double
integrals—one letting x range from 0 to z, the other having x-values extend from
z to 1:

FZ(z) =
∫ z

0

(∫ 1

0
1 dy

)
dx +

∫ 1

z

(∫ z/x

0
1 dy

)
dx

But ∫ z

0

(∫ 1

0
1 dy

)
dx =

∫ z

0
1 dx = z

and ∫ 1

z

(∫ z/x

0
1 dy

)
dx =

∫ 1

z

(z
x

)
dx = z ln x

∣∣∣1
z

= −z ln z

It follows that

FZ(z) =
⎧⎨
⎩

0 z ≤ 0
z − z ln z 0 < z < 1
1 z ≥ 1

in which case

fZ(z) =
{− ln z 0 < z < 1

0 elsewhere

Theorem
3.8.4

Let X and Y be independent continuous random variables, with pdfs fX (x) and
fY (y), respectively. Assume that X is zero for at most a set of isolated points. Let
W = Y/X. Then

fW (w) =
∫ ∞

−∞
|x| fX (x) fY (wx) dx

(Continued on next page)
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(Theorem 3.8.4 continued)

Proof

FW (w) = P(Y/X ≤ w)

= P(Y/X ≤ w and X ≥ 0) + P(Y/X ≤ w and X < 0)

= P(Y ≤ wX and X ≥ 0) + P(Y ≥ wX and X < 0)

= P(Y ≤ wX and X ≥ 0) + 1 − P(Y ≤ wX and X < 0)

=
∫ ∞

0

∫ wx

−∞
fX (x) fY (y) dy dx + 1 −

∫ 0

−∞

∫ wx

−∞
fX (x) fY (y) dy dx

Then we differentiate FW (w) to obtain

fW (w) = d
dw

FW (w) = d
dw

∫ ∞

0

∫ wx

−∞
fX (x) fY (y) dy dx− d

dw

∫ 0

−∞

∫ wx

−∞
fX (x) fY (y) dy dx

=
∫ ∞

0
fX (x)

(
d

dw

∫ wx

−∞
fY (y) dy

)
dx −

∫ 0

−∞
fX (x)

(
d

dw

∫ wx

−∞
fY (y) dy

)
dx

(3.8.3)

(Note that we are assuming sufficient regularity of the functions to permit inter-
change of integration and differentiation.)

To proceed, we need to differentiate the function G(w) = ∫ wx
−∞ fY (y) dy with

respect to w. By the Fundamental Theorem of Calculus and the chain rule, we find

d
dw

G(w) = d
dw

∫ wx

−∞
fY (y) dy = fY (wx)

d
dw

wx = x fY (wx)

Putting this result into Equation 3.8.3 gives

fW (w) =
∫ ∞

0
x fX (x) fY (wx) dx −

∫ 0

−∞
x fX (x) fY (wx) dx

=
∫ ∞

0
x fX (x) fY (wx) dx +

∫ 0

−∞
(−x) fX (x) fY (wx) dx

=
∫ ∞

0
|x| fX (x) fY (wx) dx +

∫ 0

−∞
|x| fX (x) fY (wx) dx

=
∫ ∞

−∞
|x| fX (x) fY (wx) dx

which completes the proof.

Example
3.8.5

Let X and Y be independent random variables with pdfs fX (x) = λe−λx, x > 0, and
fY (y) = λe−λy, y > 0, respectively. Define W = Y/X . Find fW (w).

Substituting into the formula given in Theorem 3.8.4, we can write

fW (w) =
∫ ∞

0
x(λe−λx)(λe−λxw) dx = λ2

∫ ∞

0
xe−λ(1+w)x dx

= λ2

λ(1 + w)

∫ ∞

0
xλ(1 + w)e−λ(1+w)x dx
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Notice that the integral is the expected value of an exponential random variable with
parameter λ(1 + w), so it equals 1/λ(1 + w) (recall Example 3.5.6). Therefore,

fW (w) = λ2

λ(1 + w)
1

λ(1 + w)
= 1

(1 + w)2
, w ≥ 0

Theorem
3.8.5

Let X and Y be independent continuous random variables with pdfs fX (x) and
fY (y), respectively. Let W = XY. Then

fW (w) =
∫ ∞

−∞

1
|x| fX (x) fY (w/x) dx =

∫ ∞

−∞

1
|x| fX (w/x) fY (x) dx

Proof A line-by-line, straightforward modification of the proof of Theorem 3.8.4
will provide a proof of Theorem 3.8.5. The details are left to the reader.

Example
3.8.6

Suppose that X and Y are independent random variables with pdfs fX (x) = 1, 0 ≤
x ≤ 1, and fY (y) = 2y, 0 ≤ y ≤ 1, respectively. Find fW (w), where W = XY .

According to Theorem 3.8.5,

fW (w) =
∫ ∞

−∞

1
|x| fX (x) fY (w/x) dx

The region of integration, though, needs to be restricted to values of x for which the
integrand is positive. But fY (w/x) is positive only if 0 ≤ w/x ≤ 1, which implies that
x ≥ w. Moreover, for fX (x) to be positive requires that 0 ≤ x ≤ 1. Any x, then, from
w to 1 will yield a positive integrand. Therefore,

fW (w) =
∫ 1

w

1
x

(1)(2w/x) dx = 2w

∫ 1

w

1
x2

dx = 2 − 2w, 0 ≤ w ≤ 1

Comment Theorems 3.8.3, 3.8.4, and 3.8.5 can be adapted to situations where X
and Y are not independent by replacing the product of the marginal pdfs with the
joint pdf.

Questions

3.8.1. Let Y be a continuous random variable with
fY (y) = 1

2 (1+y),−1 ≤ y ≤ 1. Define the random variable
W by W = −4Y + 7. Find fW (w). Be sure to specify those
values of w for which fW (w) �= 0.

3.8.2. Let fY (y) = 3
14 (1 + y2), 0 ≤ y ≤ 2. Define the ran-

dom variable W by W = 3Y + 2. Find fW (w). Be sure to
specify the values of w for which fW (w) �= 0.

3.8.3. Let X and Y be two independent random variables.
Given the marginal pdfs shown below, find the pdf of
X + Y . In each case, check to see if X + Y belongs to
the same family of pdfs as do X and Y .

(a) pX (k) = e−λ
λk

k!
and pY (k) = e−μ

μk

k!
, k = 0, 1, 2, . . .

(b) pX (k) = pY (k) = (1 − p)k−1 p, k = 1, 2, . . .

3.8.4. Suppose fX (x) = xe−x, x ≥ 0, and fY (y) = e−y,
y ≥ 0, where X and Y are independent. Find the pdf of
X + Y .

3.8.5. Let X and Y be two independent random vari-
ables, whose marginal pdfs are given below. Find the pdf
of X + Y . (Hint: Consider two cases, 0 ≤ w < 1 and
1 ≤ w ≤ 2.)

fX (x) = 1, 0 ≤ x ≤ 1, and fY (y) = 1, 0 ≤ y ≤ 1

3.8.6. If a random variable V is independent of two in-
dependent random variables X and Y , prove that V is
independent of X + Y .

3.8.7. Let Y be a continuous nonnegative random vari-
able. Show that W = Y 2 has pdf fW (w) = 1

2
√

w
fY (

√
w).

(Hint: First find FW (w).)
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3.8.8. Let Y be a uniform random variable over the inter-
val [0, 1]. Find the pdf of W = Y 2.

3.8.9. Let Y be a random variable with fY (y) = 6y(1−y),
0 ≤ y ≤ 1. Find the pdf of W = Y 2.

3.8.10. Suppose the velocity of a gas molecule of mass m is
a random variable with pdf fY (y) = ay2e−by2

, y ≥ 0, where
a and b are positive constants depending on the gas. Find
the pdf of the kinetic energy, W = (m/2)Y 2, of such a
molecule.

3.8.11. Given that X and Y are independent random vari-
ables, find the pdf of XY for the following two sets of
marginal pdfs:

(a) fX (x) = 1, 0 ≤ x ≤ 1, and fY (y) = 1, 0 ≤ y ≤ 1
(b) fX (x) = 2x, 0 ≤ x ≤ 1, and fY (y) = 2y, 0 ≤ y ≤ 1

3.8.12. Let X and Y be two independent random
variables. Given the marginal pdfs indicated below, find
the cdf of Y/X . (Hint: Consider two cases, 0 ≤ w ≤ 1 and
1 < w.)
(a) fX (x) = 1, 0 ≤ x ≤ 1, and fY (y) = 1, 0 ≤ y ≤ 1
(b) fX (x) = 2x, 0 ≤ x ≤ 1, and fY (y) = 2y, 0 ≤ y ≤ 1

3.8.13. Suppose that X and Y are two independent ran-
dom variables, where fX (x) = xe−x, x ≥ 0, and fY (y) =
e−y, y ≥ 0. Find the pdf of Y/X .

3.9 Further Properties of the Mean and Variance
Sections 3.5 and 3.6 introduced the basic definitions related to the expected value and
variance of single random variables. We learned how to calculate E(W), E[g (W)],
E(aW + b), Var(W), and Var(aW + b), where a and b are any constants and W could
be either a discrete or a continuous random variable. The purpose of this section is
to examine certain multivariable extensions of those results, based on the joint pdf
material covered in Section 3.7.

We begin with a theorem that generalizes E[g (W)]. While it is stated here for
the case of two random variables, it extends in a very straightforward way to include
functions of n random variables.

Theorem
3.9.1

1. Suppose X and Y are discrete random variables with joint pdf pX,Y (x, y), and
let g (X,Y) be a function of X and Y. Then the expected value of the random
variable g (X,Y) is given by

E[g (X,Y)] =
∑
all x

∑
all y

g (x, y) · pX,Y (x, y)

provided
∑
all x

∑
all y

|g (x, y)| · pX,Y (x, y) < ∞.

2. Suppose X and Y are continuous random variables with joint pdf fX,Y (x, y),
and let g (X,Y) be a continuous function. Then the expected value of the ran-
dom variable g (X,Y) is given by

E[g (X,Y)] =
∫ ∞

−∞

∫ ∞

−∞
g (x, y) · fX,Y (x, y) dx dy

provided
∫∞
−∞

∫∞
−∞ |g (x, y)| · fX,Y (x, y) dx dy < ∞.

Proof The basic approach taken in deriving this result is similar to the method
followed in the proof of Theorem 3.5.3. See (136) for details.

Example
3.9.1

Consider the two random variables X and Y whose joint pdf is detailed in the 2 × 4
matrix shown in Table 3.9.1. Let

g (X,Y) = 3X − 2XY + Y
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Table 3.9.1

Y

0 1 2 3

0
1
8

1
4

1
8

0

X

1 0
1
8

1
4

1
8

Table 3.9.2
z 0 1 2 3

fZ(z) 1
4

1
2

1
4 0

Find E[g (X,Y)] two ways—first, by using the basic definition of an expected value,
and second, by using Theorem 3.9.1.

Let Z = 3X − 2XY + Y . By inspection, Z takes on the values 0, 1, 2, and
3 according to the pdf fZ(z) shown in Table 3.9.2. Then from the basic definition
that an expected value is a weighted average, we see that E[g (X,Y)] is equal
to 1:

E[g (X,Y)] = E(Z) =
∑
all z

z · fZ(z)

= 0 · 1
4

+ 1 · 1
2

+ 2 · 1
4

+ 3 · 0

= 1

The same answer is obtained by applying Theorem 3.9.1 to the joint pdf given in
Figure 3.9.1:

E[g (X,Y)] = 0 · 1
8

+ 1 · 1
4

+ 2 · 1
8

+ 3 · 0 + 3 · 0 + 2 · 1
8

+ 1 · 1
4

+ 0 · 1
8

= 1

The advantage, of course, enjoyed by the latter solution is that we avoid the inter-
mediate step of having to determine fZ(z).

Example
3.9.2

An electrical circuit has three resistors, RX , RY , and RZ, wired in parallel (see Fig-
ure 3.9.1). The nominal resistance of each is fifteen ohms, but their actual resistances,
X , Y , and Z, vary between ten and twenty according to the joint pdf

fX,Y,Z(x, y, z) = 1
675,000

(xy + xz + yz),
10 ≤ x ≤ 20
10 ≤ y ≤ 20
10 ≤ z ≤ 20

What is the expected resistance for the circuit?

XR

YR

ZR

Figure 3.9.1
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Let R denote the circuit’s resistance. A well-known result in physics holds that

1
R

= 1
X

+ 1
Y

+ 1
Z

or, equivalently,

R = XYZ
XY + XZ + YZ

= R(X,Y, Z)

Integrating R(x, y, z) · fX,Y,Z(x, y, z) shows that the expected resistance is five:

E(R) =
∫ 20

10

∫ 20

10

∫ 20

10

xyz
xy + xz + yz

· 1
675,000

(xy + xz + yz) dx dy dz

= 1
675,000

∫ 20

10

∫ 20

10

∫ 20

10
xyz dx dy dz

= 5.0

Theorem
3.9.2

Let X and Y be any two random variables (discrete or continuous, dependent or
independent), and let a and b be any two constants. Then

E(aX + bY) = aE(X ) + bE(Y)

provided E(X ) and E(Y) are both finite.

Proof Consider the continuous case (the discrete case is proved much the same
way). Let fX,Y (x, y) be the joint pdf of X and Y , and define g (X,Y) = aX + bY .
By Theorem 3.9.1,

E(aX + bY) =
∫ ∞

−∞

∫ ∞

−∞
(ax + by) fX,Y (x, y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
(ax) fX,Y (x, y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
(by) fX,Y (x, y) dx dy

= a
∫ ∞

−∞
x
[∫ ∞

−∞
fX,Y (x, y) dy

]
dx + b

∫ ∞

−∞
y
[∫ ∞

−∞
fX,Y (x, y) dx

]
dy

= a
∫ ∞

−∞
x fX (x) dx + b

∫ ∞

−∞
y fY (y) dy

= aE(X ) + bE(Y)

Corollary
3.9.1

Let W1,W2, . . . ,Wn be any random variables for which E(|Wi|) < ∞, i = 1, 2, . . . , n,
and let a1, a2, . . . , an be any set of constants. Then

E(a1W1 + a2W2 + · · · + anWn) = a1E(W1) + a2E(W2) + · · · + anE(Wn)

Example
3.9.3

Let X be a binomial random variable defined on n independent trials, each trial
resulting in success with probability p. Find E(X ).

Note, first, that X can be thought of as a sum, X = X1 + X2 + · · · + Xn, where
Xi represents the number of successes occurring at the ith trial:

Xi =
{

1 if the ith trial produces a success
0 if the ith trial produces a failure
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(Any Xi defined in this way on an individual trial is called a Bernoulli random
variable. Every binomial random variable, then, can be thought of as the sum of
n independent Bernoullis.) By assumption, pXi (1) = p and pXi (0) = 1 − p, i = 1,
2, . . . , n. Using the corollary,

E(X ) = E(X1) + E(X2) + · · · + E(Xn)

= n · E(X1)

the last step being a consequence of the Xi’s having identical distributions. But

E(X1) = 1 · p + 0 · (1 − p) = p

so E(X ) = np, which is what we found before (recall Theorem 3.5.1).

Comment The problem-solving implications of Theorem 3.9.2 and its corollary
should not be underestimated. There are many real-world events that can be mod-
eled as a linear combination a1W1 + a2W2 + · · · + anWn, where the Wi’s are relatively
simple random variables. Finding E(a1W1 + a2W2 + · · · + anWn) directly may be pro-
hibitively difficult because of the inherent complexity of the linear combination. It
may very well be the case, though, that calculating the individual E(Wi)’s is easy.
Compare, for instance, Example 3.9.3 with Theorem 3.5.1. Both derive the formula
that E(X ) = np when X is a binomial random variable. However, the approach
taken in Example 3.9.3 (i.e., using Theorem 3.9.2) is much easier. The next several
examples further explore the technique of using linear combinations to facilitate the
calculation of expected values.

Example
3.9.4

A disgruntled secretary is upset about having to stuff envelopes. Handed a box of n
letters and n envelopes, she vents her frustration by putting the letters into the en-
velopes at random. How many people, on the average, will receive their correct mail?

If X denotes the number of envelopes properly stuffed, what we want is E(X ).
However, applying Definition 3.5.1 here would prove formidable because of the
difficulty in getting a workable expression for pX (k). By using the corollary to
Theorem 3.9.2, though, we can solve the problem quite easily.

Let Xi denote a random variable equal to the number of correct letters put into
the ith envelope, i = 1, 2, . . . , n. Then Xi equals 0 or 1, and

pXi (k) = P(Xi = k) =

⎧⎪⎨
⎪⎩

1
n

for k = 1
n − 1

n
for k = 0

But X = X1 +X2 +· · ·+Xn and E(X ) = E(X1)+E(X2)+· · ·+E(Xn). Furthermore,
each of the Xi’s has the same expected value, 1/n:

E(Xi) =
1∑

k=0

k · P(Xi = k) = 0 · n − 1
n

+ 1 · 1
n

= 1
n

It follows that

E(X ) =
n∑

i=1

E(Xi) = n ·
(

1
n

)

= 1

showing that, regardless of n, the expected number of properly stuffed envelopes is
one. (Are the Xi’s independent? Does it matter?)
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Example
3.9.5

Ten fair dice are rolled. Calculate the expected value of the sum of the faces showing.
If the random variable X denotes the sum of the faces showing on the ten dice,

then

X = X1 + X2 + · · · + X10

where Xi is the number showing on the ith die, i = 1, 2, . . . , 10. By assumption,

pXi (k) = 1
6 for k = 1, 2, 3, 4, 5, 6, so E(Xi) =

6∑
k=1

k · 1
6 = 1

6

6∑
k=1

k = 1
6 · 6(7)

2 = 3.5. By

the corollary to Theorem 3.9.2,

E(X ) = E(X1) + E(X2) + · · · + E(X10)

= 10(3.5)

= 35

Notice that E(X ) can also be deduced here by appealing to the notion that ex-
pected values are centers of gravity. It should be clear from our work with combina-
torics that P(X = 10) = P(X = 60), P(X = 11) = P(X = 59), P(X = 12) = P(X =
58), and so on. In other words, the probability function pX (k) is symmetric, which
implies that its center of gravity is the midpoint of the range of its X -values. It must
be the case, then, that E(X ) equals 10+60

2 or 35.

Example
3.9.6

The honor count in a (thirteen-card) bridge hand can vary from zero to thirty-seven
according to the formula:

honor count = 4 · (number of aces)+3 · (number of kings)+2 · (number of queens)

+ 1 · (number of jacks)

What is the expected honor count of North’s hand?
The solution here is a bit unusual in that we use the corollary to Theorem 3.9.2

backward. If Xi, i = 1, 2, 3, 4, denotes the honor count for players North, South,
East, and West, respectively, and if X denotes the analogous sum for the entire
deck, we can write

X = X1 + X2 + X3 + X4

But

X = E(X ) = 4 · 4 + 3 · 4 + 2 · 4 + 1 · 4 = 40

By symmetry, E(Xi) = E(Xj), i �= j, so it follows that 40 = 4 · E(X1), which implies
that ten is the expected honor count of North’s hand. (Try doing this problem
directly, without making use of the fact that the deck’s honor count is forty.)

EXPECTED VALUES OF PRODUCTS: A SPECIAL CASE

We know from Theorem 3.9.1 that for any two random variables X and Y ,

E(XY) =

⎧⎪⎪⎨
⎪⎪⎩
∑
all x

∑
all y

xypX,Y (x, y) if X and Y are discrete∫ ∞

−∞

∫ ∞

−∞
xy fX,Y (x, y) dx dy if X and Y are continuous

If, however, X and Y are independent, there is an easier way to calculate E(XY).
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Theorem
3.9.3

If X and Y are independent random variables,

E(XY) = E(X ) · E(Y)

provided E(X ) and E(Y) both exist.

Proof Suppose X and Y are both discrete random variables. Then their joint pdf,
pX,Y (x, y), can be replaced by the product of their marginal pdfs, pX (x)·pY (y), and
the double summation required by Theorem 3.9.1 can be written as the product of
two single summations:

E(XY) =
∑
all x

∑
all y

xy · pX,Y (x, y)

=
∑
all x

∑
all y

xy · pX (x) · pY (y)

=
∑
all x

x · pX (x) ·
⎡
⎣∑

all y

y · pY (y)

⎤
⎦

= E(X ) · E(Y)

The proof when X and Y are both continuous random variables is left as an
exercise.

Questions

3.9.1. Suppose that r chips are drawn with replace-
ment from an urn containing n chips, numbered 1
through n. Let V denote the sum of the numbers drawn.
Find E(V).

3.9.2. Suppose that fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x, 0 ≤ y.
Find E(X + Y).

3.9.3. Suppose that fX,Y (x, y) = 2
3 (x + 2y), 0 ≤ x ≤ 1,

0 ≤ y ≤ 1 [recall Question 3.7.19(c)]. Find E(X + Y).

3.9.4. Marksmanship competition at a certain level re-
quires each contestant to take ten shots with each of two
different handguns. Final scores are computed by taking a
weighted average of four times the number of bull’s-eyes
made with the first gun plus six times the number gotten
with the second. If Cathie has a 30% chance of hitting the
bull’s-eye with each shot from the first gun and a 40%
chance with each shot from the second gun, what is her
expected score?

3.9.5. Suppose that Xi is a random variable for which
E(Xi) = μ �= 0, i = 1, 2, . . . , n. Under what conditions
will the following be true?

E

(
n∑

i=1

aiXi

)
= μ

3.9.6. Suppose that the daily closing price of stock goes up
an eighth of a point with probability p and down an eighth
of a point with probability q, where p > q. After n days
how much gain can we expect the stock to have achieved?
Assume that the daily price fluctuations are independent
events.

3.9.7. An urn contains r red balls and w white balls. A
sample of n balls is drawn in order and without replace-
ment. Let Xi be 1 if the ith draw is red and 0 otherwise,
i = 1, 2, . . . , n.
(a) Show that E(Xi) = E(X1), i = 2, 3, . . . , n.
(b) Use the corollary to Theorem 3.9.2 to show that the
expected number of red balls is nr/(r + w).

3.9.8. Suppose two fair dice are tossed. Find the expected
value of the product of the faces showing.

3.9.9. Find E(R) for a two-resistor circuit similar to the
one described in Example 3.9.2, where fX,Y (x, y) = k(x+
y), 10 ≤ x ≤ 20, 10 ≤ y ≤ 20.

3.9.10. Suppose that X and Y are both uniformly dis-
tributed over the interval [0, 1]. Calculate the expected
value of the square of the distance of the random point
(X,Y) from the origin; that is, find E(X 2 + Y 2). (Hint:
See Question 3.8.8.)
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3.9.11. Suppose X represents a point picked at random
from the interval [0, 1] on the x-axis, and Y is a point
picked at random from the interval [0, 1] on the y-axis.
Assume that X and Y are independent. What is the ex-
pected value of the area of the triangle formed by the
points (X, 0), (0,Y), and (0, 0)?

3.9.12. Suppose Y1,Y2, . . . ,Yn is a random sample from
the uniform pdf over [0, 1]. The geometric mean of the
numbers is the random variable n

√
Y1Y2 · · · · · Yn. Compare

the expected value of the geometric mean to that of the
arithmetic mean Ȳ .

CALCULATING THE VARIANCE OF A SUM OF RANDOM VARIABLES

When random variables are not independent, a measure of the relationship between
them, their covariance, enters into the picture.

Definition 3.9.1
Given random variables X and Y with finite variances, define the covariance of
X and Y , written Cov(X,Y), as

Cov(X,Y) = E(XY) − E(X )E(Y)

Theorem
3.9.4

If X and Y are independent, then Cov(X,Y) = 0.

Proof If X andY are independent, by Theorem 3.9.3, E(XY) = E(X )E(Y). Then

Cov(X,Y) = E(XY) − E(X )E(Y) = E(X )E(Y) − E(X )E(Y) = 0

The converse of Theorem 3.9.4 is not true. Just because Cov(X,Y) = 0, we
cannot conclude that X and Y are independent. Example 3.9.7 is a case in point.

Example
3.9.7

Consider the sample space S = {(−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4)}, where each
point is assumed to be equally likely. Define the random variable X to be the first
component of a sample point and Y , the second. Then X (−2, 4) = −2,Y(−2, 4) = 4,
and so on.

Notice that X and Y are dependent:

1
5

= P(X = 1,Y = 1) �= P(X = 1) · P(Y = 1) = 1
5

· 2
5

= 2
25

However, the convariance of X and Y is zero:

E(XY) = [(−8) + (−1) + 0 + 1 + 8] · 1
5

= 0

E(X ) = [(−2) + (−1) + 0 + 1 + 2] · 1
5

= 0

and

E(Y) = (4 + 1 + 0 + 1 + 4) · 1
5

= 2

so

Cov(X,Y) = E(XY) − E(X ) · E(Y) = 0 − 0 · 2 = 0

Theorem 3.9.5 demonstrates the role of the covariance in finding the variance of
a sum of random variables that are not necessarily independent.

Theorem
3.9.5

Suppose X and Y are random variables with finite variances, and a and b are con-
stants. Then

Var(aX + bY) = a2Var(X ) + b2Var(Y) + 2ab Cov(X,Y)
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Proof For convenience, denote E(X ) by μX and E(Y) by μY . Then E(aX +
bY) = aμX + bμY and

Var(aX + bY) = E[(aX + bY)2] − (aμX + bμY )2

= E(a2X 2 + b2Y 2 + 2abXY) − (a2μ2
X + b2μ2

Y + 2abμX μY )

= [E(a2X 2) − a2μ2
X ] + [E(b2Y 2) − b2μ2

Y ] + [2abE(XY) − 2abμX μY ]

= a2[E(X 2) − μ2
X ] + b2[E(Y 2) − μ2

Y ] + 2ab[E(XY) − μX μY ]

= a2 Var(X) + b2 Var(Y) + 2abCov(X,Y)

Example
3.9.8

For the joint pdf fX,Y (x, y) = x+y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, find the variance of X +Y .
Since X and Y are not independent,

Var(X + Y) = Var(X ) + Var(Y) + 2Cov(X,Y)

The pdf is symmetric in X and Y , so Var(X ) = Var(Y), and we can write Var(X +
Y) = 2[Var(X ) + Cov(X,Y)].

To calculate Var(X ), the marginal pdf of X is needed. But

fX (x) =
∫ 1

0
(x + y)dy = x + 1

2

μX =
∫ 1

0
x(x + 1

2
)dx =

∫ 1

0
(x2 + x

2
)dx = 7

12

E(X 2) =
∫ 1

0
x2(x + 1

2
)dx =

∫ 1

0
(x3 + x2

2
)dx = 5

12

Var(X ) = E(X 2) − μ2
X = 5

12
−
(

7
12

)2

= 11
144

Then

E(XY) =
∫ 1

0

∫ 1

0
xy(x + y)dydx =

∫ 1

0

(
x2

2
+ x

3

)
dx = x3

6
+ x2

6

∣∣∣∣1
0

= 1
3

so, putting all of the pieces together,

Cov(X,Y) = 1/3 − (7/12)(7/12) = −1/144

and, finally, Var(X + Y) = 2[11/144 + (−1/144)] = 5/36

The two corollaries that follow are straightforward extensions of Theorem 3.9.5
to n variables. The details of the proof will be left as an exercise.

Corollary Suppose that W1,W2, . . . ,Wn are random variables with finite variances. Then

Var

(
a∑

i=1

aiWi

)
=

n∑
i=1

a2
i Var(Wi) + 2

∑
i< j

aia jCov(Wi,Wj)

Corollary Suppose that W1,W2, . . . ,Wn are independent random variables with finite vari-
ances. Then

Var(W1 + W2 + · · · + Wn) = Var(W1) + Var(W2) + · · · + Var(Wn)

More discussion of the covariance and its role in measuring the relationship be-
tween random variables occurs in Section 11.4.
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Example
3.9.9

The binomial random variable, being a sum of n independent Bernoullis, is an obvi-
ous candidate for the corollary to Theorem 3.9.5 on the sum of independent random
variables. Let Xi denote the number of successes occurring on the ith trial. Then

Xi =
{

1 with probability p
0 with probability 1 − p

and

X = X1 + X2 + · · · + Xn = total number of successes in n trials

Find Var(X ).
Note that

E(Xi) = 1 · p + 0 · (1 − p) = p

and

E
(
X 2

i

) = (1)2 · p + (0)2 · (1 − p) = p

so

Var(Xi) = E
(
X 2

i

)− [E(Xi)]2 = p − p2

= p(1 − p)

It follows, then, that the variance of a binomial random variable is np(1 − p):

Var(X ) =
n∑

i=1

Var(Xi) = np(1 − p)

Example
3.9.10

Recall the hypergeometric model—an urn contains N chips, r red and w white (r +
w = N); a random sample of size n is selected without replacement and the random
variable X is defined to be the number of red chips in the sample. As in the previous
example, write X as a sum of simple random variables.

Xi =
{

1 if the ith chip drawn is red
0 otherwise

Then X = X1 + X2 + · · · + Xn. Clearly,

E(Xi) = 1 · r
N

+ 0 · w

N
= r

N

and E(X ) = n
( r

N

) = np, where p = r
N .

Since X 2
i = Xi, E(X 2

i ) = E(Xi) = r
N and

Var(Xi) = E(X 2
i ) − [E(Xi)]2 = r

N
−
( r

N

)2
= p(1 − p)

Also, for any j �= k,

Cov(Xj, Xk) = E(XjXk) − E(Xj)E(Xk)

= 1 · P(XjXk = 1) −
( r

N

)2

= r
N

· r − 1
N − 1

− r2

N2
= − r

N
· N − r

N
· 1

N − 1
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From the first corollary to Theorem 3.9.5, then,

Var(X ) =
n∑

i=1

Var(Xi) + 2
∑
j<k

Cov(Xj, Xk)

= np(1 − p) − 2
(

n
2

)
p(1 − p) · 1

N − 1

= p(1 − p)
[

n − n(n − 1)
N − 1

]

= np(1 − p) · N − n
N − 1

Example
3.9.11

In statistics, it is often necessary to draw inferences based on W , the average com-
puted from a random sample of n observations. Two properties of W are especially
important. First, if theWi’s come from a population where the mean is μ, the corollary
to Theorem 3.9.2 implies that E(W) = μ. Second, if the Wi’s come from a population
whose variance is σ2, then Var(W) = σ2/n. To verify the latter, we can appeal again
to Theorem 3.9.5. Write

W = 1
n

n∑
i=1

Wi = 1
n

· W1 + 1
n

· W2 + · · · + 1
n

· Wn

Then

Var(W) =
(

1
n

)2

· Var(W1) +
(

1
n

)2

· Var(W2) + · · · +
(

1
n

)2

· Var(Wn)

=
(

1
n

)2

σ2 +
(

1
n

)2

σ2 + · · · +
(

1
n

)2

σ2

= σ2

n

Questions

3.9.13. Suppose that two dice are thrown. Let X be the
number showing on the first die and let Y be the larger of
the two numbers showing. Find Cov(X,Y).

3.9.14. Show that

Cov(aX + b, cY + d) = acCov(X,Y)

for any constants a, b, c, and d.

3.9.15. Let U be a random variable uniformly distributed
over [0, 2π]. Define X = cosU and Y = sinU . Show that
X and Y are dependent but that Cov(X,Y) = 0.

3.9.16. Let X and Y be random variables with

fX,Y (x, y) =
{

1, −y < x < y, 0 < y < 1
0, elsewhere

Show that Cov(X,Y) = 0 but that X and Y are depen-
dent.

3.9.17. Suppose that fX,Y (x, y) = λ2e−λ(x+y), 0 ≤ x, 0 ≤ y.
Find Var(X + Y). (Hint: See Questions 3.6.11 and 3.9.2.)

3.9.18. Suppose that fX,Y (x, y) = 2
3 (x + 2y), 0 ≤ x ≤ 1,

0 ≤ y ≤ 1. Find Var(X + Y). (Hint: See Question 3.9.3.)

3.9.19. Suppose that fX,Y (x, y) = 3
2 (x2 + y2), 0 ≤ x ≤ 1,

0 ≤ y ≤ 1. Find Var(X + Y).

3.9.20. Let X be a binomial random variable based on n
trials and a success probability of pX ; let Y be an inde-
pendent binomial random variable based on m trials and
a success probability of pY . Find E(W) and Var(W), where
W = 4X + 6Y .

3.9.21. A Poisson random variable has pdf pX (k) = e−λ λk

k! ,
k = 0, 1, 2, . . . and λ> 0 (see Section 4.2). Also, E(X ) = λ.
Suppose the Poisson random variable U is the number
of calls for technical assistance received by a computer
company during the firm’s nine normal workday hours,
with the average number of calls per hour equal 7.0. Also
suppose each call costs the company $50. Let V be a
Poisson random variable representing the number of calls
for technical assistance received during a day’s remaining
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fifteen hours. Assume the average number of calls per
hour is four for that time period and that each such call
costs the company $60. Find the expected cost and the
variance of the cost associated with the calls received dur-
ing a twenty-four-hour day.

3.9.22. A mason is contracted to build a patio retaining
wall. Plans call for the base of the wall to be a row of
fifty 10-inch bricks, each separated by 1

2 -inch-thick mortar.
Suppose that the bricks used are randomly chosen from a
population of bricks whose mean length is 10 inches and
whose standard deviation is 1

32 inch. Also, suppose that
the mason, on the average, will make the mortar 1

2 inch
thick, but that the actual dimension will vary from brick
to brick, the standard deviation of the thicknesses being

1
16 inch. What is the standard deviation of L, the length
of the first row of the wall? What assumption are you
making?

3.9.23. An electric circuit has six resistors wired in series,
each nominally being five ohms. What is the maximum
standard deviation that can be allowed in the manufac-
ture of these resistors if the combined circuit resistance is
to have a standard deviation no greater than 0.4 ohm?

3.9.24. A gambler plays n hands of poker. If he wins the
kth hand, he collects k dollars; if he loses the kth hand,
he collects nothing. Let T denote his total winnings in n
hands. Assuming that his chances of winning each hand
are constant and independent of his success or failure at
any other hand, find E(T) and Var(T).

3.10 Order Statistics
The single-variable transformation taken up in Section 3.4 involved a standard linear
operation, Y = aX + b. The bivariate transformations in Section 3.8 were similarly
arithmetic, typically being concerned with either sums or products. In this section
we will consider a different sort of transformation, one involving the ordering of an
entire set of random variables. This particular transformation has wide applicability
in many areas of statistics, and we will see some of its consequences in later chapters.

Definition 3.10.1
Let Y be a continuous random variable for which y1, y2, . . . , yn are the values of
a random sample of size n. Reorder the yi’s from smallest to largest:

y′
1 < y′

2 < · · · < y′
n

(No two of the yi’s are equal, except with probability zero, since Y is continu-
ous.) Define the random variable Y ′

i to have the value y′
i, 1 ≤ i ≤ n. Then Y ′

i
is called the ith order statistic. Sometimes Y ′

n and Y ′
1 are denoted Ymax and Ymin,

respectively.

Example
3.10.1

Suppose that four measurements are made on the random variable Y : y1 = 3.4, y2 =
4.6, y3 = 2.6, and y4 = 3.2. The corresponding ordered sample would be

2.6 < 3.2 < 3.4 < 4.6

The random variable representing the smallest observation would be denoted Y ′
1,

with its value for this particular sample being 2.6. Similarly, the value for the second
order statistic, Y ′

2, is 3.2, and so on.

THE DISTRIBUTION OF EXTREME ORDER STATISTICS

By definition, every observation in a random sample has the same pdf. For example,
if a set of four measurements is taken from a normal distribution with μ = 80 and
σ = 15, then fY1 (y), fY2 (y), fY3 (y), and fY4 (y) are all the same—each is a normal pdf
with μ = 80 and σ = 15. The pdf describing an ordered observation, though, is not
the same as the pdf describing a random observation. Intuitively, that makes sense.
If a single observation is drawn from a normal distribution with μ = 80 and σ = 15,
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it would not be surprising if that observation were to take on a value near eighty.
On the other hand, if a random sample of n = 100 observations is drawn from that
same distribution, we would not expect the smallest observation—that is, Ymin—to
be anywhere near eighty. Common sense tells us that that smallest observation is
likely to be much smaller than eighty, just as the largest observation, Ymax, is likely
to be much larger than eighty.

It follows, then, that before we can do any probability calculations—or any ap-
plications whatsoever—involving order statistics, we need to know the pdf of Y ′

i for
i = 1, 2, . . . , n. We begin by investigating the pdfs of the “extreme” order statistics,
fYmax (y) and fYmin (y). These are the simplest to work with. At the end of the section
we return to the more general problems of finding (1) the pdf of Y ′

i for any i and
(2) the joint pdf of Y ′

i and Y ′
j , where i < j.

Theorem
3.10.1

Suppose that Y1, Y2, . . ., Yn is a random sample of continuous random variables,
each having pdf fY (y) and cdf FY (y). Then

a. The pdf of the largest order statistic is

fYmax (y) = fY ′
n
(y) = n[FY (y)]n−1 fY (y)

b. The pdf of the smallest order statistic is

fYmin (y) = fY ′
1
(y) = n[1 − FY (y)]n−1 fY (y)

Proof Finding the pdfs of Ymax and Ymin is accomplished by using the now-
familiar technique of differentiating a random variable’s cdf. Consider, for
example, the case of the largest order statistic, Y ′

n:

FY ′
n
(y) = FYmax (y) = P(Ymax ≤ y)

= P(Y1 ≤ y,Y2 ≤ y, · · · ,Yn ≤ y)

= P(Y1 ≤ y) · P(Y2 ≤ y) · · · P(Yn ≤ y) (why?)

= [FY (y)]n

Therefore,

fY ′
n
(y) = d/dy[[FY (y)]n] = n[FY (y)]n−1 fY (y)

Similarly, for the smallest order statistic (i = 1),

FY ′
1
(y) = FYmin (y) = P(Ymin ≤ y)

= 1 − P(Ymin > y) = 1 − P(Y1 > y) · P(Y2 > y) · · · P(Yn > y)

= 1 − [1 − FY (y)]n

Therefore,

fY ′
1
(y) = d/dy[1 − [1 − FY (y)]n] = n[1 − FY (y)]n−1 fY (y)

Example
3.10.2

Suppose a random sample of n = 3 observations, Y1, Y2, and Y3, is taken from the
exponential pdf, fY (y) = e−y, y ≥ 0. Compare fY1 (y) with fY ′

1
(y). Intuitively, which

will be larger, P(Y1 < 1) or P(Y ′
1 < 1)?
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The pdf for Y1, of course, is just the pdf of the distribution being sampled,
that is,

fY1 (y) = fY (y) = e−y, y ≥ 0

To find the pdf for Y ′
1 requires that we apply the formula given in the proof of The-

orem 3.10.1 for fYmin (y). Note, first of all, that

FY (y) =
∫ y

0
e−tdt = −e−t

∣∣y
0 = 1 − e−y

Then, since n = 3 (and i = 1), we can write

fY ′
1
(y) = 3[1 − (1 − e−y)]2e−y

= 3e−3y, y ≥ 0

Figure 3.10.1 shows the two pdfs plotted on the same set of axes. Compared to
fY1 (y), the pdf for Y ′

1 has more of its area located above the smaller values of y (where
Y ′

1 is more likely to lie). For example, the probability that the smallest observation
(out of three) is less than 1 is 95%, while the probability that a random observation
is less than 1 is only 63%:

P(Y ′
1 < 1) =

∫ 1

0
3e−3y dy =

∫ 3

0
e−u du = −e−u

∣∣∣∣∣
3

0

= 1 − e−3

= 0.95

P(Y1 < 1) =
∫ 1

0
e−y dy = −e−y

∣∣∣∣∣
1

0

= 1 − e−1

= 0.63

3

2

1

0 1 2

Probability
density

3 4 5

f    (y) = 3eY9 
1

–3y

f    (y) = eY
1

–y

y

Figure 3.10.1

Example
3.10.3

Suppose a random sample of size 10 is drawn from a continuous pdf fY (y). What is
the probability that the largest observation, Y ′

10, is less than the pdf’s median, m?
Using the formula for fY ′

10
(y) = fYmax (y) given in the proof of Theorem 3.10.1, it

is certainly true that

P(Y ′
10 < m) =

∫ m

−∞
10 fY (y)[FY (y)]9dy (3.10.1)

but the problem does not specify fY (y), so Equation 3.10.1 is of no help.
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Fortunately, a much simpler solution is available, even if fY (y) were specified:
The event “Y ′

10 < m” is equivalent to the event “Y1 < m ∩ Y2 < m ∩ · · · ∩ Y10 < m.”
Therefore,

P(Y ′
10 < m) = P(Y1 < m,Y2 < m, . . . ,Y10 < m) (3.10.2)

But the ten observations here are independent, so the intersection probability im-
plicit on the right-hand side of Equation 3.10.2 factors into a product of ten terms.
Moreover, each of those terms equals 1

2 (by definition of the median), so

P(Y ′
10 < m) = P(Y1 < m) · P(Y2 < m) · · · P(Y10 < m)

= ( 1
2

)10

= 0.00098

Example
3.10.4

To find order statistics for discrete pdfs, the probability arguments of the type used in
the proof of Theorem 3.10.1 can be be employed. The example of finding the pdf of
Xmin for the discrete density function pX (k), k = 0, 1, 2, . . . suffices to demonstrate
this point.

Given a random sample X1, X2, . . . , Xn from pX (k), choose an arbitrary non-

negative integer m. Recall that the cdf in this case is given by FX (m) =
m∑

k=0
pk.

Consider the events

A =(m ≤ X1 ∩ m ≤ X2 ∩ · · · ∩ m ≤ Xn) and

B =(m + 1 ≤ X1 ∩ m + 1 ≤ X2 ∩ · · · ∩ m + 1 ≤ Xn)

Then pXmin (m) = P(A ∩ BC) = P(A) − P(A ∩ B) = P(A) − P(B), where A ∩ B = B,
since B ⊂ A.

Now P(A) = P(m ≤ X1) · P(m ≤ X2) · . . . · P(m ≤ Xn) = [1 − FX (m − 1)]n by
the independence of the Xi. Similarly P(B) = [1 − FX (m)]n, so

pYmin (m) = [1 − FX (m − 1)]n − [1 − FX (m)]n

A GENERAL FORMULA FOR fYi'(y)

Having discussed two special cases of order statistics, Ymin and Ymax, we now turn to
the more general problem of finding the pdf for the ith order statistic, where i can be
any integer from 1 through n.

Theorem
3.10.2

Let Y1,Y2, . . . ,Yn be a random sample of continuous random variables drawn from
a distribution having pdf fY (y) and cdf FY (y). The pdf of the ith order statistic is
given by

fY ′
i
(y) = n!

(i − 1)!(n − i)!
[FY (y)]i−1[1 − FY (y)]n−i fY (y)

for 1 ≤ i ≤ n.

Proof We will give a heuristic argument that draws on the similarity between the
statement of Theorem 3.10.2 and the binomial distribution. For a formal induction
proof verifying the expression given for fY ′

i
(y), see (105).

Recall the derivation of the binomial probability function, pX (k) = P(X =
k) =

(
n
k

)
pk(1 − p)n−k, where X is the number of successes in n independent

(Continued on next page)
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(Theorem 3.10.2 continued)

trials, and p is the probability that any given trial ends in success. Central to that
derivation was the recognition that the event “X = k” is actually a union of all
the different (mutually exclusive) sequences having exactly k successes and n − k
failures. Because the trials are independent, the probability of any such sequence is
pk(1−p)n−k and the number of such sequences (by Theorem 2.6.2) is n!/[k!(n−k)!]

(or
(

n
k

)
), so the probability that X = k is the product

(
n
k

)
pk(1 − p)n−k.

Here we are looking for the pdf of the ith order statistic at some point y, that
is, fY ′

i
(y). As was the case with the binomial, that pdf will reduce to a combina-

torial term times the probability associated with an intersection of independent
events. The only fundamental difference is that Y ′

i is a continuous random vari-
able, whereas the binomial X is discrete, which means that what we find here will
be a probability density function.

By Theorem 2.6.2, there are n!/[(i − 1)!1!(n − i)!] ways that n observations
can be parceled into three groups such that the ith largest is at the point y (see Fig-
ure 3.10.2). Moreover, the likelihood associated with any particular set of points
having the configuration pictured in Figure 3.10.2 will be the probability that i − 1
(independent) observations are all less than y, n − i observations are greater than
y, and one observation is at y. The probability density associated with those con-
straints for a given set of points would be [FY (y)]i−1[1−FY (y)]n−i fY (y). The proba-
bility density, then, that the ith order statistic is located at the point y is the product

fY ′
i
(y) = n!

(i − 1)!(n − i)!
[FY (y)]i−1[1 − FY (y)]n−i fY (y)

Y-axis
y

i – 1 obs. 1 obs. n – i obs.

Figure 3.10.2

Example
3.10.5

Suppose that many years of observation have confirmed that the annual maximum
flood tide Y (in feet) for a certain river can be modeled by the pdf

fY (y) = 1
20

, 20 < y < 40

(Note: It is unlikely that flood tides would be described by anything as simple as a
uniform pdf. We are making that choice here solely to facilitate the mathematics.)
The Army Corps of Engineers is planning to build a levee along a certain portion of
the river, and they want to make it high enough so that there is only a 30% chance that
the second worst flood in the next thirty-three years will overflow the embankment.
How high should the levee be? (We assume that there will be only one potential
flood per year.)

Let h be the desired height. If Y1,Y2, . . . ,Y33 denote the flood tides for the next
n = 33 years, what we require of h is that

P(Y ′
32 > h) = 0.30

As a starting point, notice that for 20 < y < 40,

FY (y) =
∫ y

20

1
20

dy = y
20

− 1
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Therefore,

fY ′
32

(y) = 33!
31!1!

( y
20

− 1
)31 (

2 − y
20

)1
· 1

20

and h is the solution of the integral equation∫ 40

h
(33)(32)

( y
20

− 1
)31 (

2 − y
20

)1
· dy

20
= 0.30 (3.10.3)

If we make the substitution

u = y
20

− 1

Equation 3.10.3 simplifies to

P(Y ′
32 > h) = 33(32)

∫ 1

(h/20)−1
u31(1 − u) du

= 1 − 33
(

h
20

− 1
)32

+ 32
(

h
20

− 1
)33

(3.10.4)

Setting the right-hand side of Equation 3.10.4 equal to 0.30 and solving for h by trial
and error gives

h = 39.33 feet

JOINT PDFS OF ORDER STATISTICS

Finding the joint pdf of two or more order statistics is easily accomplished by gen-
eralizing the argument that derived from Figure 3.10.2. Suppose, for example, that
each of n observations in a random sample has pdf fY (y) and cdf FY (y). The joint
pdf for order statistics Y ′

i and Y ′
j at points u and v, where i < j and u < v, can be

deduced from Figure 3.10.3, which shows how the n points must be distributed if the
ith and jth order statistics are to be located at points u and v, respectively.

Y-axis
u v

i – 1 obs. Y 9 i Y9 jj – i – 1 obs. n – j obs.
Figure 3.10.3

By Theorem 2.6.2, the number of ways to divide a set of n observations into
groups of sizes i − 1, 1, j − i − 1, 1, and n − j is the quotient

n!
(i − 1)!1!( j − i − 1)!1!(n − j)!

Also, given the independence of the n observations, the probability that i − 1 are
less than u is [FY (u)]i−1, the probability that j − i − 1 are between u and v is
[FY (v)−FY (u)] j−i−1, and the probability that n− j are greater than v is [1−FY (v)]n− j.
Multiplying, then, by the pdfs describing the likelihoods that Y ′

i and Y ′
j would be at

points u and v, respectively, gives the joint pdf of the two order statistics:

fY ′
i ,Y

′
j
(u, v) = n!

(i − 1)!( j − i − 1)!(n − j)!
[FY (u)]i−1[FY (v) − FY (u)] j−i−1 .

[1 − FY (v)]n− j fY (u) fY (v) (3.10.5)

for i < j and u < v.
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Example
3.10.6

Let Y1, Y2, and Y3 be a random sample of size n = 3 from the uniform pdf defined
over the unit interval, fY (y) = 1, 0 ≤ y ≤ 1. By definition, the range, R, of a sample
is the difference between the largest and smallest order statistics, in this case

R = range = Ymax − Ymin = Y ′
3 − Y ′

1

Find fR(r), the pdf for the range.
We will begin by finding the joint pdf of Y ′

1 and Y ′
3. Then fY ′

1,Y
′
3
(u, v) is integrated

over the region Y ′
3 − Y ′

1 ≤ r to find the cdf, FR(r) = P(R ≤ r). The final step is to
differentiate the cdf and make use of the fact that fR(r) = F ′

R(r).
If fY (y) = 1, 0 ≤ y ≤ 1, it follows that

FY (y) = P(Y ≤ y) =

⎧⎪⎨
⎪⎩

0, y < 0
y, 0 ≤ y ≤ 1
1, y > 1

Applying Equation 3.10.5, then, with n = 3, i = 1, and j = 3, gives the joint pdf of
Y ′

1 and Y ′
3. Specifically,

fY ′
1,Y

′
3
(u, v) = 3!

0!1!0!
u0(v − u)1(1 − v)0 · 1 · 1

= 6(v − u), 0 ≤ u < v ≤ 1

Moreover, we can write the cdf for R in terms of Y ′
1 and Y ′

3:

FR(r) = P(R ≤ r) = P(Y ′
3 − Y ′

1 ≤ r) = P(Y ′
3 ≤ Y ′

1 + r)

Figure 3.10.4 shows the region in the Y ′
1Y

′
3-plane corresponding to the event that

R ≤ r. Integrating the joint pdf of Y ′
1 and Y ′

3 over the shaded region gives

FR(r) = P(R ≤ r) =
∫ 1−r

0

∫ u+r

u
6(v − u) dv du +

∫ 1

1−r

∫ 1

u
6(v − u) dv du

0
u-axis

n-axis

1Y19  = 1 – r

r

R#r

Y39  = Y19 

Y39  = Y19 + r
1

Figure 3.10.4

The first double integral equals 3r2 − 3r3; the second equals r3. Therefore,

FR(r) = 3r2 − 3r3 + r3 = 3r2 − 2r3

which implies that

fR(r) = F ′
R(r) = 6r − 6r2, 0 ≤ r ≤ 1
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Questions

3.10.1. Suppose the length of time, in minutes, that you
have to wait at a bank teller’s window is uniformly dis-
tributed over the interval (0, 10). If you go to the bank
four times during the next month, what is the probabil-
ity that your second longest wait will be less than five
minutes?

3.10.2. A random sample of size n = 6 is taken from the
pdf fY (y) = 3y2, 0 ≤ y ≤ 1. Find P(Y ′

5 > 0.75).

3.10.3. What is the probability that the larger of two ran-
dom observations drawn from any continuous pdf will
exceed the sixtieth percentile?

3.10.4. A random sample of size 5 is drawn from the pdf
fY (y) = 2y, 0 ≤ y ≤ 1. Calculate P(Y ′

1 < 0.6 < Y ′
5). (Hint:

Consider the complement.)

3.10.5. Suppose that Y1, Y2, . . ., Yn is a random sample of
size n drawn from a continuous pdf, fY (y), whose median
is m. Is P(Y ′

1 > m) less than, equal to, or greater than
P(Y ′

n > m)?

3.10.6. Let Y1, Y2, . . ., Yn be a random sample from the
exponential pdf fy(y) = e−y, y ≥ 0. What is the smallest n
for which P(Ymin < 0.2) > 0.9?

3.10.7. Calculate P(0.6 < Y ′
4 < 0.7) if a random sample

of size 6 is drawn from the uniform pdf defined over the
interval [0, 1].

3.10.8. A random sample of size n = 5 is drawn from the
pdf fY (y) = 2y, 0 ≤ y ≤ 1. On the same set of axes, graph
the pdfs for Y2, Y ′

1, and Y ′
5.

3.10.9. Suppose that n observations are taken at random
from the pdf

fY (y) = 1√
2π(6)

e− 1
2 ( y−20

6 )2

, − ∞ < y < ∞

What is the probability that the smallest observation is
larger than twenty?

3.10.10. Suppose that n observations are chosen at ran-
dom from a continuous pdf fY (y). What is the probabil-
ity that the last observation recorded will be the smallest
number in the entire sample?

3.10.11. In a certain large metropolitan area, the pro-
portion, Y , of students bused varies widely from school
to school. The distribution of proportions is roughly
described by the following pdf:

0
y

1

1

2

f  (y)Y

Suppose the enrollment figures for five schools selected
at random are examined. What is the probability that the
school with the fourth highest proportion of bused chil-
dren will have a Y value in excess of 0.75? What is the
probability that none of the schools will have fewer than
10% of their students bused?

3.10.12. Consider a system containing n components,
where the lifetimes of the components are indepen-
dent random variables and each has pdf fY (y) = λe−λy,
y > 0. Show that the average time elapsing before the first
component failure occurs is 1/nλ.

3.10.13. Let Y1, Y2, . . ., Yn be a random sample from a
uniform pdf over [0, 1]. Use Theorem 3.10.2 to show that∫ 1

0 yi−1(1 − y)n−idy = (i − 1)!(n − i)!
n!

.

3.10.14. Use Question 3.10.13 to find the expected value
of Y ′

i , where Y1, Y2, . . ., Yn is a random sample from a
uniform pdf defined over the interval [0, 1].

3.10.15. Suppose three points are picked randomly from
the unit interval. What is the probability that the three are
within a half unit of one another?

3.10.16. Suppose a device has three independent compo-
nents, all of whose lifetimes (in months) are modeled by
the exponential pdf, fY (y) = e−y, y > 0. What is the
probability that all three components will fail within two
months of one another?

3.11 Conditional Densities
We have already seen that many of the concepts defined in Chapter 2 relating to the
probabilities of events—for example, independence—have random variable coun-
terparts. Another of these carryovers is the notion of a conditional probability, or,
in what will be our present terminology, a conditional probability density function.
Applications of conditional pdfs are not uncommon. The height and girth of a tree,
for instance, can be considered a pair of random variables. While it is easy to mea-
sure girth, it can be difficult to determine height; thus it might be of interest to a
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lumberman to know the probabilities of a ponderosa pine’s attaining certain heights
given a known value for its girth. Or consider the plight of a school board member
agonizing over which way to vote on a proposed budget increase. Her task would be
that much easier if she knew the conditional probability that x additional tax dol-
lars would stimulate an average increase of y points among twelfth graders taking a
standardized proficiency exam.

FINDING CONDITIONAL PDFS FOR DISCRETE RANDOM VARIABLES

In the case of discrete random variables, a conditional pdf can be treated in the
same way as a conditional probability. Note the similarity between Definitions 3.11.1
and 2.4.1.

Definition 3.11.1
Let X and Y be discrete random variables. The conditional probability density
function of Y given x—that is, the probability that Y takes on the value y given
that X is equal to x—is denoted pY |x(y) and given by

pY |x(y) = P(Y = y | X = x) = pX,Y (x, y)
pX (x)

for pX (x) �= 0.

Example
3.11.1

A fair coin is tossed five times. Let the random variable Y denote the total number
of heads that occur, and let X denote the number of heads occurring on the last two
tosses. Find the conditional pdf pY |x(y) for all x and y.

Clearly, there will be three different conditional pdfs, one for each possible value
of X (x = 0, x = 1, and x = 2). Moreover, for each value of x there will be four possi-
ble values of Y , based on whether the first three tosses yield zero, one, two, or three
heads.

For example, suppose no heads occur on the last two tosses. Then X = 0, and

pY |0(y) = P(Y = y | X = 0) = P(y heads occur on first three tosses)

=
(

3
y

)(
1
2

)y (
1 − 1

2

)3−y

=
(

3
y

)(
1
2

)3

, y = 0, 1, 2, 3

Now, suppose that X = 1. The corresponding conditional pdf in that case
becomes

pY |x(y) = P(Y = y | X = 1)

Notice that Y = 1 if zero heads occur in the first three tosses, Y = 2 if one head
occurs in the first three trials, and so on. Therefore,

pY |1(y) =
(

3
y − 1

)(
1
2

)y−1 (
1 − 1

2

)3−(y−1)

=
(

3
y − 1

)(
1
2

)3

, y = 1, 2, 3, 4
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Similarly,

pY |2(y) = P(Y = y | X = 2) =
(

3
y − 2

)(
1
2

)3

, y = 2, 3, 4, 5

Figure 3.11.1 shows the three conditional pdfs. Each has the same shape, but the
possible values of Y are different for each value of X .

0 1 2 3 4

pY|2(y)

pY|1(y)

pY|0(y)

5
Y-axis

x = 2

x = 1

x = 0

3
8
1
8

3
8
1
8

3
8
1
8

Figure 3.11.1

Example
3.11.2

Assume that the probabilistic behavior of a pair of discrete random variables X and
Y is described by the joint pdf

pX,Y (x, y) = xy2/39

defined over the four points (1, 2), (1, 3), (2, 2), and (2, 3). Find the conditional
probability that X = 1 given that Y = 2.

By definition,

pX |2(1) = P(X = 1 given that Y = 2)

= pX,Y (1, 2)
pY (2)

= 1 · 22/39
1 · 22/39 + 2 · 22/39

= 1/3

Example
3.11.3

Suppose that X and Y are two independent binomial random variables, each defined
on n trials and each having the same success probability p. Let Z = X + Y . Show
that the conditional pdf pX |z(x) is a hypergeometric distribution.

We know from Example 3.8.2 that Z has a binomial distribution with parameters
2n and p. That is,

pZ(z) = P(Z = z) =
(

2n
z

)
pz(1 − p)2n−z, z = 0, 1, . . . , 2n.
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By Definition 3.11.1,

pX |z(x) = P(X = x|Z = z) = pX,Z(x, z)
pZ(z)

= P(X = x and Z = z)
P(Z = z)

= P(X = x and Y = z − x)
P(Z = z)

= P(X = x) · P(Y = z − x)
P(Z = z)

(because X and Y are independent)

=

(
n
x

)
px(1 − p)n−x ·

(
n

z − x

)
pz−x(1 − p)n−(z−x)

(
2n
z

)
pz(1 − p)2n−z

=

(
n
x

)(
n

z − x

)
(

2n
z

)
which we recognize as being the hypergeometric distribution.

Comment The notion of a conditional pdf generalizes easily to situations involving
more than two discrete random variables. For example, if X , Y , and Z have the joint
pdf pX,Y,Z(x, y, z), the joint conditional pdf of, say, X and Y given that Z = z is the
ratio

pX,Y |z(x, y) = pX,Y,Z(x, y, z)
pZ(z)

Example
3.11.4

Suppose that random variables X , Y , and Z have the joint pdf

pX,Y,Z(x, y, z) = xy/9z

for points (1, 1, 1), (2, 1, 2), (1, 2, 2), (2, 2, 2), and (2, 2, 1). Find pX,Y |z(x, y) for all
values of z.

To begin, we see from the points for which pX,Y,Z(x, y, z) is defined that Z has
two possible values, 1 and 2. Suppose z = 1. Then

pX,Y |1(x, y) = pX,Y,Z(x, y, 1)
pZ(1)

But

pZ(1) = P(Z = 1) = P[(1, 1, 1) ∪ (2, 2, 1)]

= 1 · 1
9

· 1 + 2 · 2
9

· 1

= 5
9

Therefore,

pX,Y |1(x, y) = xy/9
5
9

= xy/5 for (x, y) = (1, 1) and (2, 2)



Section 3.11 Conditional Densities 203

Suppose z = 2. Then

pZ(2) = P(Z = 2) = P[(2, 1, 2) ∪ (1, 2, 2) ∪ (2, 2, 2)]

= 2 · 1
18

+ 1 · 2
18

+ 2 · 2
18

= 8
18

so

pX,Y |2(x, y) = pX,Y,Z(x, y, 2)
pZ(2)

= x · y/18
8
18

= xy
8

for (x, y) = (2, 1), (1, 2), and (2, 2)

Questions

3.11.1. Suppose X and Y have the joint pdf pX,Y (x, y) =
x+y+xy

21 for the points (1, 1), (1, 2), (2, 1), (2, 2), where X
denotes a “message” sent (either x = 1 or x = 2) and Y
denotes a “message” received. Find the probability that
the message sent was the message received, that is, find
pY |x(x).

3.11.2. Suppose a die is rolled six times. Let X be the total
number of 4’s that occur and let Y be the number of 4’s in
the first two tosses. Find pY |x(y).

3.11.3. An urn contains eight red chips, six white chips,
and four blue chips. A sample of size 3 is drawn without
replacement. Let X denote the number of red chips in the
sample and Y , the number of white chips. Find an expres-
sion for pY |x(y).

3.11.4. Five cards are dealt from a standard poker deck.
Let X be the number of aces received, and Y the number
of kings. Compute P(X = 2|Y = 2).

3.11.5. Given that two discrete random variables X and Y
follow the joint pdf pX,Y (x, y) = k(x + y), for x = 1, 2, 3
and y = 1, 2, 3,

(a) Find k.
(b) Evaluate pY |x(1) for all values of x for which px(x) > 0.

3.11.6. Let X denote the number on a chip drawn at ran-
dom from an urn containing three chips, numbered 1, 2,
and 3. Let Y be the number of heads that occur when a
fair coin is tossed X times.

(a) Find pX,Y (x, y).
(b) Find the marginal pdf of Y by summing out the x
values.

3.11.7. Suppose X , Y , and Z have a trivariate distribution
described by the joint pdf

pX,Y,Z(x, y, z) = xy + xz + yz
54

where x, y, and z can be 1 or 2. Tabulate the joint condi-
tional pdf of X and Y given each of the two values of z.

3.11.8. In Question 3.11.7 define the random variable
W to be the “majority” of x, y, and z. For example,
W(2, 2, 1) = 2 and W(1, 1, 1) = 1. Find the pdf of W |x.

3.11.9. Let X and Y be independent Poisson random vari-
ables where px(k) = e−λ λk

k! and pY (k) = e−μ μk

k! for
k = 0, 1, . . . . Show that the conditional pdf of X given
that X + Y = n is binomial with parameters n and λ

λ+μ
.

(Hint: See Question 3.8.3.)

3.11.10. Suppose Compositor A is preparing a manuscript
to be published. Assume that she makes X errors per
page, where X has a Poisson pdf, with λ = 2 (see Ques-
tion 3.9.21). A second compositor, B, is also working on
the book. He makes Y errors on a page, where Y is Pois-
son with λ = 3. Assume that Compositor A prepares the
first one hundred pages of the text and Compositor B, the
last one hundred pages. After the book is completed, re-
viewers (with too much time on their hands!) find that the
text contains a total of five hundred twenty errors. Write
a formula for the exact probability that fewer than half of
the errors are due to Compositor A.
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FINDING CONDITIONAL PDFS FOR CONTINUOUS
RANDOM VARIABLES

If the variables X and Y are continuous, we can still appeal to the quotient
fX,Y (x, y)/ fX (x) as the definition of fY |x(y) and argue its propriety by analogy. A
more satisfying approach, though, is to arrive at the same conclusion by taking the
limit of Y ’s “conditional” cdf.

If X is continuous, a direct evaluation of FY |x(y) = P(Y ≤ y|X = x), via Defini-
tion 2.4.1, is impossible, since the denominator would be zero. Alternatively, we can
think of P(Y ≤ y|X = x) as a limit:

P(Y ≤ y|X = x) = lim
h→0

P(Y ≤ y|x ≤ X ≤ x + h)

= lim
h→0

∫ x+h

x

∫ y

−∞
fX,Y (t, u) du dt∫ x+h

x
fX (t) dt

Evaluating the quotient of the limits gives 0
0 , so l’Hôpital’s rule is indicated:

P(Y ≤ y|X = x) = lim
h→0

d
dh

∫ x+h

x

∫ y

−∞
fX,Y (t, u) du dt

d
dh

∫ x+h

x
fX (t) dt

(3.11.1)

By the Fundamental Theorem of Calculus,

d
dh

∫ x+h

x
g (t) dt = g (x + h)

which simplifies Equation 3.11.1 to

P(Y ≤ y|X = x) = lim
h→0

∫ y

−∞
fX,Y [(x + h), u] du

fX (x + h)

=

∫ y

−∞
lim
h→0

fX,Y (x + h, u) du

lim
h→0

fX (x + h)
=
∫ y

−∞

fX,Y (x, u)
fX (x)

du

provided that the limit operation and the integration can be interchanged [see (9)
for a discussion of when such an interchange is valid]. It follows from this last ex-
pression that fX,Y (x, y)/ fX (x) behaves as a conditional probability density func-
tion should, and we are justified in extending Definition 3.11.1 to the continuous
case.

Example
3.11.5

Let X and Y be continuous random variables with joint pdf

fX,Y (x, y) =
⎧⎨
⎩
(

1
8

)
(6 − x − y), 0 ≤ x ≤ 2, 2 ≤ y ≤ 4

0, elsewhere

Find (a) fX (x), (b) fY |x(y), and (c) P(2 < Y < 3|x = 1).
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a. From Theorem 3.7.2,

fX (x) =
∫ ∞

−∞
fX,Y (x, y) dy =

∫ 4

2

(
1
8

)
(6 − x − y) dy

=
(

1
8

)
(6 − 2x), 0 ≤ x ≤ 2

b. Substituting into the “continuous” statement of Definition 3.11.1, we can write

fY |x(y) = fX,Y (x, y)
fX (x)

=
( 1

8

)
(6 − x − y)( 1

8

)
(6 − 2x)

= 6 − x − y
6 − 2x

, 0 ≤ x ≤ 2, 2 ≤ y ≤ 4

c. To find P(2 < Y < 3|x = 1), we simply integrate fY |1(y) over the interval 2 <

Y < 3:

P(2 < Y < 3|x = 1) =
∫ 3

2
fY |1(y) dy

=
∫ 3

2

5 − y
4

dy

= 5
8

(A partial check that the derivation of a conditional pdf is correct can be performed
by integrating fY |x(y) over the entire range of Y . That integral should be 1. Here, for
example, when x = 1,

∫∞
−∞ fY |1(y) dy = ∫ 4

2 [(5 − y)/4] dy does equal 1.)

Questions

3.11.11. Let X be a nonnegative random variable. We say
that X is memoryless if

P(X > s + t|X > t) = P(X > s) for all s, t ≥ 0

Show that a random variable with pdf fX (x) = (1/λ)e−x/λ,

x > 0, is memoryless.

3.11.12. Given the joint pdf

fX,Y (x, y) = 2e−(x+y), 0 ≤ x ≤ y, y ≥ 0

find
(a) P(Y < 1|X < 1).
(b) P(Y < 1|X = 1).
(c) fY |x(y).
(d) E(Y |x).

3.11.13. Find the conditional pdf of Y given x if

fX,Y (x, y) = x + y

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.

3.11.14. If

fX,Y (x, y) = 2, x ≥ 0, y ≥ 0, x + y ≤ 1

show that the conditional pdf of Y given x is uniform.

3.11.15. Suppose that

fY |x(y) = 2y + 4x
1 + 4x

and fX (x) = 1
3

· (1 + 4x)

for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Find the marginal pdf for Y .

3.11.16. Suppose that X and Y are distributed according
to the joint pdf

fX,Y (x, y) = 2
5

· (2x + 3y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Find
(a) fX (x).
(b) fY |x(y).

(c) P
( 1

4 ≤ Y ≤ 3
4 |X = 1

2

)
.

(d) E(Y |x).
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3.11.17. If X and Y have the joint pdf

fX,Y (x, y) = 2, 0 ≤ x < y ≤ 1

find P
(
0 < X < 1

2 |Y = 3
4

)
.

3.11.18. Find P
(
X < 1|Y = 1 1

2

)
if X and Y have the

joint pdf
fX,Y (x, y) = xy/2, 0 ≤ x < y ≤ 2

3.11.19. Suppose that X1, X2, X3, X4, and X5 have the
joint pdf

fX1,X2,X3,X4,X5 (x1, x2, x3, x4, x5) = 32x1x2x3x4x5

for 0 ≤ xi ≤ 1, i = 1, 2, . . . , 5. Find the joint conditional
pdf of X1, X2, and X3 given that X4 = x4 and X5 = x5.

3.11.20. Suppose the random variables X and Y are
jointly distributed according to the pdf

fX,Y (x, y) = 6
7

(
x2 + xy

2

)
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

Find

(a) fX (x).
(b) P(X > 2Y).
(c) P

(
Y > 1|X > 1

2

)
.

3.11.21. For continuous random variables X and Y , prove
that E(Y) = EX [E(Y |x)].

3.12 Moment-Generating Functions
Finding moments of random variables directly, particularly the higher moments
defined in Section 3.6, is conceptually straightforward but can be quite problematic:
Depending on the nature of the pdf, integrals and sums of the form

∫∞
−∞ yr fY (y) dy

and
∑
all k

kr pX (k) can be very difficult to evaluate. Fortunately, an alternative method

is available. For many pdfs, we can find a moment-generating function (or mgf),
MW (t), one of whose properties is that the rth derivative of MW (t) evaluated at zero
is equal to E(W r).

CALCULATING A RANDOM VARIABLE’S MOMENT-GENERATING
FUNCTION

In principle, what we call a moment-generating function is a direct application of
Theorem 3.5.3.

Definition 3.12.1
Let W be a random variable. The moment-generating function (mgf) for W is
denoted MW (t) and given by

MW (t) = E(etW ) =

⎧⎪⎪⎨
⎪⎪⎩
∑
all k

etk pW (k) ifW is discrete∫ ∞

−∞
etw fW (w) dw ifW is continuous

at all values of t for which the expected value exists.

Example
3.12.1

Suppose the random variable X has a geometric pdf,

pX (k) = (1 − p)k−1 p, k = 1, 2, . . .

[In practice, this is the pdf that models the occurrence of the first success in a series
of independent trials, where each trial has a probability p of ending in success (recall
Example 3.3.2)]. Find MX (t), the moment-generating function for X .



Section 3.12 Moment-Generating Functions 207

Since X is discrete, the first part of Definition 3.12.1 applies, so

MX (t) = E(etX ) =
∞∑

k=1

etk(1 − p)k−1 p

= p
1 − p

∞∑
k=1

etk(1 − p)k = p
1 − p

∞∑
k=1

[(1 − p)et ]k (3.12.1)

The t in MX (t) can be any number in a neighborhood of zero, as long as MX (t) < ∞.
Here, MX (t) is an infinite sum of the terms [(1 − p)et]k, and that sum will be finite
only if (1 − p)et < 1, or, equivalently, if t < ln[1/(1 − p)]. It will be assumed, then,
in what follows that 0 < t < ln[1/(1 − p)].

Recall that
∞∑

k=0

rk = 1
1 − r

provided 0 < r < 1. This formula can be used on Equation 3.12.1, where r = (1−p)et

and 0 < t < ln
[ 1

(1−p)

]
. Specifically,

MX (t) = p
1 − p

[ ∞∑
k=0

[(1 − p)et]k − [(1 − p)et]0

]

= p
1 − p

[
1

1 − (1 − p)et
− 1

]

= pet

1 − (1 − p)et

Example
3.12.2

Suppose that X is a binomial random variable with pdf

pX (k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n

Find MX (t).
By Definition 3.12.1,

MX (t) = E(etX ) =
n∑

k=0

etk
(n

k

)
pk(1 − p)n−k

=
n∑

k=0

(n
k

)
(pet)k(1 − p)n−k (3.12.2)

To get a closed-form expression for MX (t)—that is, to evaluate the sum indicated in
Equation 3.12.2—requires a (hopefully) familiar formula from algebra: According
to Newton’s binomial expansion,

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k (3.12.3)

for any x and y. Suppose we let x = pet and y = 1−p. It follows from Equations 3.12.2
and 3.12.3, then, that

MX (t) = (1 − p + pet)n

Notice in this case that MX (t) is defined for all values of t.
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Example
3.12.3

Suppose that Y has an exponential pdf, where fY (y) = λe−λy, y > 0. Find MY (t).
Since the exponential pdf describes a continuous random variable, MY (t) is an

integral:

MY (t) = E(etY ) =
∫ ∞

0
ety · λe−λy dy

=
∫ ∞

0
λe−(λ−t)y dy

After making the substitution u = (λ − t)y, we can write

MY (t) =
∫ ∞

u=0
λe−u du

λ − t

= λ

λ − t

[−e−u
∣∣∞
u=0

]
= λ

λ − t

[
1 − lim

u→∞ e−u
]

= λ

λ − t

Here, MY (t) is finite and nonzero only when u = (λ − t)y > 0, which implies that t
must be less than λ. For t ≥ λ, MY (t) fails to exist.

Example
3.12.4

The normal (or bell-shaped) curve was introduced in Example 3.4.3. Its pdf is the
rather cumbersome function

fY (y) = (
1/

√
2πσ

)
exp

[
−1

2

(
y − μ

σ

)2
]

, −∞ < y < ∞

where μ = E(Y) and σ2 = Var(Y). Derive the moment-generating function for this
most important of all probability models.

Since Y is a continuous random variable,

MY (t) = E(etY ) = (
1/

√
2πσ

) ∫ ∞

−∞
exp(ty) exp

[
−1

2

(
y − μ

σ

)2
]

dy

= (
1/

√
2πσ

) ∫ ∞

−∞
exp

[
−y2 − 2μy − 2σ2ty + μ2

2σ2

]
dy (3.12.4)

Evaluating the integral in Equation 3.12.4 is best accomplished by completing the
square of the numerator of the exponent (which means that the square of half the
coefficient of y is added and subtracted). That is, we can write

y2 − (2μ + 2σ2t)y + (μ + σ2t)2 − (μ + σ2t)2 + μ2

= [y − (μ + σ2t)]2 − σ4t2 + 2μtσ2 (3.12.5)

The last two terms on the right-hand side of Equation 3.12.5, though, do not
involve y, so they can be factored out of the integral, and Equation 3.12.4 reduces to

MY (t) = exp
(

μt + σ2t2

2

) (
1/

√
2πσ

) ∫ ∞

−∞
exp

[
−1

2

[
y − (μ + tσ2)

σ

]2
]

dy

But, together, the latter two factors equal 1 (why?), implying that the moment-
generating function for a normally distributed random variable is given by

MY (t) = eμt+σ2t2/2
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Questions

3.12.1. Let X be a random variable with pdf pX (k) = 1/n,
for k = 0, 1, 2, . . . , n − 1 and 0 otherwise. Show that
MX (t) = 1−ent

n(1−et ) .

3.12.2. Two chips are drawn at random and without re-
placement from an urn that contains five chips, numbered
1 through 5. If the sum of the chips drawn is even, the ran-
dom variable X equals 5; if the sum of the chips drawn
is odd, X = −3. Find the moment-generating function
for X .

3.12.3. Find the expected value of e3X if X is a binominal
random variable with n = 10 and p = 1

3 .

3.12.4. Find the moment-generating function for the dis-
crete random variable X whose probability function is
given by

pX (k) =
(

3
4

)k (1
4

)
, k = 0, 1, 2, . . .

3.12.5. Which pdfs would have the following moment-
generating functions?

(a) MY (t) = e6t2

(b) MY (t) = 2/(2 − t)

(c) MX (t) = ( 1
2 + 1

2 et
)4

(d) MX (t) = 0.3et/(1 − 0.7et)

3.12.6. Let Y have pdf

fY (y) =

⎧⎪⎨
⎪⎩

y, 0 ≤ y ≤ 1

2 − y, 1 ≤ y ≤ 2

0, elsewhere

Find MY (t).

3.12.7. The random variable X has a Poisson distribution
pX (k) = e−λλk/k!, k = 0, 1, 2, . . . . Find the moment-
generating function for a Poisson random variable. Recall
that

er =
∞∑

k=0

rk

k!

3.12.8. Let Y be a continuous random variable with
fY (y) = ye−y, 0 ≤ y. Show that MY (t) = 1

(1−t)2 .

USING MOMENT-GENERATING FUNCTIONS TO FIND MOMENTS

Having practiced finding the functions MX (t) and MY (t), we now turn to the theorem
that spells out their relationship to X r and Y r.

Theorem
3.12.1

Let W be a random variable with probability density function fW (w). (If W is con-
tinuous, fW (w) must be sufficiently smooth to allow the order of differentiation and
integration to be interchanged.) Let MW (t) be the moment-generating function for
W. Then, provided the rth moment exists,

M(r)
W (0) = E(W r)

Proof We will verify the theorem for the continuous case where r is either 1 or 2.
The extensions to discrete random variables and to an arbitrary positive integer r
are straightforward.

For r = 1,

M(1)
Y (0) = d

dt

∫ ∞

−∞
ety fY (y) dy

∣∣∣∣
t=0

=
∫ ∞

−∞

d
dt

ety fY (y) dy

∣∣∣∣
t=0

=
∫ ∞

−∞
yety fY (y) dy

∣∣∣∣
t=0

=
∫ ∞

−∞
ye0·y fY (y) dy

=
∫ ∞

−∞
y fY (y) dy = E(Y)

(Continued on next page)
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(Theorem 3.12.1 continued)

For r = 2,

M(2)
Y (0) = d2

dt2

∫ ∞

−∞
ety fY (y) dy

∣∣∣∣
t=0

=
∫ ∞

−∞

d2

dt2
ety fY (y) dy

∣∣∣∣
t=0

=
∫ ∞

−∞
y2ety fY (y) dy

∣∣∣∣
t=0

=
∫ ∞

−∞
y2e0 · y fY (y) dy

=
∫ ∞

−∞
y2 fY (y) dy = E(Y 2)

Example
3.12.5

For a geometric random variable X with pdf

pX (k) = (1 − p)k−1 p, k = 1, 2, . . .

we saw in Example 3.12.1 that

MX (t) = pet [1 − (1 − p)et]−1

Find the expected value of X by differentiating its moment-generating function.
Using the product rule, we can write the first derivative of MX (t) as

M(1)
X (t) = pet(−1)[1 − (1 − p)et]−2(−1)(1 − p)et + [1 − (1 − p)et]−1 pet

= p(1 − p)e2t

[1 − (1 − p)et]2
+ pet

1 − (1 − p)et

Setting t = 0 shows that E(X ) = 1
p :

M(1)
X (0) = E(X ) = p(1 − p)e2 · 0

[1 − (1 − p)e0]2
+ pe0

1 − (1 − p)e0

= p(1 − p)
p2

+ p
p

= 1
p

Example
3.12.6

Find the expected value of an exponential random variable with pdf

fY (y) = λe−λy, y > 0

Use the fact that

MY (t) = λ(λ − t)−1

(as shown in Example 3.12.3).
Differentiating MY (t) gives

M(1)
Y (t) = λ(−1)(λ − t)−2(−1)

= λ

(λ − t)2

Set t = 0. Then

M(1)
Y (0) = λ

(λ − 0)2

implying that

E(Y) = 1
λ
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Example
3.12.7

Find an expression for E(X k) if the moment-generating function for X is given by

MX (t) = (1 − p1 − p2) + p1et + p2e2t

The only way to deduce a formula for an arbitrary moment such as E(X k) is to
calculate the first couple moments and look for a pattern that can be generalized.
Here,

M(1)
X (t) = p1et + 2p2e2t

so

E(X ) = M(1)
X (0) = p1e0 + 2p2e2 · 0

= p1 + 2p2

Taking the second derivative, we see that

M(2)
X (t) = p1et + 22 p2e2t

implying that

E(X 2) = M(2)
X (0) = p1e0 + 22 p2e2 · 0

= p1 + 22 p2

Clearly, each successive differentiation will leave the p1 term unaffected but will mul-
tiply the p2 term by 2. Therefore,

E(X k) = M(k)
X (0) = p1 + 2k p2

USING MOMENT-GENERATING FUNCTIONS TO FIND VARIANCES

In addition to providing a useful technique for calculating E(W r), moment-
generating functions can also find variances, because

Var(W) = E(W 2) − [E(W)]2 (3.12.6)

for any random variable W (recall Theorem 3.6.1). Other useful “descriptors” of pdfs
can also be reduced to combinations of moments. The skewness of a distribution, for
example, is a function of E[(W − μ)3], where μ = E(W). But

E[(W − μ)3] = E(W 3) − 3E(W 2)E(W) + 2[E(W)]3

In many cases, finding E[(W −μ)2] or E[(W −μ)3] could be quite difficult if moment-
generating functions were not available.

Example
3.12.8

We know from Example 3.12.2 that if X is a binomial random variable with param-
eters n and p, then

MX (t) = (1 − p + pet)n

Use MX (t) to find the variance of X .
The first two derivatives of MX (t) are

M(1)
X (t) = n(1 − p + pet)n−1 · pet
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and

M(2)
X (t) = pet · n(n − 1)(1 − p + pet)n−2 · pet + n(1 − p + pet)n−1 · pet

Setting t = 0 gives

M(1)
X (0) = np = E(X )

and

M(2)
X (0) = n(n − 1)p2 + np = E(X 2)

From Equation 3.12.6, then,

Var(X ) = n(n − 1)p2 + np − (np)2

= np(1 − p)

(the same answer we found in Example 3.9.9).

Example
3.12.9

It can be shown (see Question 3.12.7) that the moment-generating function for a
Poisson random variable is given by

MX (t) = e−λ+λet

Use MX (t) to find E(X ) and Var(X ).
Taking the first derivative of MX (t) gives

M(1)
X (t) = e−λ+λet · λet

so

E(X ) = M(1)
X (0) = e−λ+λe0 · λe0

= λ

Applying the product rule to M(1)
X (t) yields the second derivative,

M(2)
X (t) = e−λ+λet · λet + λete−λ+λet · λet

For t = 0,

M(2)
X (0) = E(X 2) = e−λ+λe0 · λe0 + λe0 · e−λ+λe0 · λe0

= λ + λ2

The variance of a Poisson random variable, then, proves to be the same as its mean:

Var(X ) = E(X 2) − [E(X )]2

= M(2)
X (0) − [

M(1)
X (0)

]2

= λ2 + λ − λ2

= λ
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Questions

3.12.9. Calculate E(Y 3) for a random variable whose
moment-generating function is MY (t) = et2/2.

3.12.10. Find E(Y 4) if Y is an exponential random vari-
able with fY (y) = λe−λy, y > 0.

3.12.11. The form of the moment-generating function for
a normal random variable is MY (t) = eat+b2t2/2 (recall Ex-
ample 3.12.4). Differentiate MY (t) to verify that a = E(Y)
and b2 = Var(Y).

3.12.12. What is E(Y 4) if the random variable Y has
moment-generating function MY (t) = (1 − αt)−k?

3.12.13. Find E(Y 2) if the moment-generating function
for Y is given by MY (t) = e−t+4t2

. Use Example 3.12.4 to
find E(Y 2) without taking any derivatives. (Hint: Recall
Theorem 3.6.1.)

3.12.14. Find an expression for E(Y k) if MY (t) = (1 −
t/λ)−r, where λ is any positive real number and r is a pos-
itive integer.

3.12.15. Use MY (t) to find the expected value of the uni-
form random variable described in Example 3.4.1.

3.12.16. Find the variance of Y if MY (t) = e2t/(1 − t2).

USING MOMENT-GENERATING FUNCTIONS TO IDENTIFY PDFS

Finding moments is not the only application of moment-generating functions. They
are also used to identify the pdf of sums of random variables—that is, finding fW (w),
where W = W1 +W2 +· · ·+Wn. Their assistance in the latter is particularly important
for two reasons: (1) Many statistical procedures are defined in terms of sums, and
(2) alternative methods for deriving fW1+W2+···+Wn (w) are extremely cumbersome.

The next two theorems give the background results necessary for deriving
fW (w). Theorem 3.12.2 states a key uniqueness property of moment-generating func-
tions: If W1 and W2 are random variables with the same mgfs, they must necessarily
have the same pdfs. In practice, applications of Theorem 3.12.2 typically rely on one
or both of the algebraic properties cited in Theorem 3.12.3.

Theorem
3.12.2

Suppose that W1 and W2 are random variables for which MW1 (t) = MW2 (t) for some
interval of t’s containing 0. Then fW1 (w) = fW2 (w).

Proof See (103).

Theorem
3.12.3

a. Let W be a random variable with moment-generating function MW (t). Let V =
aW + b. Then

MV (t) = ebtMW (at)

b. Let W1,W2, . . . ,Wn be independent random variables with moment-generating
functions MW1 (t), MW2 (t), . . . , and MWn (t), respectively. Let W = W1 + W2 +
· · · + Wn. Then

MW (t) = MW1 (t) · MW2 (t) · · · MWn (t)

Proof The proof is left as an exercise.

Example
3.12.10

Suppose that X1 and X2 are two independent Poisson random variables with param-
eters λ1 and λ2, respectively. That is,

pX1 (k) = P(X1 = k) = e−λ1λk
1

k!
, k = 0, 1, 2, . . .
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and

pX2 (k) = P(X2 = k) = e−λ2λk
2

k!
, k = 0, 1, 2, . . .

Let X = X1 + X2. What is the pdf for X?
According to Example 3.12.9, the moment-generating functions for X1 and

X2 are

MX1 (t) = e−λ1+λ1et

and

MX2 (t) = e−λ2+λ2et

Moreover, if X = X1 + X2, then by part (b) of Theorem 3.12.3,

MX (t) = MX1 (t) · MX2 (t)

= e−λ1+λ1et · e−λ2+λ2et

= e−(λ1+λ2)+(λ1+λ2)et
(3.12.7)

But, by inspection, Equation 3.12.7 is the moment-generating function that a Poisson
random variable with λ = λ1 + λ2 would have. It follows, then, by Theorem 3.12.2
that

pX (k) = e−(λ1+λ2)(λ1 + λ2)k

k!
, k = 0, 1, 2, . . .

Comment The Poisson random variable reproduces itself in the sense that the sum
of independent Poissons is also a Poisson. A similar property holds for independent
normal random variables (see Question 3.12.19) and, under certain conditions, for
independent binomial random variables (recall Example 3.8.2).

Example
3.12.11

We saw in Example 3.12.4 that a normal random variable, Y , with mean μ and vari-
ance σ2 has pdf

fY (y) = (
1/

√
2πσ

)
exp

[
−1

2

(
y − μ

σ

)2
]

, −∞ < y < ∞

and mgf

MY (t) = eμt+σ2t2/2

By definition, a standard normal random variable is a normal random variable for
which μ = 0 and σ = 1. Denoted Z, the pdf and mgf for a standard normal random
variable are fZ(z) = (1/

√
2π)e−z2/2, −∞ < z < ∞, and MZ(t) = et2/2, respectively.

Show that the ratio
Y − μ

σ

is a standard normal random variable, Z.
Write Y−μ

σ
as 1

σ
Y − μ

σ
. By part (a) of Theorem 3.12.3,

M(Y−μ)/σ(t) = e−μt/σMY

(
t
σ

)

= e−μt/σe[μt/σ+σ2(t/σ)2/2]

= et2/2
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But MZ(t) = et2/2 so it follows from Theorem 3.12.2 that the pdf for Y−μ

σ
is the same

as the pdf for fz(z). (We call Y−μ

σ
a Z transformation. Its importance will become

evident in Chapter 4.)

Questions

3.12.17. Use Theorem 3.12.3(a) and Question 3.12.8 to
find the moment-generating function of the random vari-
able Y , where fY (y) = λ2ye−λy, 0 ≤ y.

3.12.18. Let Y1, Y2, and Y3 be independent random vari-
ables, each having the pdf of Question 3.12.17. Use The-
orem 3.12.3(b) to find the moment-generating function
of Y1 + Y2 + Y3. Compare your answer to the moment-
generating function in Question 3.12.14.

3.12.19. Use Theorems 3.12.2 and 3.12.3 to determine
which of the following statements is true.

(a) The sum of two independent Poisson random vari-
ables has a Poisson distribution.
(b) The sum of two independent exponential random
variables has an exponential distribution.
(c) The sum of two independent normal random variables
has a normal distribution.

3.12.20. Calculate P(X ≤ 2) if MX (t) = ( 1
4 + 3

4 et
)5

.

3.12.21. Suppose that Y1, Y2, . . ., Yn is a random sample
of size n from a normal distribution with mean μ and

standard deviation σ. Use moment-generating functions

to deduce the pdf of Ȳ = 1
n

n∑
i=1

Yi.

3.12.22. Suppose the moment-generating function for a
random variable W is given by

MW (t) = e−3+3et ·
(

2
3

+ 1
3

et
)4

Calculate P(W ≤ 1). (Hint: Write W as a sum.)

3.12.23. Suppose that X is a Poisson random variable,
where pX (k) = e−λλk/k!, k = 0, 1, . . . .

(a) Does the random variable W = 3X have a Poisson
distribution?
(b) Does the random variable W = 3X +1 have a Poisson
distribution?

3.12.24. Suppose that Y is a normal variable, where

fY (y) = (1/
√

2πσ) exp
[
− 1

2

( y−μ

σ

)2
]
, −∞ < y < ∞.

(a) Does the random variable W = 3Y have a normal
distribution?
(b) Does the random variable W = 3Y + 1 have a normal
distribution?

3.13 Taking a Second Look at Statistics
(Interpreting Means)

One of the most important ideas coming out of Chapter 3 is the notion of the expected
value (or mean) of a random variable. Defined in Section 3.5 as a number that reflects
the “center” of a pdf, the expected value (μ) was originally introduced for the ben-
efit of gamblers. It spoke directly to one of their most fundamental questions—How
much will I win or lose, on the average, if I play a certain game? (Actually, the real
question they probably had in mind was “How much are you going to lose, on the
average?”) Despite having had such a selfish, materialistic, gambling-oriented rai-
son d’etre, the expected value was quickly embraced by (respectable) scientists and
researchers of all persuasions as a preeminently useful descriptor of a distribution.
Today, it would not be an exaggeration to claim that the majority of all statistical
analyses focus on either (1) the expected value of a single random variable or (2)
comparing the expected values of two or more random variables.

In the lingo of applied statistics, there are actually two fundamentally differ-
ent types of “means”—population means and sample means. The term “popula-
tion mean” is a synonym for what mathematical statisticians would call an expected
value—that is, a population mean (μ) is a weighted average of the possible values
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associated with a theoretical probability model, either pX (k) or fY (y), depending on
whether the underlying random variable is discrete or continuous. A sample mean
is the arithmetic average of a set of measurements. If, for example, n observations—
y1, y2, . . ., yn—are taken on a continuous random variable Y , the sample mean is
denoted ȳ, where

ȳ = 1
n

n∑
i=1

yi

Conceptually, sample means are estimates of population means, where the “quality”
of the estimation is a function of (1) the sample size and (2) the standard deviation
(σ) associated with the individual measurements. Intuitively, as the sample size gets
larger and/or the standard deviation gets smaller, the approximation will tend to get
better.

Interpreting means (either ȳ or μ) is not always easy. To be sure, what they imply
in principle is clear enough—both ȳ and μ are measuring the centers of their respec-
tive distributions. Still, many a wrong conclusion can be traced directly to researchers
misunderstanding the value of a mean. Why? Because the distributions that ȳ and/or
μ are actually representing may be dramatically different from the distributions we
think they are representing.

An interesting case in point arises in connection with SAT scores. Each fall
the average SATs earned by students in each of the fifty states and the District of
Columbia are released by the Educational Testing Service (ETS). At the state and

Table 3.13.1

State Average State Average
SAT Score SAT Score

North Dakota 1816 Arizona 1547
Illinois 1802 Oregon 1544
Iowa 1794 Virginia 1530
South Dakota 1792 New Jersey 1526
Minnesota 1786 Connecticut 1525
Michigan 1784 West Virginia 1522
Wisconsin 1782 Washington 1519
Missouri 1771 California 1504
Wyoming 1762 Alaska 1485
Kansas 1753 North Carolina 1483
Kentucky 1746 Pennsylvania 1481
Nebraska 1745 Rhode Island 1480
Colorado 1735 Indiana 1474
Mississippi 1714 Maryland 1468
Tennessee 1714 New York 1468
Arkansas 1698 Hawaii 1460
Oklahoma 1697 Nevada 1458
Utah 1690 Florida 1448
Louisiana 1667 Georgia 1445
Ohio 1652 South Carolina 1443
Montana 1637 Texas 1432
Alabama 1617 Maine 1387
New Mexico 1617 Idaho 1364
New Hampshire 1566 Delaware 1359
Massachusetts 1556 DC 1309
Vermont 1554
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federal level, these SAT averages are often used as indicators of educational suc-
cess or failure. Does it make sense, though, to use SAT averages to characterize the
quality of a state’s education system? Absolutely not! Averages of this sort refer to
very different distributions from state to state. Any attempt to interpret them at face
value will necessarily be misleading.

One such state-by-state SAT comparison that appeared in 2014 is reproduced in
Table 3.13.1. Notice that North Dakota’s entry is 1816, which is the highest average
listed. Does it follow that North Dakota’s educational system is among the best in
the nation? Probably not. So, why did their students do so well on the SAT?

The answer to that question lies in the academic profiles of the students who
take the SAT. North Dakota primarily uses the ACT for its college admission test.
Only 2% of college-bound students took the SAT, approximately one hundred sixty
seniors. The SAT is primarily used by private schools, where admissions tend to be
more competitive. As a result, the students in North Dakota who take the SAT are
not representative of the entire population of students in that state. A disproportion-
ate number are exceptionally strong academically, those being the students who feel
that they have the ability to be competitive at Ivy League–type schools. The number
1816, then, is the average of something (in this case, an elite subset of all students),
but it does not correspond to the center of the SAT distribution for all students.

The moral here is that analyzing data effectively requires that we look beyond
the obvious. What we have learned in Chapter 3 about random variables and prob-
ability distributions and expected values will be helpful only if we take the time to
learn about the context and the idiosyncrasies of the phenomenon being studied. To
do otherwise is likely to lead to conclusions that are, at best, superficial and, at worst,
incorrect.
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